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Abstract— This paper proposes a fault detection method for
hysteretic base-isolation systems. One of the key contributions
of this work is a Lyapunov-based restoring force observer
that leads to the design of a robust fault detection scheme.
The different fault types considered are stiffness and damping
variations in the system. The proposed fault estimation method
provides a direct estimate of the size and severity of the fault,
which can be important in many civil engineering applications.
A design procedure is described, and nonlinear simulation
results are presented to demonstrate the applicability of the
proposed method.

I. INTRODUCTION

Base isolation is a collection of structural elements of a

building that should substantially decouple the building’s

structure from the shaking ground; thus, they protect the

building’s integrity and enhance its seismic performance.

Base isolation tends to restrict transmission of the ground

motion to the building, and it also keeps the building

positioned properly over the foundation. For example, sliding

and elastomeric bearing systems reduce the building response

to seismic excitation, but with increased base displacements

in near-fault motions. The current practice is to provide

nonlinear passive dampers to limit the bearing displacements.

However, this increases the forces in the superstructure and

at the isolation level. Active and semiactive control using

novel devices, such as magnetorheological (MR) dampers,

present attractive alternatives to passive nonlinear devices

(see [1], [2], [3], [4]). In this work, a passive second-order,

base-isolated system is used for simplicity; however, it is

straightforward to generalize the obtained results to active

and semiactive control.

In nonlinear control theory, fault detection has attracted

significant interest as can be seen in the works of [5], [6],

[7], [8], and [9]. Moreover, when operating highly reliable

systems, the primary interest is to detect a fault at the

earliest possible stage (see [10]). A system that continuously

monitors a structure to detect damage is often referred to as

a health monitoring system in the mechanical, aerospace, and

civil engineering fields. A fault detection technique detects

faults by means of a residual signal (see [11]) produced by

available measurements. It must be a signal that is close to

zero in the absence of a fault, and significantly affected in

the presence of faults (see [10], [11], and [12]). The main

components of a fault detection system are the following:

a residual generator signal, residual evaluation, and the

CoDAlab, Departament de Matemàtica Aplicada III, Escola Uni-
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decision-making process. In addition, the residual signal has

to return to its original no-fault detection stage when the fault

vanishes. Various methods have been proposed, among which

the observer-based fault-detection techniques have yielded

the best results (see [6], [7], and [8]). The basic idea behind

the observer-based approaches is to estimate the outputs

of the system from the measurements by using some type

of observer, and then construct the residual by a properly

weighted output estimate error. This paper proposes a fault

detection method following the observer-based approach.

The different fault types considered are stiffness and damping

variations in the system. A residual signal is obtained that can

be examined for the likelihood of faults in hysteretic base-

isolator devices. As expected, the residual signal returns to

its original no-fault detection stage when the fault vanishes,

but also provides a direct estimate of the size and severity

of the fault, which can be important in many applications.

The paper is structured as follows. The problem statement

is presented in Section II. Next, the fault detection method

is developed in detail in Section III and different fault types

considered in this paper are presented. To illustrate the

efficiency of the proposed method, numerical simulations

are analyzed for hysteretic structural systems in the presence

of seismic excitations (the recorded earthquake El Centro is

used as in [13]) in Section IV. Finally, the conclusions and

future work are stated in Section V.

II. PROBLEM STATEMENT

Consider a passive second-order base-isolated structure

(see [14]) given by

mẍ+ cẋ+Φ(x, t) = f(t) (1)

where m and c are the mass and the damping coefficients, re-

spectively; Φ(x, t) characterizes a nonlinear restoring force,

where x gives the position and f(t) is an exciting but

bounded unknown force given by the earthquake ground

acceleration. The nonlinear force Φ(x, t) describes a hys-

teresis behavior. It can be due to the presence of passive

inelastic rubber bearings, other passive isolation devices [15],

semiactive MR dampers [16] or other hysteretic control

devices, and it can be described by the so-called Bouc–Wen

model as in [17] in the following form:

Φ(x, t) = α0κx(t) + (1− α0)Dκω(t), (2)

ω̇ = D−1(Aẋ − β0|ẋ||ω|
n−1ω − λẋ|ω|n) + ∆(t).

(3)
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This model represents the restoring force Φ(x, t) by the

superposition of an elastic component α0κx(t) and a hys-

teresis component (1 − α0)Dκω(t), in which D > 0 is

the yield constant displacement and α0 ∈ (0, 1) is the

post- to pre-yielding stiffness ratio. The hysteretic component

involves a non-dimensional auxiliary variable, ω(t), which

is the solution of the nonlinear differential equation (3). In

equation (1), A, β and λ are nondimensional parameters that

control the shape and size of the transition from the elastic to

plastic response (see [17] and [18]). Finally, the term ∆(t) in

equation (3) represents an unknown fault in the MR damper

system. A detailed discussion of this term is given in the

next section; however, broadly speaking, when ∆(t) = 0 the

system is healthy and otherwise a fault has occurred.

Because state variables describe the state evolution of the

dynamical system (see [19]), any change in the system’s

dynamic properties will be registered by the state variables.

The Bouc–Wen model has only one state variable; thus, any

change (fault) in its dynamic behavior will be registered. As

a result, the fault term, ∆(t), is added to the dynamic of

the internal variable. Recall that the fault detection method

assumes that the hysteretic base-isolation is represented by

the Bouc–Wen model. This model has gained large consensus

within the engineering community because it can capture a

wide variety of different shapes of the hysteresis loops as

can be seen in [20]. Although the internal parameters of the

Bouc–Wen model can be manipulated by applying a voltage

in magnetorheological dampers, for simplicity, we assume

that they are constant as in [14]. Moreover, many base-

isolated structures have hysteretic behavior with constant

parameters as can be seen in [21].

The objective of this paper is to detect a failure in

the base-isolated structure, which is equivalent to finding

a fault in ω(t). It is noteworthy that the internal variable

ω(t) is uniformly bounded for any piecewise discontinuous

signal ẋ(t), for certain values of the parameters A, β and λ.

Theorem 1 in [14] proves this statement and provides a way

to compute the bound.

The state representation of (1)-(3) yields

ẋ = y, (4)

ẏ =
f(t)

m
−

c

m
y −

Φ(x, t)

m
, (5)

ω̇ = D−1(Aẋ− β0|ẋ||ω|
n−1ω − λẋ|ω|n) + ∆(t). (6)

The main goal of this paper is to design a residual signal

that is able to detect the presence of the unknown fault ∆(t).
This residual signal must be close to zero when ∆(t) = 0,

and otherwise, it must be far from zero. In order to design

the fault detection method, let us assume that the following

conditions are satisfied:

• position (x), velocity (ẋ), and seismic perturbation

(f(t)) are measurable signals.

• the nominal parameters in (4)-(6) are known.

• the nonlinear restoring force, Φ(x, t), is unknown.

Note that because of the unknown restoring force, Φ(x, t),
an observer is necessary to fulfill the objective.

III. FAULT DETECTION METHOD

The aim of this section is to model the various subsystems

of the fault detection method (see Fig. 1), namely

• a real plant, modeled in this paper via (4)-(6), and

from which position (x), velocity (ẋ), and seismic

perturbation (f(t)) are measurable signals;

• a restoring force observer that uses the measured signals

x, ẋ, and f(t) to construct an observer Φ̂(x, t) of the

unknown Φ(x, t);
• a healthy model, to simulate the behavior of the system

in the absence of a fault;

• a residual signal generator.

f

x

ẋ Φ̂

ωh

r(t)

Observer

Healthy
model

Residual
generator

Real
plant

Fig. 1. Block diagram of the fault detection method.

A. Real Plant

The real plant is modeled using equations (4)-(6). Recall

that position (x), velocity (ẋ), and seismic perturbation (f(t))
are measurable signals. Two types of faults in the base-

isolation system are modeled: changes in the stiffness and

changes in the damping of the device.

Faults due to a change in the stiffness of the base-isolation

system (caused, for example, by the leakage of the MR

damper’s fluid) are modeled by adding an additional term,

∆A, to the nominal value of A. That is, when a fault in the

stiffness is present, the internal variable dynamic is modeled

as

ω̇ = D−1((A +∆A)ẋ− β0|ẋ||ω|
n−1ω − λẋ|ω|n),

that can be written as

ω̇ = D−1(Aẋ− β0|ẋ||ω|
n−1ω − λẋ|ω|n) +D−1∆Aẋ. (7)

Recall that the restoring force Φ(x, t), given in equation (2),

depends on ω. Therefore, the effect of the fault on Φ(x, t)
can be obtained by integrating the added term D−1∆Aẋ,

which gives D−1∆Ax. That is, an additional stiffness term

is added to the restoring force to simulate a fault in the

stiffness of the base-isolation system.

Following the same idea, faults due to a change in the

damping of the base-isolation system are modeled by adding

an additional term, D−1∆Aẍ, to the dynamic of the internal

variable. That is, when a fault in the damping is present, the

real plant is modeled as

ω̇ = D−1(Aẋ− β0|ẋ||ω|
n−1ω − λẋ|ω|n) +D−1∆Aẍ. (8)
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The effect of the fault on Φ(x, t) can be obtained by

integrating the added term D−1∆Aẍ, which gives D−1∆Aẋ.

In other words, a damping term is added to the restoring

force, which simulates a fault in the damping of the base-

isolation system.

B. Restoring Force Observer Design

In this section, an observer, Φ̂(x, t), of the restorting force

Φ(x, t) is presented.

The observer assumes that position (x), velocity (ẋ), and

seismic perturbation (f(t)) can be measured. In addition,

since there is no prior information about the derivative of

the restoring force, it is reasonable to suppose that Φ̇ = 0,

which implies that the restoring force varies slowly relative

to the observer dynamics. In fact, in [22], [23] it is shown,

by simulation and experiment, that an observer designed

under the previous assumption can also track some fast time-

varying disturbances. Thus, the hypothesis Φ̇ = 0 is not a

very restrictive assumption.

Theorem 1: Consider the system

˙̂y =
(

k1(ẋ − ŷ)− cẋ+ f − Φ̂
)

/m, k1 > 0, (9)

ż = −k2z + ŷ − (k2c− k2
2
m)ẋ + k2x+ k2f, k2 > 0,

(10)

where k1, k2 are design parameters and

Φ̂ = z − x− k2mẋ. (11)

If Φ̇ = 0, then Φ̂ tends to Φ as time goes to infinity. If

Φ̇ 6= 0, the error e = Φ− Φ̂ is ultimately bounded.

Proof: Consider the Lyapunov function

V1 =
1

2
(Φ− Φ̂)2 +

m

2
(ẋ− ŷ)2.

Differentiating the positive definite function V1 along the

system trajectory, and taking into account that Φ̇ = 0, yields

V̇1 = (Φ− Φ̂)(−
˙̂
Φ− ẋ+ ŷ)− k1(ẋ− ŷ)2.

Clearly, taking

˙̂
Φ = −ẋ+ ŷ + k2(Φ− Φ̂) (12)

then

V̇1 = −k2(Φ− Φ̂)2 − k1(ẋ− ŷ)2,

and, thus, V̇1 is negative semi-definite. To complete the proof

it only remains to see that the equation (12) corresponds to

equations (10) and (11). For this purpose, replace Φ in (12)

by the equation (1) to obtain

˙̂
Φ = −ẋ+ ŷ + k2(−mẍ− cẋ+ f − Φ̂),

and arranging terms yields

k2mẍ+ ẋ+
˙̂
Φ = ŷ + k2(−cẋ+ f − Φ̂).

Defining the right hand side of the previous equation as ż
and integrating leads to

Φ̂ = z − x− k2mẋ.

Notice that using the previous equation, ż can be written as

ż = −k2z + ŷ − (k2c− k22m)ẋ+ k2x+ k2f.

C. Healthy Model Observer

The healthy model is developed in order to simulate the

behavior of the system in the absence of a fault. The system

is modeled as

ẋh = yh, (13)

ẏh =
f

m
−

c

m
yh −

Φh

m
+ v, (14)

Φh = α0κxh + (1 − α0)Dκωh(t) (15)

ω̇h = D−1(Aẋh − β0|ẋh||ωh|
n−1ωh − λẋh|ω|

n

h), (16)

where v is a control law to be chosen in order to ensure that

e1 := x − xh and e2 := y − yh are uniformly ultimately

bounded. Recall that e3 := ω−ωh is bounded because both

variables are internal variables of a Bouc–Wen model, and

thus, they are already bounded.

In other words, the system in equations (13)-(16) is an

observer of the system in equations (1)-(6) and converges to

it if ∆(t) = 0. Otherwise, the system in equations (13)-(16)

will detect the failure in the system (1)-(6), and that is why

we call the system (13)-(16) a healthy model observer.

Loosely speaking, we would like to find state feedback

control for the system (13)-(16) that guarantees that every

response of the system is uniformly ultimately bounded

within a set containing the zero state. Let’s take the Lyapunov

function V2 = α0κ

2m
e21 +

1

2
e22, then the derivative of V2 along

the system trajectory yields

V̇2 =
α0κ

m
e1ė1 + e2ė2 =

α0κ

m
e1(ẋ− ẋh) + e2(ẏ − ẏh)

=
α0κ

m
e1e2 + e2

[

−
c

m
(y − yh)−

Φ− Φ̂ + Φ̂− Φh

m
− v

]

=
α0κ

m
e1e2 −

c

m
e22 − (Φ− Φ̂)

e2
m

− (Φ̂− Φh)
e2
m

− ve2.

Taking v =
α0κ

m
e1 −

(Φ̂− Φh)

m
,

V̇2 = (Φ̂− Φ)
e2
m

−
c

m
e2
2
,

and therefore, V̇2 ≤ 0 when |e2| ≥ |Φ−Φ̂|
c

. It can be

concluded that the solution is uniformly ultimately bounded

with the ultimate bound

|e2| <
|Φ− Φ̂|

c
.

Note that the size of the ultimate bound depends on the

performance of the observer. As the performance of Φ̂
improves, the ultimate bound decreases.

To summarize, our healthy model (13)-(16) is completed

using the control law

v =
α0κ

m
e1 −

(Φ̂− Φh)

m
.
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D. Residual Signal Design

In the field of fault detection and identification, a residual

signal should be defined to detect and identify fault signals.

Note that using the measurement of x and the observer Φ̂,

the variable ω can be estimated from equation (2) obtaining,

ω̂ =
Φ̂− α0κx

(1 − α0)Dκ

A first trial for the residual signal was a weighted function

of the difference between ω̂ and ωh. However, this residual

signal would stabilize after the fault vanishes, but it would

not return to zero. This is because the internal variable of the

Bouc–Wen model does not return to zero after the earthquake

(or after a fault) passes away but rather stabilizes to a

different value (because of the memory effect of hysteresis).

In order to circumvent this issue, the following residual

signal is used

r(t) = K( ˙̂ω − ω̇h) (17)

where K is the weight, and ˙̂ω is obtained by numerical

differentiation of ω̂. Several numerical differentiation proce-

dures can be used. Here, differentiation of the cubic spline

approximation is used.

When the residual signal is close to zero, the system is

healthy, otherwise the residual signal not only indicates the

presence of a fault but also gives a measure of the severity

of that fault.

IV. NUMERICAL SIMULATION

In order to investigate the efficiency of the proposed health

monitoring scheme, the El Centro earthquake is used (see

Fig. 2). The parameters used in the simulations have the

following nominal values: m = 156 × 103 Kg, c = 2 ×
104 Ns/m, κ = 6 × 106 N/m, α0 = 0.6, D = 0.6 m, A =
1, β0 = 0.1, λ = 0.5, and n = 3 as in [14] and [24].

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

Time(sec.)

a
c
c
e
l.
(m

/s
2
)

Fig. 2. El Centro earthquake, ground acceleration.

A. Stiffness and Damping Faults

Design parameters k1 and k2 in (9) and (10) are set

equal to 400, and the constant K in (17) is set equal to

45. The parameter ∆A in equation (7) varies with time,

thus simulating a stiffness fault in the base-isolated system.

Simulation results are shown in Fig. 3.

The first row in Fig. 3 shows the real restoring force Φ
versus the observed one Φ̂ (left) and the absolute error among

these quantities (right). The second row shows ω̂ versus the

internal variable given by the healthy model, ωh, (left) and

the absolute error among these quantities (right). Note that,

when the fault vanishes, the absolute error ω̂−ωh stabilizes

to a constant value that is usually not zero. This is because

the internal variable of the Bouc–Wen model does not return

to zero after the earthquake (or after a fault) passes away

but stabilizes to a different value (because of the memory

effect of hysteresis). The third row in Fig. 3 shows the

residual signal (left) and the faulty increment, ∆A, used in

the simulations (right). As desired, the residual signal is close

to zero in the absence of a fault and is significantly affected

in the presence of faults. As expected, the residual signal

returns to its original no-fault detection stage (close to zero)

when the fault vanishes. However, small variations in the

system stiffness (∆A = −0.2) are not clearly detected by

the fault detection method. Further work should be done to

improve the sensitivity of the method.

In order to model the damping fault, the parameter ∆A
in equation (8) varies with time and, therefore, simulates a

damping fault in the base-isolated system. Simulation results

are shown in Fig. 4.

Note that the observer, Φ̂, is a different approximation of

Φ than the one obtained in the stiffness fault simulation. This

is because the observer uses the real plant measurements of

position, velocity and force that are affected by the fault.

As different faults are simulated, different approximations

are obtained. Again, when the fault vanishes (∆A = 0), the

absolute error ω̂ − ωh stabilizes to a constant value that is

usually not zero, and the residual signal is close to zero in

the absence of a fault and is significantly affected in the

presence of faults.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper proposes a novel Lyapunov-based restoring

force observer that allows the design of a robust fault

detection method. The fault detection goal is fulfilled because

a residual signal is designed that is close to zero in the

absence of a fault and is significantly affected in the presence

of a fault. As expected, the residual signal returns to its

original no-fault detection stage when the fault vanishes, but

also provides a direct estimate of the size and severity of

the fault, which can be important in many civil engineering

applications.

B. Future Works

As future work it remains to examine the robustness of the

proposed algorithm when noise is present in the measured

signals and the robustness with respect to parametric uncer-

tainty. It also would be interesting to apply the proposed fault

detection method to the benchmark problem for seismically

excited base-isolated buildings (multiple degrees of freedom

problem) proposed by [13]. Finally, it is important to test

the scheme in an experimental setup with a shacking table

and a real MR-damper which will easily allow to modify the

damping behavior, thus simulating a fault. This experimental
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Fig. 3. Stiffness fault present in the system.

setup will also be helpful to give the minimal size of the fault

that can be detected by the proposed technique.
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