
Progressive encoding with non-linear source codes for compression

of low-entropy sources

Francisco Ramirez Javega
1
, Meritxell Lamarca

1,2
, and Javier Garcia-Frias

2

1
Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

2
 Dept. of ECE, University of Delaware, USA

Abstract-. We propose a novel scheme for source coding of

non-uniform memoryless binary sources based on

progressively encoding the input sequence with non-linear

encoders. At each stage, a number of source bits is perfectly

recovered, and these bits are thus not encoded in the next

stage. The last stage consists of an LDPC code acting as a

source encoder over the bits that have not been recovered in

the previous stages.

I. INTRODUCTION

In [1] a new family of non-linear graph-based codes named

hybrid Low Density Product Check – Low Density Parity

Check (LDPrC-LDPC) codes was introduced to compress

binary asymmetric sources. Non-linear codes are potentially

more powerful than linear ones, since they include the latter

as a particular case. This potential is of special interest in the

case of non-uniform sources. The reason is that linear codes

possess identical distance profiles for all codewords, while

non-linear codes have different distance properties for

different codewords. This can be exploited to guarantee better

distance profiles for the most likely information sequences,

which should lead to better performance. In spite of this

potential advantage, there has been relatively little work on

non-linear codes, probably due to the fact that linear codes are

known to be asymptotically optimum in channel coding for

infinite block lengths.

The key idea for the definition of the non-linear codes in

[1] was the use of non-linear nodes that perform the AND

operation over their binary inputs. The proposed structure can

be seen as a non-linear generalization of LDPC codes, which

includes them as a particular case while maintaining many of

their desirable features. Namely, i) the proposed non-linear

codes can be graphically represented by means of a factor

graph, ii) they can be decoded using belief propagation, and

iii) their performance can be predicted, and the codes

analyzed, using density evolution, and thus they can be easily

designed when long block lengths are considered. This

distinguishes the proposed scheme from the few non-linear

codes that have been recently proposed for lossless and lossy

compression, which are not easy to analyze and generalize.

Preliminary results obtained for single source coding utilizing

regular codes of the proposed family show that they easily

outperform their linear counterpart (LDPC codes).

In this paper we unveil some of the key aspects that define

the behavior of LDPrC-LDPC codes and propose a

modification of the original scheme that can be employed to

This work has been partially funded by the Spanish Science and
Technology Commissions and by FEDER funds from the European

Commission: TEC2007-68094-C02-02, CSD2008-00010, 2009SGR-

01236.

obtain a family of codes with better performance while

keeping complexity low. The proposed procedure is named

“progressive hybrid LDPrC-LDPC codes” and is based on the

generation of the encoded bits by stages rather than all at the

same time.

The proposed scheme allows to achieve compression of

very low entropy sources with rate losses around 20%. While

this figure might seem poor taking into account that optimum

source encoding schemes exist in the literature (e.g. entropy

coding), this scheme departs from these optimum procedures

in that the complexity is moved from the encoder to the

decoder. LDPC [2] and turbo codes [3,4] have been proposed

in the past to achieve this goal, but the performance of linear

codes for compression experiences significant degradation

when the source entropy decreases (the smaller the entropy

the higher the relative gap between the code performance and

the theoretical limit).

II. SYSTEM SET-UP

We consider the problem of almost lossless source coding

of an asymmetric memoryless binary source with p(1) > p(0).

We consider fixed-length block source codes, where a

sequence of k information bits, b1b2 . . . bk, is compressed into

a codeword of n < k bits, so that a code with compression rate

r = n/k is obtained.

III. REVIEW OF HYBRID LDPC-LDPRC CODES

Hybrid LDPrC-LDPC codes are constructed as a parallel

concatenation of two block codes: a fraction . of coded bits is

generated by a nonlinear Low Density Product Check

(LDPrC) code and the remainder fraction, 1 í ., by a linear

LDPC code.

The linear block is encoded as in a standard LDPC code.

Defining a generator matrix G of size k × (1 í .) n, the

encoding process can be expressed as:

 () []1 1 k1- n
c …c b …b, ,

α
ª º= = =¬ ¼c bG c b . (1)

For the LDPrC code, each coded bit, pj, is obtained as the

product (AND) of a few information bits bi. Thus, we generate

a codeword of length .n as

j ip b , j = 1… n,

ji S

α
∈

= ∏ (2)

where Sj is the set of dpj indices (1 � dpj � k) that defines which

information bits are used to generate each product bit pj.

Analogously to the LDPC code, the encoding process can be

described in a compact form by defining a k×.n generator

matrix P whose (i,j) entry is 1 if the information bit bi is

978-1-4244-6746-4/10/$26.00 ©2010 IEEE
404

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing

employed in the computation of the coded bit pj, and 0

otherwise. We thus represent the encoding process as

 [] []1 n 1 k, p …p , b …b . α= = =p b P p b� , (3)

where � indicates the product over the bits selected by the

corresponding column of matrix P.

The LDPrC-LDPC codeword is built as [p c]. Therefore,

matrices G and P fully characterize the hybrid LDPC-LDPrC

code. These matrices are sparse and have random appearance.

They are characterized by the degree profiles of the bit nodes

(both for the linear and non-linear parts), of the parity check

and product check nodes. The analysis in [1] focused on the

design of regular codes by means of density evolution. In this

paper we propose a modification of the original LDPrC-LDPC

codes resulting in a simple design of codes with irregular bit

and product degree profiles.

The proposed codes are constructed using a sparse P and

G. Hence, if the codeword is long enough and the matrix has

been properly designed, there will be few cycles in the graph

and belief propagation will provide a quite accurate

approximation of maximum-a-posteriori decoding. The

message passing equations for the variable nodes are the same

as in LDPC codes, whereas new equations must be derived for

the product nodes. As indicated in [1], if we consider the case

of a two-input AND operator z=x·y and we denote by L×:v

and Lv:× the log-likelihood ratios (LLR) messages that go

from the product node × to variable node v (being v either z, x

or y) and vice versa, where
p(v=1)

p(v=0)
LLR(v) log= , then, we can

write the decoding equations for this product node of degree

two as

x × z ×

x ×

L +L

y L

1+ 2e
L = log

1+ 2e

→ →

→
×→

§ ·
¨ ¸
© ¹

 (4)

 ()LL
L L L log 1 e e yx

z x y

→×→×

×→ →× →×= + − + + . (5)

For product nodes of higher degree, the messages can be

computed recursively from the expressions above.

IV. “ERASURE DECODING” OF THE LDPRC CODE

In this section we introduce a low complexity decoder for

LDPrC codes that will be subsequently used in section V to

improve the performance of hybrid LDPrC-LDPC codes. This

decoder relies on the specific behavior of the AND operator

and it does not exploit the knowledge of the source entropy.

IV.1. Erasure decoder

As indicated in [1], the product nodes are much more

informative when they are equal to ‘1’ than when they are

equal to ‘0’, since knowledge that the product is equal to 1

removes all uncertainty on the value of the operands (all

inputs must be 1). By exploiting this fact some source bits

can be easily recovered even if the source statistics are not

taken into account, as shown next.

Based on the behavior of the AND operator, a very low

complexity decoder for the LDPrC code can be envisaged. It

is a decoder that only considers three possible values for the

messages exchanged between the nodes: 1 (for a source bit

that is perfectly known with LLR +�), 0 (for a source bit that

is perfectly known with LLR -�) and ‘?’ (for a source bit that

has not been recovered yet). At the first decoder iteration, all

source bits connected to a product node that has value ‘1’ are

identified; at the second iteration the knowledge of these bits

is employed to recover some of the source bits that are ‘0’

(according to the notation introduced in the next subsection

those bits that are ‘0’ and are connected to a type II product

node are recovered in the second iteration). After the second

iteration the decoding process is stopped, since no more

source bits can be recovered by this low complexity decoder.

The performance of such a simple decoder is clearly

suboptimal, since source statistics are not taken into account

and soft values are not exchanged between nodes. However, it

has the nice feature that no errors are made, i.e. the BER is

zero for all bits identified as ‘1’ or ‘0’. Based on the

similarities of this decoder with that one employed in LDPC

codes for the binary erasure channel, this low complexity

decoder will be denoted in the sequel as the “erasure

decoder”. We next analyze the performance of this decoder

depending on the degree of the product nodes and the source

entropy.

IV.2. The behaviour of the AND operator of degree dp

Let us consider an AND operator of degree dp and the

amount of information on the input bits that can be inferred

from the value of its product. Three different situations arise

in the erasure decoder:

• Type I: All source bits are equal to ‘1’. Then their AND

operation is also ‘1’ and this single product bit identifies

completely the value of the dp source bits.

• Type II: All source bits but one are equal to ‘1’, so that

their AND operation is ‘0’. In this case, when the dp -1

bits that are equal to ‘1’ are perfectly known, the

remaining bit can be identified as a ‘0’. However, the

AND operator is not useful to recover information on any

of the bits that are equal to ‘1’ even if the bit that is ‘0’ is

perfectly known.

• Type III: At least two source bits are equal to ‘0’. In this

case the only information that can be extracted from this

product bit is that some source bits are zero. Perfect

knowledge of any of the source bits does not convey any

further information on the value of the other ones.

Given a source entropy and given a degree of the AND

operator, the fraction of product nodes that correspond to each

of these three types is perfectly determined. Figure 1 shows

the probability that the product of dp source bits belongs to

each one of the three types listed above for the case of a

source with entropy 0.1. Note that the fraction of nodes of

type I is a decreasing function of the degree dp, whereas the

fraction of nodes of type II exhibits a maximum that can be

shown to appear when ()1
logd p(1)−= −p .

405

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing

Fig. 1. Distribution of the type I, II and III products as a function

of the product node degree for a source of entropy 0.1.

From the point of view of source compression it is thus

clear that:

• The source bits that are ‘1’ can only be recovered from

the LDPrC code by the erasure decoder if they are

connected to at least one type I product node, in which

case it does not matter whether they have degree equal to

1 or higher than 1.

• The source bits that are ‘0’ can only be recovered from

the LDPrC code by the erasure decoder if they are

connected to a type II product node and all other source

bits in that product node have been recovered.

V. PROGRESSIVE ENCODING

V.1. Encoding procedure

The results in the previous section indicate that in the

design of LDPrC codes there is a trade-off in the selection of

the product node degree. The higher the product node degree

the higher the compression rate of the code but also the higher

the probability of generating Type III product nodes and the

lower the probability of generating Type I product nodes.

Taking into account this trade-off, it is apparent that the

performance of the non-linear code can be improved if source

bits equal to ‘1’ connected to Type I products have the

smallest bit node degree (so no graph edges are “wasted”

trying to determine them) and source bits equal to ‘0’

connected to type II products also have a small degree (so

they can be recovered but they have a small contribution to

generate products that are ‘0’). This is possible if the encoding

procedure for the hybrid codes proposed in [1] is modified so

that it is performed in N successive stages. At each stage a

subset of product bits is obtained, so if we denote as pi the

product bits generated in the i-th stage then

[]1 Np p p= ! (6)

The basic idea is to employ the erasure decoder described

previously at the encoder to identify in the earliest possible

stage the maximum number of source bits based on a reduced

set of coded bits, and to devote the remaining coded bits to

encode those bits that remain as ‘?’ after the use of the erasure

decoder in that stage. The procedure is as follows. At a first

stage, all source bits are encoded with AND operators of

degree dp1 so n1= k/dp1 coded bits are generated:

1

(1) (1)
11 n

p … p
1

= =ª º
¬ ¼p b P�

(7)

where P1 is a matrix of size k×n1 that has one ‘1’ in each row

and dp1 ‘1’s per column. Thus, the first edge for all source bits

is defined and they all have degree one. Afterwards, the

encoder tries to recover the source bits from these n1 coded

bits employing the erasure decoder. Denote as (1-f1)·k the

amount of source bits that can be recovered, and as f1·k the

bits that remain as ‘?’.

At the second stage, those bits that remain as ‘?’ are

encoded with AND operators of degree dp2 and n2=f1·k/dp2

coded bits are generated. This procedure can be expressed as

2

T
T

2 22 2

(2) (2)
12 2n

p … p

=

= =

ª º¬ ¼

ª º
¬ ¼

P � 0 M

p b P� (8)

where 02 is a zero matrix of size ((1-f1)·k)×n2, M2 is a matrix

of size (f1·k)×n2 that has one ‘1’ in each row and dp2 ‘1’s per

column, Π2 is a permutation matrix of size k×k that rearranges

the rows of P2 so that the non-zero rows are mapped to the

source bits that remain as ‘?’ after the first stage.

Alternatively, this procedure can be written in terms of a

permutation of the source bits:

()
2

T
(2) (2) -1 T

2 212 n
p … p= =ª º ª º¬ ¼¬ ¼p b� 0 M� (9)

so in this case the permutation matrix Π2 sorts the source bits

placing first those bits that were recovered in the first stage

and afterwards those that are encoded in the second stage with

matrix M2. Note that the source bit nodes for the latter have

degree 2. Note also that these two stages can be regarded as a

single code with an irregular bit and product degree profile:

[] []1 2 1 2p p b P P= �

(10)

Next, the encoder tries to recover the source bits that

remained as ‘?’ employing the ‘erasure decoder’ over the n1+

n2 coded bits of the equivalent code of rate (n1+ n2)/k.

Denote as f2·k the bits that remain as ‘?’ after decoding the

second stage. These bits are further encoded in stage 3 with

n3=f2·k/dp3 AND operators of degree dp3 so their bit node

degree is 3. Afterwards the ‘erasure decoder’ is applied again

and the procedure follows with as many stages as desired.

Hence, for N stages n1+n2+…+nN= k/dp1+ f1·k/dp2+… +fN-

1·k/dpN coded bits are generated, so the total code rate for all

stages is 1/dp1+ f1/dp2+…+ fN-1/dpN, and fN··k bits remain as ‘?’

at the end of this procedure. This process can be written as

using the same notation as in (3)

 []

T
T

i ii i

1 N

=

=

ª º¬ ¼P � 0 M

P PP ! (11)

Note that at every stage the fraction of bits that remain as

‘?’ and need to be further encoded is smaller (1>f1>f2>f3…).

Furthermore, as most of the source bits being identified in

early encoding stages are ‘1’, the entropy of these remaining

bits increases. This procedure can be continued until no bits

remain as ’?’ or the entropy is very close to one.

406

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing

Alternatively, this procedure can also be stopped at any

number of stages and the bits remaining as ‘?’ can be then

encoded with a classic LDPC code of smaller size.

Note that although the coded bits are generated in several

stages, the whole encoding process can be regarded as a single

hybrid LDPrC-LDPC code with irregular degree profiles

whose matrix depends on the source sequence to be

compressed. This dependency appears through the

permutation matrices Π2 … ΠN, but the matrices P1, M2 …

MN are fixed.

It is important to remark that the same ‘erasure decoding’

process can be employed at the encoder and the decoder, so

the decoder can recover the permutation matrices Π2 … ΠN

that were employed in the encoder. Therefore, it has all the

information required to retrieve the data dependent matrix that

defines the matrix P in equation (3). At the receiver side, once

this matrix has been obtained the fully-fledged decoder

described in [1] for hybrid LDPrC-LDPC codes (i.e. the

decoder that exploits the knowledge of source entropy and

exchanges soft messages) can be applied to get the best

performance.

V.2. Analysis

The improved performance of the proposed procedure is

due to the fact that those source bits that are more difficult to

recover are those that are most protected by the compression

code, whereas those that can be easily recovered have smaller

degree.

The simulation results in section VI indicate that the

proposed procedure provides a low complexity method to

compress very low entropy sources. It is well known that the

design of linear codes for very high compression rates is

difficult: in practical code designs the relative gap to the

theoretical limits grows when the entropy decreases.

However, the proposed procedure maps this problem into the

generation of a set of coded bits by AND operators of high

degree and the compression of a remaining sequence of bits of

higher entropy, which can be efficiently encoded with a state-

of-the-art LDPC code. For example, in the next section it is

shown how a source with entropy 0.05 can be compressed

using four non-linear stages and an LDPC code of rate 0.5.

Thus, the problem of compressing a long source of low

entropy is mapped into that of compressing a short sequence

of higher entropy. The only drawback of this procedure from

the code design point of view is that the LDPC code will

operate with a smaller codeword length (its input block length

is fN·k rather than k), so a careful design of its parity check

matrix must be made to guarantee good performance.

Although the encoding procedure described above results

in a code with bit node degrees equal to i for those bits

retrieved in the i-th stage, the generalization of the proposed

procedure to obtain overall hybrid LDPrC-LDPC codes with

more irregular degree profiles is straightforward. In the

simulations in section VI the degrees of each stage dpi were

selected as ones that made the probability of product nodes of

type I equal to 0.5, i.e. ()1

2d p (1)log−= −i i

p or its closest

integer, being p
i
(1) the probability of ‘1’ at the input of the i-

th stage. This criterion leads to an encoded sequence with

equally likely 0s and 1s (which is a desirable feature in a

compressed sequence), and preliminary simulations have

shown that it provides the best results among the designs

employing regular degree products. However, a deeper

analysis is required to see if the performance can be improved

by using other criteria in the selection of the product degree

profile of each stage. Proceeding in this way, the number of

coded bits generated at each stage keeps approximately

constant (n1≈ …≈ nN), and on average at least half the bit

nodes are determined at each stage.

The number of source bits that remain after each encoding

stage (i.e. the values of f1…fN) depends on the information

sequence, and it has a variance that is larger for latter

encoding stages and decreases when the source word length k

increases. Hence, the progressive encoding procedure is most

effective when long codewords are considered. In order to

tackle with this variable length without requiring the

generation of a new encoding matrix for every information

sequence to be encoded, a procedure must be proposed. In the

simulation results in the next section the product degrees dpi

for each matrix M2 … MN were originally designed according

to the average input length in the corresponding stage, which

can be computed from the knowledge of the source entropy.

Then these matrices where extended adding additional rows

corresponding to a number ∆i of permutation matrices of size

ni, so the degree of the product nodes was increased to dpi+∆i

and the number of bits entering the i-th encoding stage was

increased from ni·dpi= fi-1·k to ni·(dpi+∆i). In those source

words where some of these bits (usually the ni·∆i first ones)

have been recovered in previous stages, no further encoding is

necessary and the source can be replaced at the input of the

product node by ‘1’, thereby reducing the effective degree of

the product node and getting it closer to the original value of

dpi. In those source words when the sequence length at the

input of the i-th stage exceeds ni·(dpi+∆i) an unrecoverable

error will occur.

In the final linear coding stage, a similar procedure must

be proposed to cope with the variable input length. In the

simulations in section VI this issue was approached by

increasing the LDPC codeword length while keeping the code

rate fixed. This procedure results in a rate loss; the search for

more efficient methods is a topic of current research.

Regarding implementation complexity, note that the

operation at the encoder is very simple (only LDPrC-LDPC

encoding and erasure decoding are required). It is also

important to remark that the data-dependency is only

introduced through the permutation matrices Πi, which act

over the information bits. Hence, the conventional LDPrC-

LDPC decoder presented in [1] can be employed at the

receiver by introducing data-dependent interleavers. Note also

that the size of submatrix Mi is reduced at every stage, and

this fact can be also exploited to reduce decoder complexity.

VI. SIMULATION RESULTS

The proposed procedure has been employed to compress

two sources with entropy 0.091 and 0.05. In both cases four

stages of coded bits generated by means of product nodes

were employed, and the bits that remained as ‘?’ after these

stages were encoded with a linear code.

In the case of source entropy 0.091 a block of 103250 bits

was compressed into 11950 coded bits, so a code rate of

0.1157 was obtained. After Montecarlo simulation of 16600

407

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing

codewords, 9 wrong codewords were obtained and the

average BER was 1.53x10
-6

. The parameters for the non-

linear stages are listed in Table 1. As indicated there, an

average of 6670 bits remained to be identified after these four

stages, and their average entropy was 0.70. These bits where

then compressed with an LDPC code of rate 0.5 obtained

from [2, 6]. Note that the code rate is smaller than the entropy

of these bits. Operation in this regime was possible because

the LDPC decoder did not operate alone: it was assisted by

the non-linear stages, since the optimum decoder for the

hybrid LDPC-LDPrC code was employed. In order to take

into account the variability in the number of bits that remain

undetermined at the end of the fourth stage the number of

parity checks was increased from f4·k=6670 to 9900,

maintaining constant the total code rate. This performance

compares favorably with that obtained when a single LDPC

code is employed for the same task: in [2] an LDPC code was

optimized to compress a source with entropy 0.091 and the

minimum rate required for it was 0.125.

 In the case of source entropy 0.05 a block of 1230000 bits

were compressed into 85500 coded bits, so a code rate of

0.064 was obtained. After Monte Carlo simulation of 2600

codewords 1 wrong codeword was obtained and the average

BER was 2.2x10
-6

. The parameters for the non-linear stages

are listed in table 2. In this case a linear code of rate 0.425

was employed [5].

VII. CONCLUSIONS

The application of the erasure decoder to LDPrC codes has

been employed in this paper to propose a new source code

whose encoding matrix (and the corresponding graph)

depends on the information word. The new encoding

procedure is implemented in successive stages and results in

an adaptive graph where the nodes corresponding to those bits

that are easy/difficult to recover have low/high degree. In

spite of its data dependent nature the proposed encoding

procedure has low complexity.

The simulation results evidence that the proposed codes

outperform linear codes when compressing very low entropy

sources. An analytical analysis and the search for more

efficient and less complex methods to exploit adaptive graph

construction of codes are topics of current research.

VIII. REFERENCES

[1] D. Matas, M. Lamarca, and J. Garcia-Frias, "Non-linear

graph-based codes for source coding," Proc. Information

Theory Workshop, 2009, October 2009.

[2] A. D. Liveris, Z. Xiong, and C. N. Georghiades,

"Compression of binary sources with side information at the

decoder using LDPC codes," IEEE Communications Letters,

IEEE, pp. 440- 442, October 2002.

[3] J. Garcia-Frias and Y. Zhao, "Compression of correlated

binary sources using turbo codes'', IEEE Communications

Letters, pp. 417-419, October 2001.

[4] J. Garcia-Frias and Y. Zhao, "Compression of binary

memoryless sources using punctured turbo codes'', IEEE

Communications Letters, pp. 394-396, September 2002.

[5] D. H. Schonberg, “Practical Distributed Source Coding and

Its Application to the Compression of Encrypted Data”, PhD

dissertation, ECCS Department, University of California,

Berkeley, 2007

[6] S.-Y. Chung, “On the construction of some capacity-

approaching coding schemes,” Ph.D. dissertation,

Massachusetts Institute of Technology, 2000

Table 1. Code parameters for source with entropy H=0.091 and k=103250. Rate = 0.1157

 NL stage 1 NL stage 2 NL stage 3 NL stage 4 LDPC

Product node degree (dpi+∆i) 59 29+5 14+5 7+5

Bits to be encoded

at that stage

p1
i

0.9888 0.9767 0.9533 0.9074 0.8199

Entropy 0.091 0.1596 0.2720 0.4449 0.6799

Length (ni dpi+ ni ∆i) 103250 59500 33250 21000 9900

Number of coded bits (ni) 1750 1750 1750 1750 4950

Contribution to overall code rate (ni /k or

LDPC code rate)

0.0169 0.0169 0.0169 0.0169 0.0479

Bits that remain as ‘?’ after that stage (fi·k) 51379 25688 12968 6670

Table 2. Code parameters for source with entropy H=0.05 and k=1230000 Rate=0.064

 NL stage 1 NL stage 2 NL stage 3 NL stage 4 LDPC

Product node degree (dpi+∆i) 123 61+7 30+7 15+7

Bits to be encoded

at that stage

p1
i
 0.9944 0.9775 0.9775 0.9552 0.9115

Entropy 0.05 0.0888 0.1550 0.2637 0.4313

Length (ni dpi+ ni ∆i) 1230000 680000 370000 220000 91100

Number of coded bits (ni) 10000 10000 10000 10000 38781

Contribution to overall code rate (ni /k or

LDPC code rate)

0.0081 0.0081 0.0081 0.0081 0.0315

Bits that remain as ‘?’ after that stage (fi·k) 613477 306614 153888 77893

408

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing

