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ABSTRACT

This paper deals with the spatio-temporal scheduling of a set of
users for downlink transmission in a cell where the base station is
provided with multiple antennas. Two main issues are addressed:
how the users are distributed into space-time groups and how the
available power is allocated among the users within a group. Since
the former is an NP-complete combinatorial problem, we develop
fast and low-complexity algorithms, which might be capable to
fulfill the real-time requirements of a practical scheduling scheme.
Regarding the power allocation, we consider different fairness cri-
teria under the capacity point of view. To be precise, we compare
the alternatives of equal rate and maximum sum rate with our pro-
posed equal proportional rate solution.

1. INTRODUCTION

Multiple Element Antenna (MEA) systems may provide a large
increase in capacity for future wireless communications standards.
Here, we assume that the Base Station (BS) is provided with mul-
tiple antennas and the terminals have a single one. Particularly,
the problem addressed in this paper consists of the scheduling of a
large set of users in the downlink of a TDMA system. The solution
to this problem can be separated into three different parts: i) the
beamforming technique, ii) the power allocation schemes, and iii)
the division of users into groups.

Optimal beamforming is solved in [1], but this kind of tech-
niques may be difficult to implement in a practical system if there
are real-time and low-complexity requirements. Therefore, a Zero
Forcing (ZF) design criterion might provide an acceptable perfor-
mance with much lower computational load [2]. Furthermore, [2]
proves the benefits of assigning each antenna from the BS to a dif-
ferent user instead of assigning all the antennas to the same user.

Once a beamforming design is chosen, the total available power
shall be distributed among the users. In the literature, two main
techniques can be found for this difficult question: the maximum
sum rate and the equal rate [4]. Besides, the definition of fairness
is not clear. One could consider that fairness implies assigning
the same rate to all users, while the so-called proportional fairness
aims for providing a higher rate to the users closer to the BS. It is
not clear either, which is the optimum rate sharing.

Finally, if a huge amount of users are active in the cell, the is-
sue of clustering® them becomes an NP-hard combinatorial prob-
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lem. In [3] the author solves this problem by a graph-theoretical
technique, whereas in [4] we proposed the application of Simu-
lated Annealing to this problem. However, this kind of techniques
are too costly to be implemented in real-time, which is a manda-
tory requirement for a practical scheduling technique.

This paper addresses those three problems. First, in Section
2 we select ZF as the beamforming design criterion for the sake
of simplicity. After that, we focus on the power allocation tech-
niques, comparing the traditional equal rate and maximum sum
rate approaches to our novel equal proportional rate scheme. This
solution comes naturally with the definition of a fairness index that
relates the actual rate with that a user would get if it were alone in
the group (see Section 3 for further details and discussions). Fi-
nally, in Section 4 we investigate on simple techniques for the user
clustering, which might be implemented in real-time and provide
a better trade-off between performance and complexity than those
in [3] and [4]. The simulations in Section 5 show the performance
of the proposed schemes before the final conclusions.

2. PROBLEM STATEMENT

In the following, boldface capital (lowercase) letters refer to ma-
trices (vectors). The conjugate transpose of a is given by a’? and
the element at row ith and column jth of A is denoted by [A], ..

The natural logarithm of a is log(a) and (a)* = max(0, a).

We consider the downlink of a communication system, where
the BS is provided with @ transmit antennas, although the nota-
tion and solutions presented henceforth can be also applied to the
uplink. Let K > @ be the number of active users in the cell,
each having a single antenna. The users shall be distributed into
G groups. Each group is scheduled for transmission in a different
time slot, whereas the K users in the gth group are served simul-
taneously by a Space Division Multiple Access (SDMA) scheme.
As stated before, we have to specify first a bemforming design.
Then, the received signal vector for group g at instant n is:

y(n) = HBs(n) + w(n) € CXs*!, (1)

where the index g denoting the group has been omitted for sim-
plicity. The kth position of vector y(n) (s(n)) is the received
(transmitted) signal for user k. H is the K4 x @ complex flat-
fading channel matrix, the ith row of which contains the 1 x @
vector of the channel gains for the 4th user, i.e. h!?, which is es-
sentially determined by the Direction of Arrival (DOA) of the user
and a scaling due to the path-loss and fast fading, which is the
same for each antenna element?. Further, the components of the

2Note that in the more general case of independent fading for each ele-



noise vectors are i.i.d. gaussian random variables with zero mean
and variance o2,. Finally, the beamvectors for the K, users are
gathered in the matrix B = [bibs...bk,| € C9* X9,

First, we would like to separate the effect of the channel and
that of power allocation. Therefore, given a set of groups, the prob-
lem is divided into two parts: first, we apply a unitary beamform-
ing for each user in a group; second, the best-suited strategy for
the power allocation within a group is chosen (Section 3).

In this paper, we have applied a ZF beamformer design for the
downlink communication for simplicity. ZF implies that the K|
channels become parallel and orthogonal, thus there is no inter-
ference among the users belonging to the same group. Therefore,
we can express the beamforming matrix as B = EDB, where
B denotes the unitary beamforming and Dy is a diagonal ma-
trix representing the allocated power for each user, ie. Dg =
diag (ﬁl,ﬁg, ey BKQ). The effect of the channel is considered
in the diagonal matrix HB = D, = diag (o, q2,...,0K,).
With all this, the received signal for user k can be expressed as:

yk(n) = akﬁkSk(n) + U)k(n), 1 S k S Kg7 (2)

where, as stated, we have a set of parallel and orthogonal channels
for each group. With these considerations, we have not yet de-
scribed how the beamformer is computed. To obtain the beamvec-
tor, the ZF criterion requires that Hb, = 14, Vk. Additionally,
we apply the normalization factor oy, Vk to guarantee a unitary
beamforming. Then, the beamvector is computed as®:

b = H” (HHH)f1 Lran, 3)

where a, = 1/ 4 x- e have then two pending

issues: the strategies for the power allocation (Section 3) and how
the users are divided into groups (Section 4).

/()]

3. FAIRNESSAND POWER ALLOCATION

The criteria for the power allocation are determined by the fairness
definition we consider, for which there are several points of view.
A first possibility would consist of assigning the same rate to all
users, which will appear as the best solution at a first sight. How-
ever, the users that are closer to the BS, i.e. those having a greater
mean Signal to Interference and Noise Ratio (SINR), should be
granted a better rate if we take into account the proportional fair-
ness rule. On the the other hand, the second option can optimize
the total performance of the group regardless of some users that
might not even be allocated for transmission. The former is the
equal rate scheme, whereas the latter is the maximum sum rate.

In this paper, we would like to have an intermediate solution:
we wish to have a mean rate slightly lower than what the maximum
sum rate achieves, but increasing the fairness. For this purpose,
we need to specify first a fairness criterion. In agreement with the
proportional fairness, a well-suited index seems to be the one that
links the actual rate obtained by a certain user C, with the rate it

ment, the algorithms would certainly work. However, the DOA would no
longer mean a physical angle at the BS.

3The pseudo-inverse reduces to the inverse if we allocate Q users to Q
antennas. And strictly speaking, it is ZF up to a scalar for each substream.

would achieve if it were alone in the group C;***:

2 2
Cv = log (1+7|0"“|0|f’“| ) 4)
P
Cir* = log (H—'“’;'Q T), ©)

where SINR,, = “”“j%’“‘z and SINRJ*** = ‘a’;‘#“ can be

defined. The proposed Fairness Index (FI) is then the#ollowing:

C
- C—’“ )
which is clearly in the range 0 < FI, < 1. The upper bound
occurs if all the available power is allocated to user k&, thus getting
the capacity C;***, while the lower bound reflects a situation of no
scheduling or null power. Based on this FI, we propose our novel
equal proportional rate in Subsection 3.3.

Finally, note that we are evaluating the instantaneous fairness.
We can further increase the capacity by taking into account the
temporal variation of the channel as in [5].

FI

3.1. Equal Rate Scheme

In this case, we want the same SINR (rate) for all users, regardless
of their position or channel quality. Therefore, we have to impose
that the product oy, 3y is the same for all users and equal to 3. This
is equivalent to the maximization of the minimum capacity for all
users within a group. Recalling the definition of the capacity C}
in (4), the problem is

max min C, 7

[Bkl2 K g )
KQ

sty |Bl* < Pr, ®)
k=1

where the total output power is limited by Pr due to regulatory
issues. Applying the restriction on the total power, 3 reduces to

_ Pr
= —— 9
g tr (HHH)™) ®

where ¢r denotes the trace operation. With all this, the capacity is
the same for all users in the group, Cix = C, Vk, and it is given by

1 Pr

3.2. Maximum Sum Rate

In this case, instead of guaranteeing the same SINR for all users,
we would like to optimize the global performance of the cell, with-
out considering fairness. It could happen that some users in a
group might not be able to transmit, allowing other users to have
a higher SINR and thus a higher capacity. Then, we maximize the
total capacity subject to an instantaneous power constraint, i.e.

Kg

max C 11

\5k\2k2:1 r (1)
Ky

sty |Bil” < Pr. (12)
k=1




Table 1: Initialization procedure for user clustering

Table 2: Iterative User Clustering

1. Compute the cost of all possible combinations of two users
Ji, Vi # 3.

2. Sort the cost values in descending order in the vector c*, keeping
the information of the indexes of users 7 and 5. Set [ to 0.

3. Increase | and select that position [/ in ¢®. If users 4,5 corre-
sponding to index ! have not yet been assigned, separate them in
different groups g() # g(j). Note that g(¢) is the group where
we put user ¢ and that only one user shall be assigned per group.

4. If the number of assigned users is not GG, go to step 3.

Taking derivatives of the Lagrangian of the problem with re-
spect to the power allocation factors |3x|? and to the Lagrange
multiplier i, we obtain the following water-filling algorithm:

2 -1 Ui *
1Byl =(u - ) , (13)

v |?

where p is chosen to satisfy the power constraint in (12) with
equality. For implementation issues, we refer the reader to [6].
With this approach, the capacity for the kth user is:

— +
Cy = (log (7“ 25"“'2» . (14)

3.3. Equal Proportional Rate

In this case, for each group we want to equalize and maximize the
Fl, i.e. the users in a group shall have the same proportion of the
rate they would get if they were alone in the group, thus yielding
to a proportionally fair solution. This can be expressed as

max (15)
st Fl, = 6,Vk, (16)
K!J
> 18l? < Pr. (¢
k=1

We expect to have a lower capacity than in the sum rate, but
we shall overcome the problem of assigning a null power to certain
users. The solution to this problem can be easily found, but it is
left out for space limitations.

4. USER CLUSTERING

As stated before, user clustering refers to the separation of the
users into groups. The optimal solution would imply exhaustive
search or techniques based in graph-theory [3], which are NP-hard
combinatorial problems. On the other hand, Simulated Annealing
can solve the problem in much less time [4], but it may neither
fulfill the real-time limitations. Suboptimal approaches where de-
veloped in [4]. Since the aim was assuring the same rate for all
users (equal rate scheme), the proposed solution had to compute

the minimization of the ¢r (HHH) _1), which is tantamount to

the maximization of the capacity as it is seen in (10).

Since the approach in [4] could still be unfeasible for a practi-
cal system, we propose here even simpler techniques. Intuitively,
the users that are closer in terms of DOA should be distributed into
separate groups, since they would require an increase in power.

1. Build matrix D as in (19).

2. Store the cost values, i.e. the ratio between the maximum and
minimum values for each row in matrix D, in ¢ and keep the
information about the user and about the group having the mini-
mum cost for that user.

3. Sort c in descending order, c® is the sorted vector. Set position
index [ to 0. Note that g (1) is the group having minimum cost for
the user at position I.

4. Increase [ and select that position in the sorted vector c*. If the
group g(1) has not been filled in current iteration, assign to group
g(1) the user corresponding to index .

5. Go to step 4 until { points to the last element of c¢® or if the G
groups have been filled by a different user at this iteration.

6. Go to step 1 until every user is assigned to a group.

Table 3: Simple User Clustering

1. Sort the users in descending order of ||h||2 in c and set & = 0.

2. Increase index k, and select that position in c. For that user, build
the vector dy, for the G” available groups [dy] ;s = max;Jy ;.

3. Assign the user corresponding to index & to the group having
minimum d.

4. Go to step 2 until all users are assigned to a group.

Therefore, we use the scalar product as a cost function for the clus-
tering techniques, which has a meaning of angle. For each pair of
users we define the grouping cost by the following expression

h{’'h;

Jig =
7 Ihalllby]

(18)

Then, the initialization procedure of the two algorithms is de-
scribed in Table 1. Essentially, the users closer in terms of an-
gle, those having a greater cost in (18), are separated into different
groups. After that, G users are assigned to G groups. Then, at each
iteration of the algorithm we need to compute the cost of assigning
the user kth to the G’ available groups®, i.e.

[D]k,g’ = mlax Jk,h (19)

which is the worst case regarding the user clustering, i.e. the cost is
determined by the user closer to the desired user in terms of angle.

Table 2 describes the first method, which tries to compute it-
eratively the best group for the users. The main idea behind is to
allocate first the users having a greater dispersion in being assigned
to the groups, i.e. the users that would penalize the system if they
are not assigned to the best possible group.

On the other hand, a simpler algorithm has also been evalu-
ated: we sort the users in descending order of the module of h;,
and start assigning the users to the groups. Now, the cost for each
group is defined by the maximum scalar product, and we assign
the user to the group where it is lowest, i.e. to the best worst case
(min-max). This is summarized in Table 3.

5. SAIMULATIONS

In the simulations we have considered a BS with Q = 4 transmit
antennas and five groups G = 5 in a fully-loaded system, thus

SWe consider that group g’ has K; users at that iteration, 1 < 1 < K;.
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Figure 1: Mean capacity for the user clustering techniques with
equal proportional rate power allocation.

the total number of users is K = 20. The channel is flat fading
and consists of an equal path-loss and fast fading for all antennas
and a DOA, which is distributed uniformly between —60° and 60°
(sectored antennas at the BS). The SINR® goes from 0 to 30 dB.

First, simulations have been conducted to evaluate the user
clustering schemes. In Figure 1, we plot the outage capacity for
the users vs. the SINR. We see the performance gain it is obtained
if the users are distributed into groups in an intelligent manner
rather than with a random scheduling. The best trade-off between
performance and complexity is obtained by our simple iterative
method, face off the max-min technique developed in [4]. There-
fore, the figures are given for this strategy in the following. Note
also that the simple user clustering provides an intermediate per-
formance between the random scheduling and the iterative method
with much less complexity than the latter.

Figure 2 evaluates the power allocation strategies in terms of
maximum, mean, and minimum outage capacities for the users.
As expected, the mean capacity is maximized by the sum rate ap-
proach, but the low minimum capacity indicates that some users
might be penalized. The equal rate technique has the same max-
imum, minimum, and mean values, coming from the design of
the problem. The intermediate performance is achieved by the
equal proportional rate scheme, which increases the rate of the
poor users paying the price of some loss in terms of mean capacity.

Finally, in Figure 3 we evaluate the FI for the three proposed
techniques. In that case, the Fl is optimized by the equal propor-
tional rate approach. Further, we see that the equal rate technique
is not fair, since we are wasting some power in poor users and
the dispersion from the maximum and minimum fairness index is
high. Interestingly, the maximum sum rate solution tends to the
equal proportional rate when the power is increased.

6. CONCLUSIONS

In this paper, we have studied two main problems, namely the
spatio-temporal clustering of a set of users for simultaneous trans-
mission and the power allocation within a given group. We have
proposed simple clustering techniques based on the scalar prod-
uct, providing a good performance compared to other existing ap-
proaches. Regarding the power allocation, an evaluation of the

61n this case, the SINR refers to the ratio f—g.
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Figure 2: Outage maximum (dashed), mean (solid), and minimum

(dash-dotted) capacities for the proposed power allocation strate-
gies. The groups are formed by the iterative user clustering.
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Figure 3: Outage maximum (dashed), mean (solid), and minimum
(dash-dotted) fairness index for the power allocation strategies.
The groups are formed by the iterative user clustering.

traditional equal rate and maximum sum rate techniques is per-
formed. The best trade-off is obtained, though, by our novel equal
proportional rate scheme.
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