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Abstract-. We propose a novel scheme for source coding of 

non-uniform memoryless binary sources based on 

progressively encoding the input sequence with non-linear 

encoders. At each stage, a number of source bits is perfectly 

recovered, and these bits are thus not encoded in the next 

stage. The last stage consists of an LDPC code acting as a 

source encoder over the bits that have not been recovered in 

the previous stages.  

I. INTRODUCTION 

In [1] a new family of non-linear graph-based codes named 

hybrid Low Density Product Check – Low Density Parity 

Check (LDPrC-LDPC) codes was introduced to compress 

binary asymmetric sources. Non-linear codes are potentially 

more powerful than linear ones, since they include the latter 

as a particular case. This potential is of special interest in the 

case of non-uniform sources. The reason is that linear codes 

possess identical distance profiles for all codewords, while 

non-linear codes have different distance properties for 

different codewords. This can be exploited to guarantee better 

distance profiles for the most likely information sequences, 

which should lead to better performance. In spite of this 

potential advantage, there has been relatively little work on 

non-linear codes, probably due to the fact that linear codes are 

known to be asymptotically optimum in channel coding for 

infinite block lengths.  

The key idea for the definition of the non-linear codes in 

[1] was the use of non-linear nodes that perform the AND 

operation over their binary inputs. The proposed structure can 

be seen as a non-linear generalization of LDPC codes, which 

includes them as a particular case while maintaining many of 

their desirable features. Namely, i) the proposed non-linear 

codes can be graphically represented by means of a factor 

graph, ii) they can be decoded using belief propagation, and 

iii) their performance can be predicted, and the codes 

analyzed, using density evolution, and thus they can be easily 

designed when long block lengths are considered. This 

distinguishes the proposed scheme from the few non-linear 

codes that have been recently proposed for lossless and lossy 

compression, which are not easy to analyze and generalize. 

Preliminary results obtained for single source coding utilizing 

regular codes of the proposed family show that they easily 

outperform their linear counterpart (LDPC codes).  

In this paper we unveil some of the key aspects that define 

the behavior of LDPrC-LDPC codes and propose a 

modification of the original scheme that can be employed to  
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obtain a family of codes with better performance while 

keeping complexity low. The proposed procedure is named 

“progressive hybrid LDPrC-LDPC codes” and is based on the 

generation of the encoded bits by stages rather than all at the 

same time.  

The proposed scheme allows to achieve compression of 

very low entropy sources with rate losses around 20%. While 

this figure might seem poor taking into account that optimum 

source encoding schemes exist in the literature (e.g. entropy 

coding), this scheme departs from these optimum procedures 

in that the complexity is moved from the encoder to the 

decoder. LDPC [2] and turbo codes [3,4] have been proposed 

in the past to achieve this goal, but the performance of linear 

codes for compression experiences significant degradation 

when the source entropy decreases (the smaller the entropy 

the higher the relative gap between the code performance and 

the theoretical limit).  

II. SYSTEM SET-UP 

We consider the problem of almost lossless source coding 

of an asymmetric memoryless binary source with p(1) > p(0). 

We consider fixed-length block source codes, where a 

sequence of k information bits, b1b2 . . . bk, is compressed into 

a codeword of n < k bits, so that a code with compression rate 

r = n/k is obtained. 

III. REVIEW OF HYBRID LDPC-LDPRC CODES 

Hybrid LDPrC-LDPC codes are constructed as a parallel 

concatenation of two block codes: a fraction . of coded bits is 

generated by a nonlinear Low Density Product Check 

(LDPrC) code and the remainder fraction, 1 í ., by a linear 

LDPC code. 

The linear block is encoded as in a standard LDPC code. 

Defining a generator matrix G of size k × (1 í .) n, the 

encoding process can be expressed as: 

 ( ) [ ]1 1 k1- n
c …c b …b,  ,

α
ª º= = =¬ ¼c bG c b . (1) 

For the LDPrC code, each coded bit, pj, is obtained as the 

product (AND) of a few information bits bi. Thus, we generate 

a codeword of length .n as 

 
j ip b , j = 1… n,

ji S

α
∈

= ∏  (2) 

where Sj is the set of dpj indices (1 � dpj � k) that defines which 

information bits are used to generate each product bit pj. 

Analogously to the LDPC code, the encoding process can be 

described in a compact form by defining a k×.n generator 

matrix P whose (i,j) entry is 1 if the information bit bi is 
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employed in the computation of the coded bit pj, and 0 

otherwise. We thus represent the encoding process as 

 [ ] [ ]1 n 1 k, p …p , b …b . α= = =p b P p b� , (3) 

where �  indicates the product over the bits selected by the 

corresponding column of matrix P. 

The LDPrC-LDPC codeword is built as [p c]. Therefore, 

matrices G and P fully characterize the hybrid LDPC-LDPrC 

code. These matrices are sparse and have random appearance. 

They are characterized by the degree profiles of the bit nodes 

(both for the linear and non-linear parts), of the parity check 

and product check nodes. The analysis in [1] focused on the 

design of regular codes by means of density evolution. In this 

paper we propose a modification of the original LDPrC-LDPC 

codes resulting in a simple design of codes with irregular bit 

and product degree profiles.  

The proposed codes are constructed using a sparse P  and 

G. Hence, if the codeword is long enough and the matrix has 

been properly designed, there will be few cycles in the graph 

and belief propagation will provide a quite accurate 

approximation of maximum-a-posteriori decoding. The 

message passing equations for the variable nodes are the same 

as in LDPC codes, whereas new equations must be derived for 

the product nodes. As indicated in [1], if we consider the case 

of a two-input AND operator z=x·y and we denote by L×:v 

and Lv:× the log-likelihood ratios (LLR) messages that go 

from the product node × to variable node v (being v either z, x 

or y) and vice versa, where 
p(v=1)

p(v=0)
LLR(v) log= , then, we can 

write the decoding equations for this product node of degree 

two as 

 
x × z ×

x ×

L +L

y L

1+ 2e
L = log

1+ 2e

→ →

→
×→

§ ·
¨ ¸
© ¹

 (4) 

 ( )LL
L L L log 1 e e yx

z x y

→×→×

×→ →× →×= + − + + . (5) 

For product nodes of higher degree, the messages can be 

computed recursively from the expressions above. 

IV.  “ERASURE DECODING” OF THE LDPRC CODE 

In this section we introduce a low complexity decoder for 

LDPrC codes that will be subsequently used in section V to 

improve the performance of hybrid LDPrC-LDPC codes. This 

decoder relies on the specific behavior of the AND operator 

and it does not exploit the knowledge of the source entropy.  

IV.1. Erasure decoder 

As indicated in [1], the product nodes are much more 

informative when they are equal to ‘1’ than when they are 

equal to ‘0’, since knowledge that the product is equal to 1 

removes all uncertainty on the value of the operands (all 

inputs must be 1).  By exploiting this fact some source bits 

can be easily recovered even if the source statistics are not 

taken into account, as shown next. 

Based on the behavior of the AND operator, a very low 

complexity decoder for the LDPrC code can be envisaged. It 

is a decoder that only considers three possible values for the 

messages exchanged between the nodes: 1 (for a source bit 

that is perfectly known with LLR +�), 0 (for a source bit that 

is perfectly known with LLR -�) and ‘?’ (for a source bit that 

has not been recovered yet). At the first decoder iteration, all 

source bits connected to a product node that has value ‘1’ are 

identified; at the second iteration the knowledge of these bits 

is employed to recover some of the source bits that are ‘0’ 

(according to the notation introduced in the next subsection 

those bits that are ‘0’ and are connected to a type II product 

node are recovered in the second iteration). After the second 

iteration the decoding process is stopped, since no more 

source bits can be recovered by this low complexity decoder. 

The performance of such a simple decoder is clearly 

suboptimal, since source statistics are not taken into account 

and soft values are not exchanged between nodes. However, it 

has the nice feature that no errors are made, i.e. the BER is 

zero for all bits identified as ‘1’ or ‘0’. Based on the 

similarities of this decoder with that one employed in LDPC 

codes for the binary erasure channel, this low complexity 

decoder will be denoted in the sequel as the “erasure 

decoder”. We next analyze the performance of this decoder 

depending on the degree of the product nodes and the source 

entropy. 

IV.2. The behaviour of the AND operator of degree dp 

Let us consider an AND operator of degree dp and the 

amount of information on the input bits that can be inferred 

from the value of its product.  Three different situations arise 

in the erasure decoder: 

• Type I: All source bits are equal to ‘1’. Then their AND 

operation is also ‘1’ and this single product bit identifies 

completely the value of the dp source bits.  

• Type II: All source bits but one are equal to ‘1’, so that 

their AND operation is ‘0’. In this case, when the dp -1 

bits that are equal to ‘1’ are perfectly known, the 

remaining bit can be identified as a ‘0’. However, the 

AND operator is not useful to recover information on any 

of the bits that are equal to ‘1’ even if the bit that is ‘0’ is 

perfectly known. 

• Type III: At least two source bits are equal to ‘0’. In this 

case the only information that can be extracted from this 

product bit is that some source bits are zero. Perfect 

knowledge of any of the source bits does not convey any 

further information on the value of the other ones. 

Given a source entropy and given a degree of the AND 

operator, the fraction of product nodes that correspond to each 

of these three types is perfectly determined. Figure 1 shows 

the probability that the product of dp source bits belongs to 

each one of the three types listed above for the case of a 

source with entropy 0.1.  Note that the fraction of nodes of 

type I is a decreasing function of the degree dp, whereas the 

fraction of nodes of type II exhibits a maximum that can be 

shown to appear when ( )1
logd p(1)−= −p . 
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Fig. 1. Distribution of the type I, II and III products as a function 

of the product node degree for a source of entropy 0.1. 

 

From the point of view of source compression it is thus 

clear that: 

• The source bits that are ‘1’ can only be recovered from 

the LDPrC code by the erasure decoder if they are 

connected to at least one  type I product node, in which 

case it does not matter whether they have degree equal to 

1 or higher than 1.  

• The source bits that are ‘0’ can only be recovered from 

the LDPrC code by the erasure decoder if they are 

connected to a type II product node and all other source 

bits in that product  node have been recovered. 

V. PROGRESSIVE ENCODING 

V.1. Encoding procedure 

The results in the previous section indicate that in the 

design of LDPrC codes there is a trade-off in the selection of 

the product node degree. The higher the product node degree 

the higher the compression rate of the code but also the higher 

the probability of generating Type III product nodes and the 

lower the probability of generating Type I product nodes. 

Taking into account this trade-off, it is apparent that the 

performance of the non-linear code can be improved if source 

bits equal to ‘1’ connected to Type I products have the 

smallest bit node degree (so no graph edges are “wasted” 

trying to determine them) and source bits equal to ‘0’ 

connected to type II products also have a small degree (so 

they can be recovered but they have a small contribution to 

generate products that are ‘0’). This is possible if the encoding 

procedure for the hybrid codes proposed in [1] is modified so 

that it is performed in N successive stages. At each stage a 

subset of product bits is obtained, so if we denote as pi the 

product bits generated in the i-th stage then 

[ ]1 Np p p= !   (6) 

The basic idea is to employ the erasure decoder described 

previously at the encoder to identify in the earliest possible 

stage the maximum number of source bits based on a reduced 

set of coded bits, and to devote the remaining coded bits to 

encode those bits that remain as ‘?’ after the use of the erasure 

decoder in that stage. The procedure is as follows. At a first 

stage, all source bits are encoded with AND operators of 

degree dp1 so n1= k/dp1 coded bits are generated: 

 
1

(1) (1)
11 n

p … p
1

= =ª º
¬ ¼p b P�

 

(7)

 
where P1 is a matrix of size k×n1 that has one ‘1’ in each row 

and dp1 ‘1’s per column. Thus, the first edge for all source bits 

is defined and they all have degree one. Afterwards, the 

encoder tries to recover the source bits from these n1 coded 

bits employing the erasure decoder. Denote as (1-f1)·k the 

amount of source bits that can be recovered, and as f1·k the 

bits that remain as ‘?’. 

At the second stage, those bits that remain as ‘?’ are 

encoded with AND operators of degree dp2 and n2=f1·k/dp2  

coded bits are generated. This procedure can be expressed as 

 
2

T
T

2 22 2

(2) (2)
12 2n

p … p

=

= =

ª º¬ ¼

ª º
¬ ¼

P � 0 M

p b P�  (8) 

where 02 is a zero matrix of size ((1-f1)·k)×n2, M2 is a matrix 

of size (f1·k)×n2 that has one ‘1’ in each row and dp2 ‘1’s per 

column, Π2 is a permutation matrix of size k×k that rearranges 

the rows of P2 so that the non-zero rows are mapped to the 

source bits that remain as ‘?’ after the first stage. 

Alternatively, this procedure can be written in terms of a 

permutation of the source bits:  

 

( )
2

T
(2) (2) -1 T

2 212 n
p … p= =ª º ª º¬ ¼¬ ¼p b� 0 M�  (9) 

so in this case the permutation matrix Π2 sorts the source bits 

placing first those bits that were recovered in the first stage 

and afterwards those that are encoded in the second stage with 

matrix M2. Note that the source bit nodes for the latter have 

degree 2. Note also that these two stages can be regarded as a 

single code with an irregular bit and product degree profile: 

 

[ ] [ ]1 2 1 2p p b P P= �

 

(10) 

Next, the encoder tries to recover the source bits that 

remained as ‘?’ employing the ‘erasure decoder’ over the n1+ 

n2 coded bits of the equivalent code of rate (n1+ n2)/k.  

Denote as f2·k the bits that remain as ‘?’ after decoding the 

second stage. These bits are further encoded in stage 3 with 

n3=f2·k/dp3 AND operators of degree dp3 so their bit node 

degree is 3. Afterwards the ‘erasure decoder’ is applied again 

and the procedure follows with as many stages as desired.  

Hence, for N stages n1+n2+…+nN= k/dp1+ f1·k/dp2+… +fN-

1·k/dpN coded bits are generated, so the total code rate for all 

stages is 1/dp1+ f1/dp2+…+ fN-1/dpN, and fN··k bits remain as ‘?’ 

at the end of this procedure. This process can be written as 

using the same notation as in (3) 

 [ ]

T
T

i ii i

1 N

=

=

ª º¬ ¼P � 0 M

P PP !  (11)

 

Note that at every stage the fraction of bits that remain as 

‘?’ and need to be further encoded is smaller (1>f1>f2>f3…). 

Furthermore, as most of the source bits being identified in 

early encoding stages are ‘1’, the entropy of these remaining 

bits increases. This procedure can be continued until no bits 

remain as ’?’ or the entropy is very close to one. 
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Alternatively, this procedure can also be stopped at any 

number of stages and the bits remaining as ‘?’ can be then 

encoded with a classic LDPC code of smaller size. 

Note that although the coded bits are generated in several 

stages, the whole encoding process can be regarded as a single 

hybrid LDPrC-LDPC code with irregular degree profiles 

whose matrix depends on the source sequence to be 

compressed. This dependency appears through the 

permutation matrices Π2 … ΠN, but the matrices P1, M2 … 

MN are fixed. 

It is important to remark that the same ‘erasure decoding’ 

process can be employed at the encoder and the decoder, so 

the decoder can recover the permutation matrices Π2 … ΠN 

that were employed in the encoder. Therefore, it has all the 

information required to retrieve the data dependent matrix that 

defines the matrix P in equation (3). At the receiver side, once 

this matrix has been obtained the fully-fledged decoder 

described in [1] for hybrid LDPrC-LDPC codes (i.e. the 

decoder that exploits the knowledge of source entropy and 

exchanges soft messages) can be applied to get the best 

performance. 

V.2. Analysis 

The improved performance of the proposed procedure is 

due to the fact that those source bits that are more difficult to 

recover are those that are most protected by the compression 

code, whereas those that can be easily recovered have smaller 

degree. 

The simulation results in section VI indicate that the 

proposed procedure provides a low complexity method to 

compress very low entropy sources.  It is well known that the 

design of linear codes for very high compression rates is 

difficult: in practical code designs the relative gap to the 

theoretical limits grows when the entropy decreases. 

However, the proposed procedure maps this problem into the 

generation of a set of coded bits by AND operators of high 

degree and the compression of a remaining sequence of bits of 

higher entropy, which can be efficiently encoded with a state-

of-the-art LDPC code. For example, in the next section it is 

shown how a source with entropy 0.05 can be compressed 

using four non-linear stages and an LDPC code of rate 0.5. 

Thus, the problem of compressing a long source of low 

entropy is mapped into that of compressing a short sequence 

of higher entropy. The only drawback of this procedure from 

the code design point of view is that the LDPC code will 

operate with a smaller codeword length (its input block length 

is fN·k rather than k), so a careful design of its parity check 

matrix must be made to guarantee good performance. 

Although the encoding procedure described above results 

in a code with bit node degrees equal to i for those bits 

retrieved in the i-th stage, the generalization of the proposed 

procedure to obtain overall hybrid LDPrC-LDPC codes with 

more irregular degree profiles is straightforward. In the 

simulations in section VI the degrees of each stage dpi were 

selected as ones that made the probability of product nodes of 

type I equal to 0.5, i.e. ( )1

2d p (1)log−= −i i

p  or its closest 

integer, being p
i
(1) the probability of ‘1’ at the input of the i-

th stage. This criterion leads to an encoded sequence with 

equally likely 0s and 1s (which is a desirable feature in a 

compressed sequence), and preliminary simulations have 

shown that it provides the best results among the designs 

employing regular degree products. However, a deeper 

analysis is required to see if the performance can be improved 

by using other criteria in the selection of the product degree 

profile of each stage.  Proceeding in this way, the number of 

coded bits generated at each stage keeps approximately 

constant (n1≈ …≈ nN), and on average at least half the bit 

nodes are determined at each stage. 

The number of  source bits that remain after each encoding 

stage (i.e. the values of f1…fN) depends on the information 

sequence, and it has a variance that is larger for latter 

encoding stages and decreases when the source word length k 

increases. Hence, the progressive encoding procedure is most 

effective when long codewords are considered. In order to 

tackle with this variable length without requiring the 

generation of a new encoding matrix for every information 

sequence to be encoded, a procedure must be proposed. In the 

simulation results in the next section the product degrees dpi 

for each matrix M2 … MN were originally designed according 

to the average input length in the corresponding stage, which 

can be computed from the knowledge of the source entropy. 

Then these matrices where extended adding additional rows 

corresponding to a number ∆i of permutation matrices of size 

ni, so the degree of the product nodes was increased to dpi+∆i 

and the number of bits entering the i-th encoding stage was 

increased from ni·dpi= fi-1·k to ni·(dpi+∆i). In those source 

words where some of these bits (usually the ni·∆i first ones) 

have been recovered in previous stages, no further encoding is 

necessary and the source can be replaced at the input of the 

product node by ‘1’, thereby reducing the effective degree of 

the product node and getting it closer to the original value of 

dpi. In those source words when the sequence length at the 

input of the i-th stage exceeds ni·(dpi+∆i) an unrecoverable 

error will occur.  

In the final linear coding stage, a similar procedure must 

be proposed to cope with the variable input length. In the 

simulations in section VI this issue was approached by 

increasing the LDPC codeword length while keeping the code 

rate fixed. This procedure results in a rate loss; the search for 

more efficient methods is a topic of current research. 

Regarding implementation complexity, note that the 

operation at the encoder is very simple (only LDPrC-LDPC 

encoding and erasure decoding are required). It is also 

important to remark that the data-dependency is only 

introduced through the permutation matrices Πi, which act 

over the information bits. Hence, the conventional LDPrC-

LDPC decoder presented in [1] can be employed at the 

receiver by introducing data-dependent interleavers. Note also 

that the size of submatrix Mi  is reduced at every stage, and 

this fact can be also exploited to reduce decoder complexity.  

VI. SIMULATION RESULTS 

The proposed procedure has been employed to compress 

two sources with entropy 0.091 and 0.05. In both cases four 

stages of coded bits generated by means of product nodes 

were employed, and the bits that remained as ‘?’ after these 

stages were encoded with a linear code. 

In the case of source entropy 0.091 a block of 103250 bits 

was compressed into 11950 coded bits, so a code rate of 

0.1157 was obtained. After Montecarlo simulation of 16600 
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codewords, 9 wrong codewords were obtained and the 

average BER was 1.53x10
-6

. The parameters for the non-

linear stages are listed in Table 1. As indicated there, an 

average of 6670 bits remained to be identified after these four 

stages, and their average entropy was 0.70. These bits where 

then compressed with an LDPC code of rate 0.5 obtained 

from [2, 6]. Note that the code rate is smaller than the entropy 

of these bits. Operation in this regime was possible because 

the LDPC decoder did not operate alone: it was assisted by 

the non-linear stages, since the optimum decoder for the 

hybrid LDPC-LDPrC code was employed. In order to take 

into account the variability in the number of bits that remain 

undetermined at the end of the fourth stage the number of 

parity checks was increased from f4·k=6670 to 9900, 

maintaining constant the total code rate. This performance 

compares favorably with that obtained when  a single LDPC 

code is employed for the same task: in [2] an LDPC code was 

optimized to compress a source with entropy 0.091 and the 

minimum rate required for it was 0.125.  

 In the case of source entropy 0.05 a block of 1230000 bits 

were compressed into 85500 coded bits, so a code rate of 

0.064 was obtained. After Monte Carlo simulation of 2600 

codewords 1 wrong codeword was obtained and the average 

BER was 2.2x10
-6

. The parameters for the non-linear stages 

are listed in table 2. In this case a linear code of rate 0.425 

was employed [5]. 

VII. CONCLUSIONS 

The application of the erasure decoder to LDPrC codes has 

been employed in this paper to propose a new source code 

whose encoding matrix (and the corresponding graph) 

depends on the information word. The new encoding 

procedure is implemented in successive stages and results in 

an adaptive graph where the nodes corresponding to those bits 

that are easy/difficult to recover have low/high degree.  In 

spite of its data dependent nature the proposed encoding 

procedure has low complexity. 

The simulation results evidence that the proposed codes 

outperform linear codes when compressing very low entropy 

sources. An analytical analysis and the search for more 

efficient and less complex methods to exploit adaptive graph 

construction of codes are topics of current research. 
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Table 1. Code parameters for source with entropy H=0.091 and k=103250. Rate = 0.1157 

 NL stage 1 NL stage 2 NL stage 3 NL stage 4 LDPC 

Product node degree (dpi+∆i) 59 29+5 14+5 7+5  

Bits to be encoded 

at that stage 

p1
i 

0.9888 0.9767 0.9533 0.9074 0.8199 

Entropy 0.091 0.1596 0.2720 0.4449 0.6799 

Length (ni dpi+ ni ∆i) 103250 59500 33250 21000 9900 

Number of coded bits (ni) 1750 1750 1750 1750 4950 

Contribution to overall code rate ( ni /k  or 

LDPC code rate ) 

0.0169 0.0169 0.0169 0.0169 0.0479 

Bits that remain as ‘?’ after that stage (fi·k) 51379 25688 12968 6670  

 

Table 2. Code parameters for source with entropy H=0.05 and k=1230000 Rate=0.064 

 NL stage 1 NL stage 2 NL stage 3 NL stage 4 LDPC 

Product node degree (dpi+∆i) 123 61+7 30+7 15+7  

Bits to be encoded 

at that stage 

p1
i
 0.9944 0.9775 0.9775 0.9552 0.9115 

Entropy 0.05 0.0888 0.1550 0.2637 0.4313 

Length (ni dpi+ ni ∆i) 1230000 680000 370000 220000 91100 

Number of coded bits (ni) 10000 10000 10000 10000 38781 

Contribution to overall code rate ( ni /k  or 

LDPC code rate ) 

0.0081 0.0081 0.0081 0.0081 0.0315 

Bits that remain as ‘?’ after that stage (fi·k) 613477 306614 153888 77893  
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