

1

Abstract-- The definition of the exact meaning of conceptual modeling concepts is considered a relevant issue since it

enhances their effective and appropriate use by designers and facilitates the automatic processing of the models where they

are included. Three related concepts that permit to improve the definition of an association in UML and which still lack of

a formal semantic definition are: association redefinition, association specialization and association subsetting. This paper

formalizes their semantics and points out the similarities and differences that exist among them. The formalization we

propose is based on the meta-modelling approach and a semantic domain composed of a set of basic UML concepts and

OCL expressions, which have a previous formal definition in the literature and which are well-understood.

Index Terms-- Association redefinition, association specialization, association subsetting, Unified Modelling Language.

I. INTRODUCTION

URING last decade, UML has been widely adopted both in industry and academia, thus

contributing to the improvement of software engineering practices. However, one drawback of

UML frequently pointed out is its lack of formal semantics. While the UML metamodel [1] gives

information about its abstract syntax, its semantics is described in natural language. Thus, many

concepts have not had definitions precise enough to be interpreted unambiguously.

UML 2.0 has made a significant step towards precise definitions of concepts. But its attempt to

increase the expressiveness of the language has introduced new ambiguities and there are still

issues that remain open.

Associations are central structural elements in UML. UML 2.0 has improved the

expressiveness of the language with respect to associations in several manners, being a

significant one the introduction of the association redefinition concept. This concept allows

enhancing the definition of an association by means of another association that defines it more

On the Semantics of Redefinition,

Specialization and Subsetting of Associations

in UML (Extended Version)

D. COSTAL, C. GÓMEZ and P. NIETO

D

2

specifically in a particular context.

Association subsetting and association specialization have been included in UML since its

earliest versions and share some features with association redefinition. The three constructs

involve two associations and induce an inclusion constraint between them. The similarities

among the three constructs make sometimes difficult to decide which one is the best suited to

model a particular situation.

Since their introduction, the three constructs have had interesting applications apart from

contributing to model the relevant knowledge of an information system domain. Subsetting and

redefinition of associations have been extensively used in the UML 2.0 metamodel definition [2]

and in the definition of its successor UML 2.1.2 [1]. Association redefinition has shown to be of

particular interest when UML is used in the process of extending the UML for a specific domain,

as stated in [3] or when UML is used as a language for the definition of ontologies [4].

There has been a significant amount of work devoted to formally define the semantics of basic

structural UML concepts including object classes, associations [5], [6], [7], [8], [9] and concepts

related to association ends as multiplicity, aggregation and composition [10], [11], [12], [13].

In spite of these works, it seems to be generally accepted that redefinition, specialization and

subsetting of associations still need to be studied in detail. As Milicev remarks [13], further

research is needed to cover some important aspects related to association semantics such as

association redefinition, association generalization/specialization and subsets/unions of

association ends. The OMG itself in the current UML specification [1] points out that “the

interaction of association specialization with association end redefinition and subsetting is not

defined”. Rumbaugh et al. in [14] notice that “the distinction between subsetting and

3

specializing on association is not clearly described in the UML 2.0 specification”. Alanen and

Porres [15] mention that “the definition of these concepts is not as straightforward as one may

think and it requires an extensive study. There is an imminent need in the modeling community to

standardize on one formalization of subsets and …”. Stevens [16] also notices that “it is not

completely clear what else subtyping for associations should really mean”.

The main goal of this paper is to formalize the precise semantics of redefinition, specialization

and subsetting of associations in UML and to make explicit the similarities and differences that

exist among them. We focus on binary and non-derived associations. It has been influential the

purpose of obtaining a formalization which can be understood by any designer familiar with

basic UML and OCL expressions. For this reason, the formalization we propose in this paper is

based on establishing a mapping between the formalized constructs and a set of basic UML

concepts and simple OCL expressions, which have been formalized and which are well-

understood. Some aspects of association specialization and subsetting that cannot be caught by

means of a semantic formalization are described intuitively from an ontological perspective.

The precise definition of these constructs facilitates: (1) an effective and appropriate use of the

constructs as well as a correct interpretation of them, thus contributing to the creation and the

explanation of models that clearly communicate their intent, and (2) the machine processing of

the models where they are used, namely, automatic execution, automatic reasoning and automatic

generation of subsequent models as proposed by the Model Driven Architecture [17].

The rest of this paper is organized as follows. Next section reviews the basic concepts on

semantic formalization and describes the approach that is used in this paper. Sections 3, 4 and 5

describe the syntax and semantics of UML association redefinition, specialization and subsetting,

respectively. Section 6 compares the three constructs and points out their similarities and

4

differences. Section 7 reviews related work and finally, section 8 presents our conclusions and

indicates some extensions to the present work.

II. BASIC CONCEPTS

There is a lot of confusion about what constitutes semantics for UML constructs. In [18]

different ideas of what semantics is and wrong ways to view semantics are pointed out. Several

works like [18], [19] try to clarify some of the notions involved in defining semantics for UML

constructs. They distinguish the language notation of the construct (syntax) from its meaning

(semantics). Next subsections describe the concepts of syntax and semantics and our approach to

define the precise semantics of association specialization, redefinition and subsetting in UML.

A. Syntax

The term “syntax” is used whenever we refer to some notation. The syntax defines a language

L of well-formed declarations and statements [19]. To define the syntax of a UML construct,

both its concrete and abstract syntax must be stated.

The concrete syntax provides the rules for defining how the construct will appear when written

(notation). UML, as a visual modelling language, uses lines, boxes and so on for its constructs.

Its concrete syntax is described in [14], [1]. The abstract syntax identifies the main concepts onto

which the concrete syntax maps [1]. In UML, the abstract syntax is provided as a model (UML

metamodel). It consists of a UML class diagram with a supporting natural language description

and a set of well-formedness rules written in the Object Constraint Language (OCL) [20].

B. Semantics

The semantics of a language L defines the meaning of each construct of the language. A

semantics definition consists of two steps: first, a semantic domain must be defined and then, a

mapping from the syntax to the semantic domain must be provided [19]. Therefore, the semantic

5

definition of a construct of a language L is done by mapping the construct to already known and

well-understood concepts. The domain or the language where these concepts are well-understood

is called semantic domain and we denote it by S. A mapping M between a language L and a

semantic domain S is a function that provides for each construct of the language L an explanation

of this construct in terms of the concepts of the semantic domain S (i.e., M: L → S) [19].

In general, several notations or languages may be used as semantic domains. Formal languages

like mathematical terms (as done in [9]), mathematical structures (as done in [21]) and Z (as

done in [22]) or, even, a subset of the UML itself (as done in [6]) may be used among others. In

this latter case, only a set of basic UML elements with a precise semantics definition together

with OCL invariants, called UML layer, is usually considered.

In this paper we use a basic UML layer as semantic domain. The reason is that one of the main

goals of this work is to make the studied constructs understandable for any UML user, even those

not familiar with formal languages.

There are several approaches to formalize object-oriented modelling constructs in UML by

establishing a mapping between the construct syntax and a semantic domain. The majority of

these approaches have been identified by the Precise UML group in [23], [24]. One of them, used

when the semantic domain is a basic UML layer, is the meta-modelling approach.

C. The Meta-modelling Approach

In this section we describe the basic steps (extracted from [25]) of the meta-modelling

approach and how we apply it in this paper.

1. Develop the syntax and semantics of the core meta-modelling language selected as semantic

domain. In our case this language corresponds to a basic UML layer that includes the following

basic elements: classes, binary associations, multiplicities, generalization/specializations and

6

OCL general constraints. In the following, the semantics of each element is explained intuitively:

- Class. A class provides a common description for a set of elements sharing the same

properties. The domain of a class is the set of objects that can be created by this class and all of

its child classes (see generalization/specialization). Objects are referred to by unique object

identifiers. Each object is uniquely determined by its identifier and vice versa.

- Binary association. Associations describe structural relationships between classes. The

domain of an association is the Cartesian product of the sets of object identifiers of the

participating classes. A link denoting a connection between objects is an element of that

Cartesian product. We assume without loss of generality unique associations.

- Association ends. A binary association has two association ends, each of which connected to

a class. In general, association ends may be base or derived but derived association ends are not

included in our basic UML layer.

- Multiplicity. Multiplicity is specified for association ends. It restricts the number of links that

an object can be part of.

- Generalization/specialization. A generalization is a taxonomic relationship between two

classes (we do not consider generalization of associations in our basic layer). This relationship

specializes a general class (parent class) into a more specific class (child class). Specializations

and generalizations are two viewpoints of the same concept. Generalization relationships form a

hierarchy over the set of classes. A generalization hierarchy induces a subset relation on the

semantic domain of classes. The set of object identifiers of a child class is a subset of the object

identifiers of its parent classes.

- OCL general constraints. A general constraint is a condition or a restriction expressed in

some language for the purpose of declaring some of the semantics of an element. We assume that

7

they are expressed in OCL.

The concrete and abstract syntaxes of our UML layer are completely developed in [20], [1],

[14] and its semantics is given using set theory as a basis and may be found in [20], [26], [9].

2. Define the abstract syntax of each UML construct. This means to transform the syntax of the

UML constructs into the UML metamodel. This step is already done for the case of

specialization, redefinition and subsetting of associations. Concrete and abstract syntaxes for

these constructs are provided by OMG and described in detail in [1], [14]. Next sections provide

an overview of both syntaxes for each construct and complement the abstract syntax defined in

[1] with additional well-formedness rules when necessary.

3. Establish a mapping between the abstract syntax of each construct and the metamodel

description of the semantic domain. This means to establish a mapping between the part of the

metamodel that represents a construct and the basic UML layer metamodel as done, for instance,

in [6]. This mapping may be established by giving directly the correspondence between both

metamodels. More concretely, to provide a better understandability of these mappings, we define

them as a translation between a general schema using the specified construct and another general

schema using only elements defined in the basic UML layer, as done in [6].

III. UML ASSOCIATION REDEFINITION

Redefinition of associations has been incorporated to the version 2.0 of UML. It was already

defined in other conceptual modelling languages such as Syntropy [27] and TAXIS [28].

A redefinition of a binary association allows us to define an association end more specifically

in a particular context [1], [14].

In the following subsections an overview of the concrete and abstract syntax of UML

association redefinitions is presented and a precise semantics of this construct is defined.

8

A. Syntax

The concrete syntax {redefines <end-name>} placed near an association end (the redefining

end) indicates that this end redefines the one named <end-name> (the redefined end). Fig. 3.1

illustrates the possible scenarios of this notation. It depicts a binary association R with an end b

that is redefined by a redefining end b1. In Fig. 3.1 a) the redefining end b1 is connected to the

same class as the redefined end b whereas in Fig. 3.1 b) the redefining end b1 is connected to one

of the direct or indirect descendants of that class.

The binary association R can be recursive or non-recursive. In order to cover the recursive case,

we assume that A and B may be the same class in both scenarios and A1 and B1 may also be the

same class in scenario b).

R b

b 1 {r ede fines b }

A B
R b

b 1 {rede f ines b }

A B

A 1 B 1

a) b)

A 1

Fig. 3.1. Redefinition notation

For example, in Fig. 3.2 the end jeProject redefines the end project.

 P a rtic ip ates
p roje ct

jeP rojec t
{r ed efine s pr ojec t}

E m ployee P ro ject

Jun io rE mp

1 ..*

1 ..3

Fig. 3.2. Example of a redefinition

There is an alternative syntax for association redefinitions. An association end that has the

same name as another association end that would have been inherited is assumed to redefine the

inherited association end (without the need of the redefines keyword) [14]. Rumbaugh et al. [14]

recommend not using this notation since it can easily lead to errors.

The abstract syntax of UML redefinitions is provided by the UML metamodel. Fig. 3.3 shows a

fragment of the metamodel including all the concepts involved in association redefinitions.

9

P roper ty

Re la tion sh ip C las sif ier

A sso ciatio n
isd e r iv ed:B o ole an

*

*

red e f in edP ro p e rt y
{s ub s e ts r ede f in ed E lemen t}

2 . .* 0 ..1

m em b e rE nd
a s so c ia tio n

N am edE lem e n t

Re d efinab leE lem e n t
*
*

/r ed e f in ed E lem en t
{ r e adO nly ,un io n }

…

Fig. 3.3. Fragment of the UML metamodel describing association end redefinitions

In general, a redefinable element (represented in the UML metamodel as an instance of the

metaclass RedefinableElement) is an element that, when is defined in the context of a classifier,

redefines more specifically or differently another element in the context of another classifier that

generalizes (directly or indirectly) the former classifier. Redefining ends of associations are

instances of Property and their redefined ends are represented by the redefinedProperty role.

The redefinition of association ends is a particular case of property redefinition. In general, the

characteristics of a property that can be redefined are name, type (which may be specialized),

default value, derivation status, visibility, multiplicity and constraints on values.

For properties corresponding to association ends, the features that make sense to redefine are

name, type, derivation status, visibility and multiplicity. In this paper, we focus on the

association redefinitions that are most frequently used, name, type and multiplicity redefinitions.

The following well-formedness rules must hold for any type of association redefinition:

1. Directed and acyclical rule. Consider a graph where nodes correspond to the associations

ends of a class diagram and directed arrows go from the node representing a redefining end to the

node of its redefined end. The obtained directed graph must be acyclic.

2. Valid redefined property rule. A property may only redefine another property. This rule is

stated graphically in the UML metamodel by means of the recursive association of Property.

3. Same number of ends rule. A redefining association and its redefined association must have

the same number of ends.

10

4. Restricted end rule. The redefining end can be connected either to the same class as the

redefined end or to one of its descendants.

5. Opposite end rule. The end opposite the redefining end must always be connected to a class

that is a descendant of the class connected by the end opposite the redefined end.

6. Maximum multiplicity rule. The upper bound of the multiplicity specified at the redefining

end, if exists, must be lower or equal to the upper bound of the multiplicity at the redefined end.

7. Minimum multiplicity rule. The lower bound of the multiplicity specified at the redefining

end, if exists, must be greater or equal to the lower bound of the multiplicity at the redefined end.

Previous valid redefined property rule, restricted end rule, opposite end rule and maximum and

minimum multiplicity rules have been established in [1]. We have complemented them with two

additional necessary well-formedness rules: the directed and acyclical rule and the same number

of ends rule. Notice that all of them hold in scenarios of Fig. 3.1 and in the example of Fig. 3.2.

B. Semantics

The semantic effect of a redefinition applies over a subset of the instances of the redefined

association (i.e., the association with the redefined end). We call that subset the affected

instances of the redefinition. Consider the scenarios shown in Fig. 3.1 where R denotes a

redefined association that relates A and B, and A1 denotes the class connected to the end opposite

the redefining end. In all scenarios the affected instances are the instances of R which link

instances of A1 to other instances. In the Fig. 3.2 example, the affected instances are the instances

of Participates that involve junior employees.

For any kind of association redefinition, the affected instances are the links or instances of the

redefined association such that they are also links of the redefining association (i.e. they connect

instances of the class at the end opposite the redefining end to another instances). There is an

11

implicit inclusion constraint between the redefining and redefined associations. The proof of this

statement, which can be done due to our formalization, is provided in the appendix.

Next subsections describe separately the semantics of name, type and multiplicity redefinitions.

After that, we present a global view of the association redefinitions semantics. Finally, last

subsection shows an example where two redefinitions apply over the same association.

1) Name Redefinition

We say that a redefinition is a name redefinition when the redefining end has a name different

from that of the redefined end. The effect of a name redefinition is to give a new name to the

property at the redefined end for the affected instances of the redefinition. As a consequence, the

old name of the redefined end can not be used for those instances. Name redefinitions are usually

combined with the redefinition of other features in a single association redefinition although it is

possible to specify a redefinition that only redefines the name. Fig. 3.4 shows a name

redefinition. The name project is redefined by the end jeProject. Its effect is that the name

jeProject will be used to refer to the projects where junior employees participate.

P a rtic ip ates

p roje ct

j eP r oj ec t
{re de fine s pr oj ec t}

E m p loyee P ro je ct

Jun io rE mp

bu dge t

Fig. 3.4. Example of a name redefinition

To make precise the semantics of a name redefinition, we indicate in Fig. 3.5 how to translate

it into our basic UML layer. The translation only depicts those elements that must be changed

from the original diagram to obtain the equivalent diagram in our basic UML layer. Other

elements such as attributes or the multiplicity of the redefined association are not shown since

they would remain the same in the translated diagram.

The redefining association (i.e., the association with the redefining end) does not appear in the

12

translation. This is not surprising since the purpose of an association redefinition is not to define

a new association but to improve the definition of an already existing association instead and,

actually, all its instances are instances of the redefined association and can be inferred from it.

As the redefining association is not present in the translation, OCL expressions over the

original diagram referring to b1, should be rewritten to be evaluated in the translated diagram.

Specifically, ‘b1’ should be replaced by ‘b’. In Fig. 3.5, OCLexps denotes a set of OCL

expressions over the original diagram and newOCLexps denotes the set of expressions obtained

by replacing ‘b1’ by ‘b’ in OCLexps.

From this translation, it can be easily observed that the effect of a name redefinition is only

syntactic and it has not a semantic effect on the redefined association. That is why a name

redefinition is rarely used alone and it is usually combined with the redefinition of other features.

R b A B

+ O C Lexps + new O C Le xps

R b

b 1 { rede f ines b }

A B

A 1 A 1

Fig. 3.5. Name redefinition translation

Consider the Fig. 3.4 example and the following OCL invariant defined over it. It forbids

junior employees to participate in more than one project with a budget greater than 100000:

context JuniorEmp inv:
 self.jeProject->select(p | p.budget>100000) -> size()<=1

Fig. 3.6 shows the translation of the diagram and its OCL expression.

P a rtic ip ates

p roje ct
E m ployee P ro je ct

Jun io rE mp

bu dge t

co n te x t J unio rE m p in v :
self .p ro je ct-> s elect(p | p .budget> 100 000) -> s ize()<=1

Fig. 3.6. Example of a name redefinition translation

13

2) Type Redefinition

In general, a redefining end can be connected either to the class at the redefined end or to one

of its descendants [1]. We say that a redefinition is a type redefinition when the redefining end is

connected to a descendant of the class at the redefined end. The effect of a type redefinition is to

establish an additional participation constraint over the redefined association. It states that the

affected instances of the redefinition must link instances of the class opposite to the redefining

end to instances of the class at the redefining end. In the Fig. 3.7 example, the end ncProject

redefines the type of the end project since the NonCritical class is a descendant of the Project

class. The effect is that junior employees can only participate in non-critical projects. Note that

the converse condition is not imposed, i.e. non-critical projects can have as participants any type

of employees. The reason is that only the end project is redefined but not the end employee.

P ar tic ip ates

p rojec t

ncP roje ct {re de fine s pro je ct}

E mp lo ye e P ro je ct

Jun io rE mp

1.. *

N onC ritica l

Fig. 3.7. Example of a type redefinition

The translation of a type redefinition into our basic layer consists on substituting the

redefinition by a participation constraint which specifies its effect over the redefined association.

Fig. 3.8 indicates the equivalence rule for this translation.

R b

b1 {r edefines b }

A B
R b

B

+ p a rt icip a t io n co ns tra in t

co n tex t A 1 in v :
se lf .b -> fo rA ll(oc lIs T ypeO f(B 1))

A 1 B 1

A

A 1 B 1

Fig. 3.8. Type redefinition translation

The participation constraint is required to ensure that each instance of B linked by R to an

instance of A1 must also be an instance of B1. It is expressed as an OCL invariant.

14

Fig. 3.9 corresponds to the translation of the Fig. 3.7 example. The invariant ensures that all

projects of a junior employee are non-critical projects.

P ar tic ip ates

p rojec t
Em p loyee P ro jec t

Jun io rE mp

1 ..*

N onC rit ica l

c o ntex t Jun io rE m p in v :
s e lf.p ro jec t-> fo rA ll(o c lIs T ype O f (N onC r it ical))

Fig. 3.9. Example of a type redefinition translation

3) Multiplicity Redefinition

We say that a redefinition is a multiplicity redefinition when a multiplicity is specified at the

redefining end and it is more restrictive than that of the redefined end. Otherwise, multiplicity is

not redefined. The effect of a multiplicity redefinition is to establish additional cardinality

constraints over the redefined association. Basically, it restricts the multiplicity allowed for the

affected instances of the redefinition. In the Fig. 3.10 example, the end jeProject redefines the

multiplicity of the end project. The effect is that junior employees can not participate in more

than three projects. Note that the redefining multiplicity, namely 1..3, is more restrictive than the

redefined multiplicity, 1..*.

P a rt ic ip ates

p roj ect
jeP rojec t
{r ed efine s pr ojec t}

E mp lo ye e P ro je ct

Jun io rE mp

1.. *

1 ..3

Fig. 3.10. Example of a multiplicity redefinition

Fig. 3.11 indicates how to translate a multiplicity redefinition into our basic UML layer. The

redefinition is substituted by cardinality constraints which specify its effect.

The cardinality constraints ensure that each instance of the class A1 is linked through the

association R to a number minb1 of instances at least and to a number maxb1 of instances at most.

15

+ m ini m u m ca rd ina lity con s tr a int (in ca s e m in b 1> m in b)

c o n te x t A 1 in v :
s elf .b -> siz e() > = minb 1

+ m a xim u m card in a lity co ns tra in t (in ca s e m a x b 1 ≠≠≠≠ * and

m a xb 1 < m a x b)

c o n te x t A 1 in v :
s elf .b -> size() <= m axb 1

b 1 {r ede fines b }

R b
A B

A 1

m inb..m axb

m inb 1 ..ma xb 1

R b
A B

A 1

m inb. .m axb

Fig. 3.11. Multiplicity redefinition translation

Fig. 3.12 shows the translation of the Fig. 3.10 example. The invariant guarantees that junior

employees do not participate in more than three projects.

P a rtic ip ates

p roj ect
E m p loyee P ro je ct

Jun io rE mp

1 ..*

co n tex t J un io rE mp in v :
se lf. p ro ject-> size () < = 3

Fig. 3.12. Example of a multiplicity redefinition translation

4) Global View

Table I summarizes the results presented in previous sections. By analyzing it, it is possible to

obtain a global view of the meaning of UML association redefinitions.

TABLE I: SUMMARY OF THE PROPOSED TRANSLATIONS FOR ASSOCIATION REDEFINITIONS

 Redefining association Redefining end Constraints

Name Not present Substituted by the redefined
end in OCL expressions

Type Not present -Participation constraint

R

ed
ef

in
ed

 f
ea

tu
re

Multiplicity Not present -Minimum cardinality constraint
-Maximum cardinality constraint

The main goal of an association redefinition is to improve the definition of an existing

association. On the contrary, to add a new association is not the purpose of an association

redefinition. This is established by the fact that the redefining association does not appear in the

translation of any type of association redefinition. Moreover, the instances of the redefining

association can always be inferred from those of the redefined association.

Secondly, the definition of the redefined association is improved in all cases by constraining

the set of instances that are allowed for it, with the only exception of those that only redefine the

16

name feature. The types of constraints imposed depend on the features that are being redefined.

Name redefinitions only give a new name to the redefined property for the affected instances of

the redefinition. This is why the translation of a name redefinition simply consists in replacing

that name in the OCL expressions defined over the original diagram.

5) Combinations

Both ends of a binary association can be redefined. Furthermore, several redefinitions may be

specified for a single association end and several features may be redefined by a single

redefinition. The translation of those combinations is simply obtained by translating each of the

redefined features separately and combining the result. Consider the association of Fig. 3.16 that

relates people and their tickets to travel. Some people are kids as established by the specialization

under class Person. Similarly, some tickets are kid tickets. Assume that we want to state that kids

can only travel with kid tickets and kid tickets are only allowed for kids. Two redefinitions are

needed, one per each end of the association. Both redefine a single feature, i.e., type.

 T ravelsW ith

tra ve lle r

k id tr ave l le r {r ed efine s t ra vel l er}

T ic ket P ers on

K idT ick et

0. .1

K id

*
ti ck et

k id tick et { re de fine s tic ke t}
Fig. 3.16. Example of two type redefinitions for two ends of a single association

Fig. 3.17 provides the translation of the previous example.

 T ra velsW ith

t rav el le r
T icke t P erson

K idT ic ket

0 ..1

K id

*
t ic ke t

co n tex t K idT icke t in v :
self .tr a v eller -> fo rA ll(o clI sT ypeO f(K id))

co n tex t K id in v :
self .tic k et-> fo rA ll(o clI sT ype O f(K idT icket))

Fig. 3.17. Translation of the Fig. 3.16 example

IV. UML ASSOCIATION SPECIALIZATION

The majority of conceptual modelling languages only consider the generalization/specialization

17

of classes. However, UML also permits the generalization/specialization of associations.

An association specialization is a taxonomic relationship between a more specific association

and a more general one. Thus, the specific association inherits the features of the general

association [1]. Several specializations may be specified for an association and an association

may be a specialization of several associations.

A. Syntax

The concrete syntax of association specializations is shown as a line with a hollow triangle as

an arrowhead between the symbols representing the involved associations. The arrowhead points

to the symbol representing the general classifier. Fig. 4.1 illustrates this notation. It depicts all

possible scenarios with two associations R and R1 where R1 is a specialization of R.

R

A B

A B

A 1 B 1

a) b)

R 1

R

R 1

A B

A 1

c)
R

R 1

a

a 1

b

b 1

a b

a 1 b 1

a

a 1

b

b 1

Fig. 4.1. Association generalization/specialization notation

Consider, for example, the association specialization shown in Fig. 4.2. The association

PronouncesSentence that relates a court and a defendant is specialized by the association

Absolves. The pronouncements of sentences in which the defendant is found not guilty by the

court correspond to instances of the Absolves association.

 P ronounces S en ten ce
n ce

Co u rt D e fe ndan t

A b so lv ed

* 1 ..*

1

A bso l ves
*

Fig. 4.2. Example of an association specialization

Fig. 4.3 shows a fragment of the UML metamodel with the concepts involved in the abstract

syntax of association specialization.

18

C la s sif ier

A ssociatio n

* 1

ge n e ra l

G eneraliza tio n

* 1

sp e c if ic g e n e ra l iz a tio n

Fig. 4.3. Fragment of the UML metamodel describing association specializations

A generalization (represented in the UML metamodel as an instance of the metaclass

Generalization) is a taxonomic relationship between a more general classifier (represented by the

general role) and a more specific classifier (represented by the specific role). Associations are

classifiers and, therefore, they may participate in generalizations. Specialization is a different

view of the generalization relationship.

The following well-formedness rules must hold for any type of association specialization:

1. Directed and acyclical rule. Specializations hierarchies must be directed and acyclical.

2. Valid specialized classifiers rule. A classifier may only specialize classifiers of the same or a

more general type. That is, associations may only specialize associations.

3. Same number of ends rule. An association that specializes another association must have the

same number of ends as the other association.

4. Restricted and opposite end rule. When an association specializes another association, every

end of the specific association corresponds to an end of the general association, and the specific

end may be either connected to the same class as the general end or to one of its descendants.

5. Maximum multiplicity rule. The upper bound of the multiplicity of the specific association

ends must be lower or equal to the upper bound of the multiplicity of their corresponding general

association ends.

Rules 1, 2, 3 and 4 have been established in [1]. We have complemented them with an

additional necessary well-formedness rule: the maximum multiplicity rule. Note that all of them

hold in the Fig. 4.1 scenarios and in the Fig. 4.2 example.

19

B. Semantics

The effect of an association specialization is to establish an inclusion integrity constraint

between the general and the specific association. This constraint ensures that each instance of the

specific association must be an instance of the general association.

Then, the translation of an association specialization into our basic UML layer consists on

substituting the specialization by an inclusion constraint. In OCL, constraints cannot be

contextualized by an association. Therefore, the inclusion constraint is associated to one of the

participant classes of the specific association. Fig. 4.4 indicates the translation for each

specialization scenario defined in Fig 4.1.

+ in clu sion c o n st ra in t

c o n te xt A in v :
s e lf.b -> in clud esA ll(se l f.b 1)

+ in clu sio n co n stra in t

c o n te x t A 1 in v :
s e lf .b -> in clud e sA ll(se lf. b 1)

+ in clu sio n co n st ra in t

c on te x t A 1 in v :
s e lf .b -> includ esA ll(se l f.b 1)

R

A B

A B

A 1 B 1

a) b)

R 1

R

R 1

A B

A 1

c)
R

R 1

a

a 1

b

b 1

a b

a 1 b 1

a

a 1

b

b 1

Fig. 4.4. Association generalization/specialization translation

Notice that both the general and the specific association remain in the translation. The reason is

that they are two different associations representing different semantic relationships. Thus, in

general and in contrast to what happened with redefinitions, the instances of the specific

association cannot be inferred from those of the general association.

 P ronounce sS en te n ce
C ou rt D e fe ndan t

A b s o lv ed

* *

1

A bso l ves
*

con tex t C o ur t inv :
self .d e fe ndan t-> in clud esA ll(se lf .ab so lv e d)

Fig. 4.5. Example of an association specialization translation

Fig. 4.5 shows the translation of the Fig. 4.2 example. The two associations remain in the

20

translation and the OCL invariant ensures that, for all absolutions, there exists the corresponding

sentence pronouncement.

1) Ontological Perspective

The net effect of an association specialization according to the above semantic formalization is

to establish an inclusion constraint between two associations. However, there is a subtle aspect,

pointed out in [1], which must be considered to fully understand the meaning of the concept and

to distinguish it from association subsetting (subsetting is described in the next section). [1]

states that “specialization is, in contrast to subsetting, a relationship in the domain of intentional

semantics, which is to say it characterizes the criteria whereby membership in the collection is

defined”. This statement cannot be captured by a semantic formalization. Instead, an ontological

analysis is required to support it.

Ontology is a branch of philosophy which deals with the order and structure of reality in the

broadest sense possible and, since conceptual modelling constructs model certain types of real-

world phenomena, it is possible to derive their meaning via theories of ontology [29]. There exist

ontological analyses of specializations applied to classes such as [30] but not of specializations

applied to associations. In this subsection, we intuitively present some notions about association

specialization that further clarify their meaning. A complete formal ontological analysis is out of

the scope of this paper.

First, we need the notion of membership criterion which has to do with the problem of

recognizing instances of a certain concept. More concretely, we need the notion of specialization

membership criterion which determines if a link or instance of a general association is an

instance of a specific association or not. If we consider instances of associations as individuals,

then the specialized association membership criterion can be seen as a property of those

21

individuals. Properties may be intrinsic or extrinsic [30]. An intrinsic property is something

inherent in an individual, not dependent on other individuals. Conversely, extrinsic properties are

not inherent and they have a relational nature. Therefore, the intentional semantics statement [1]

about association specialization can be formulated as: the specialized association membership

criterion is an intrinsic property of the instances (individuals) of the general association.

In the example of Fig. 4.2, the association Absolves is a specialization of PronouncesSentence

because the criterion by which a sentence pronouncement relationship is of absolution is intrinsic

to the pronouncement (a particular pronouncement is inherently of absolution or not) and it is not

external to the sentence pronouncement concept. In other words, an absolution can be seen as a

type of sentence pronouncement.

Consider the example of Fig. 4.6 that represents students of a faculty that define their

preferences about the subjects and where students may enrol in offered subjects. Assume that the

faculty establishes a policy that requires students to enrol only those offered subjects that are part

of their preferences. The Enrols association cannot be a specialization of the HasPreference

association since there is not a criterion, intrinsic to the HasPreference instances, that permits to

classify them into Enrols instances. In fact, an enrolment is not a type of preference.

 H a s P re ferenc e
Sub ject S tuden t

O f fered Sub j ect

* *

0 ..50

E nro ls *
Fig. 4.6. Example of associations

A consequence of the intentional semantics of specializations is that the inclusion constraints

they induce are always analytical constraints. Analytical constraints are a type of constraint

(classified according to their source) such that its truth follows from the definition or meaning of

the facts involved in it [31]. This means that an inclusion constraint associated to a specialization

22

comes from its own definition and, consequently, this constraint must always hold for any

domain in which the specialization is defined. For instance, if we consider again the example of

Fig. 4.2, we can see that the inclusion constraint between Absolves and PronouncesSentence

must be always satisfied for any domain. It is not reasonable in any legal context to have the

absolution of a defendant without the existence of the corresponding sentence pronouncement.

Consequently, if an inclusion constraint is fulfilled between two associations but this constraint

is not analytical (it is satisfied for some domains but not for others), we can infer that there is not

a specialization relationship between the associations.

Consider again the example of Fig. 4.6. The inclusion constraint between both associations is

not an analytical constraint. It is easy to see that this constraint may not hold for other domains.

For instance, another faculty may not take into account preferences to allow students enrolling

subjects. Next section shows that association subsetting may be used to represent this constraint.

V. UML ASSOCIATION SUBSETTING

Most conceptual modelling languages, as for instance Syntropy [27] and ORM [32], permit to

define subset constraints between associations.

An association subsetting in UML allows us to specify that the set of instances of an

association is a subset of the set of instances of another association. An association end can be

subsetted by several association ends. Furthermore, both ends of a binary association can be

subsetted [1], [14]. Nevertheless, it is equivalent to specify an association subsetting between two

association ends or between their respective opposite ends [15], [31].

A. Syntax

The concrete syntax {subsets <end-name>} placed near an association end (the subsetting end)

indicates that this end subsets the one named <end-name> (the subsetted end). Fig. 5.1 illustrates

23

this notation. It depicts a binary association R with end b that is subsetted by a subsetting end b1.

R b

b 1 { subs ets b}

A B

a) b)

R b

b 1 {s ubse ts b }

A B

R b

b 1 {s ubse ts b }

A B

A 1 B 1

c) d)

B 1

R b

b 1 {subs e ts b }

A B

A 1

R 1

R 1

R 1

R 1

Fig. 5.1. Subsetting notation

Consider, the association subsetting shown in Fig. 5.2. The end es subsets the end s. Its effect

is to ensure that all students enrolled in an offered course have a preference for that course.

 H a s P re ferenc e
Sub ject S tuden t

O f fer ed Sub j ect

* *

0. .50

E nro ls *

es { subse ts s}

s

Fig. 5.2. Example of an association subsetting

Fig. 5.3 shows the fragment of the UML metamodel involved in the abstract syntax of

association end subsetting.

S tr u ctu r a lFe a tu re

P rop er ty

R ela tion s h ip C las sifier

A sso cia tion
*

*

s ub s ett edP ro p e rt y

2. .* 0. .1

m em b e rE n d a ss oc ia tio n

Fig. 5.3. Fragment of the UML metamodel describing association end subsetting

The subsetting of an association end is a particular case of property subsetting. It corresponds

to the cases in which the subsetting property has a non-empty association role and, thus, it is an

association end. In these cases, the subsettedProperty role references another association end of

which it is constrained to be a subset. The following well-formedness rules must hold for

association subsettings:

1. Directed and acyclical rule. Consider a graph where nodes correspond to the associations of

24

a class diagram and directed arrows go from the node representing a subsetting association to the

node of its subsetted association of the class diagram. The obtained graph must be acyclic.

2. Valid subsetting property rule. A property may only subset another property. This rule is

stated graphically in the UML metamodel by means of the recursive association of Property.

3. Same number of ends rule. A subsetting association and its subsetted association must have

the same number of ends.

4. Restricted end rule. The subsetting end can be connected either to the same class as the

subsetted end or to one of its descendants.

5. Opposite end rule. The end opposite the subsetting end can be connected either to the class

at the end opposite the subsetted end or to one of its descendants.

6. Maximum multiplicity rule. If multiplicity is specified both at the subsetting and subsetted

ends then the upper bound of the multiplicity at the subsetting end must be lower or equal to the

upper bound of the multiplicity at the subsetted end.

7. Same end name rule. A subsetting end cannot have the same name as the subsetted end.

The rules 2, 4, 5, 6 and 7 have been established in [1]. We have complemented them with the

rules 1 and 3. All these rules hold both in the Fig. 5.1 scenarios and in the Fig. 5.2 example.

B. Semantics

The effect of an association subsetting is to establish an inclusion constraint between the

subsetted and the subsetting associations. Specifically, the population of the subsetting end must

be included in that of the subsetted end. As it can be observed, the semantic effect of a subsetting

over the instances of the involved associations is identical to that of association specializations.

Therefore, the translation into our basic layer is similar to the translation of association

specializations. It consists on substituting the subsetting by an inclusion constraint (see Fig. 5.5).

25

R

A B
A B

A 1 B 1

a) b)

R 1

R

R 1

A B

A 1

c)
R

R 1

A B

d)
R

R 1
B 1

b

b 1

b

b 1

b

b1

b

b 1

+ in clu sio n con stra in t

con t ex t A in v :
se lf .b -> inc ludesA ll(s elf .b 1)

+ in clu s io n co n s tr a int

con t ex t A 1 in v :
self .b -> inc ludesA ll(s elf .b 1)

+ in clu sio n co n st ra in t

c on te x t A 1 in v :
s elf .b -> includesA ll(se lf.b 1)

+ in clu s io n con s tr a int

co n t ex t A in v :
se lf . b -> in c ludesA ll(s e lf .b 1)

Fig. 5.5. Association subsetting translation

The inclusion constraint is required to ensure that the collection of instances for the end b1 is a

subset of the collection of instances for the end b. As in the association specialization case, both

associations remain in the translation. The reason is that they represent different semantic

relationships and, in general, the subsetting association cannot be inferred from the subsetted

one. For the Fig. 5.2 example, it is not possible to infer the instances of the Enrols association

from those of the HasPreference association.

c o ntex t O f fe re dSub ject inv :
s e lf. s -> in cl ud esA l l(s e lf .es)

H a s P re fer enc e
Sub ject S tuden t

O ffer ed Sub j ect

* *

0. .50

E n ro ls *

es { subse ts s}

s

Fig. 5.6. Example of a subsetting association translation

Fig. 5.6 shows the translation of the Fig. 5.2. The invariant guarantees that the set of instances

of the association Enrols is a subset of the set of instances of the association HasPreference.

1) Ontological Perspective

We have seen that a subsetting has the same semantic effect as a specialization in terms of our

semantic domain. To distinguish them, we must take into account the statements in [1] about

26

intentional versus extensional semantics. As for association subsetting, [1] states that, in contrast

to specialization, “subsetting is a relationship in the domain of extensional semantics” and

“subsetting represents the familiar set-theoretic concept”. These statements cannot be captured

by a semantic formalization. We must take an ontological perspective, as done for the intentional

semantics of association specializations.

We intuitively present the notions needed to further clarify previous statements on subsettings

and to help to distinguish them from specializations. The notion of subsetting membership

criterion determines if a link or instance of a subsetted association is an instance of its subsetting

association or not. Considering instances of associations as individuals, the subsetting

membership criterion must be an extrinsic property of the instances (individuals) of the subsetted

association. Recall that an extrinsic property is not inherent to the individual [30].

For example, there is not a criterion intrinsic to the instances of the HasPreference association

(see Fig. 5.2) that permits to infer whether they are also instances of the Enrols association. The

criterion by which there is an enrolment that corresponds to a particular preference is external to

the particular preference.

An interesting feature related to the extensional semantics of association subsettings is that the

inclusion constraints they establish may be analytical or not whereas inclusion constraints

induced by specializations are always analytical.

Consider the Fig. 5.2 subsetting example, its inclusion constraint is not analytical since

different faculty domains may have different policies about requiring or not the existence of a

preference for allowing a student to enrol a course. By contrast, consider the subsetting of Fig.

5.7. In this case, although membership of the Uses association is extrinsic to the instances of the

IsAuthorizedToUse association, the inclusion constraint between both associations is analytical

27

because it is reasonable to assume that, in any domain, the services used by a member of an

organization must be a subset of the services he is authorized to use.

 I sA u tho r izedT oU se

M e mbe r S erv ice * *

* U ses *

u s {sub set s s}

s

Fig. 5.7. Example of an association subsetting.

VI. COMPARISON AMONG ASSOCIATION REDEFINITION, SPECIALIZATION AND SUBSETTING

In this section we describe the similarities and differences that exist among the three

constructs. We focus both on their syntax and on their semantics.

A. Syntax Comparison

All scenarios of the concrete syntaxes of these constructs are shown in Table II.

TABLE II: CONCRETE SYNTAX FOR ASSOCIATION REDEFINITION, SPECIALIZATION AND SUBSETTING
 Concrete Syntax

A
ss

o
c
ia

ti
o

n

R
e
d

e
fi

n
it

io
n

R b

b1 {redefines b}

A B
R b

b1 {redefines b}

A B

A1 B1

a) b)

A1

A
ss

o
c
ia

ti
o

n

S
p

e
c
ia

li
z
a
ti

o
n

R

A B

A B

A1 B1

a) b)

R1

R

R1

A B

A1

c)
R

R1

a

a1

b

b1

a b

a1 b1

a

a1

b

b1

A
ss

o
c
ia

ti
o

n

S
u

b
se

tt
in

g

R b

b1 {subsets b}

A B

a) b)

R b

b1 {subsets b}

A B

R b

b1 {subsets b}

A B

A1 B1

c) d)

B1

R b

b1 {subsets b}

A B

A1

R1

R1

R1

R1

28

The concrete syntaxes {redefines <end-name>} and {subsets <end-name>} of redefines and

subsetting, respectively, are placed near the association end. Otherwise, the concrete syntax of

association specialization consists of a line, with a hollow triangle as an arrowhead, drawn

between the involved associations, and not between their ends.

The allowed scenarios for association specializations and subsettings are quite similar, as

shown in Table II, whereas association redefinitions have less allowed scenarios according to

their abstract syntax.

Table III summarizes the similarities and differences that exist among the abstract syntax, and

concretely among the well-formedness rules of the three constructs.

TABLE III: CONCRETE SYNTAX FOR ASSOCIATION REDEFINITION, SPECIALIZATION AND SUBSETTING
 Rule

A
p

p
li

es
 o

v
er

D
ir

ec
te

d
 a

n
d

A
cy

cl
ic

a
l

S
a

m
e

N
u

m
b

er

o
f

E
n

d
s

R
es

tr
ic

te
d

 E
n

d

O
p

p
o

si
te

 E
n

d

M
in

im
u

m

M
u

lt
ip

li
ci

ty

M
a

x
im

u
m

M
u

lt
ip

li
ci

ty

S
a

m
e

E
n

d

N
a

m
e

V
a

li
d

n
es

s
Association

Redefinition
Association

End
� � �

1 � � � � �

Association

Specialization Association � � � � � � � �

Association

Subsetting
Association

End
� � � � � � � �

1 More restrictive

One of the aspects that differs is the model element over which the constructs apply.

Specialization applies over associations whereas redefinition and subsetting apply over

association ends. However, for subsettings, it is equivalent to specify a subsetting between two

association ends or between their respective opposite ends while for redefinitions it is not

equivalent.

The directed and acyclical and the same number of ends rules are hold for the three constructs.

The three constructs have a similar validness rule (the valid redefined property for

29

redefinitions, the valid specialized classifier for specializations and the valid subsetting property

for association subsetting).

All of them have a similar restricted end and opposite end rule. However, for redefinition, the

opposite end rule is more restrictive. It ensures that the class at the end opposite the redefining

end is a descendant of the class at the end opposite the redefined end and it cannot be the same

class. This is the reason why association redefinitions have less allowed scenarios in Table I.

The maximum multiplicity rule is stated for all the constructs whereas only association

redefinitions have the minimum multiplicity rule defined.

A rule over the name of the ends is only defined for the association subsetting.

B. Semantics Comparison

The similarities and differences that exist among the semantics of association redefinition,

specialization and subsetting according to the analysis described in previous sections are

summarized in Table IV.

TABLE IV: SEMANTIC ASPECTS OF ASSOCIATION REDEFINITION, SPECIALIZATION AND SUBSETTING

 Constraint

In
tr

in
si

c

C
ri

te
r
ia

D
if

fe
re

n
t

A
ss

o
ci

a
ti

o
n

In
cl

u
si

o
n

P
a

r
ti

c
ip

a
ti

o
n

M
in

im
u

m

C
a

rd
in

a
li

ty

M
a

x
im

u
m

C
a

rd
in

a
li

ty

Association

Redefinition

�
Affected
instances

�
�

Inferred
Analytical

�
Type
Redef

�
Multiplicity

Redef.

�
Multiplicity

Redef.

Association

Specialization � �
�

Analytical
� � �

Association

Subsetting � � � � � �

Intrinsic Criterion. The membership criterion that permits to determine whether an instance

of one of the associations (i.e. the redefined, general or subsetted association) is also a member of

the related association (i.e. the redefining, specific or subsetting association, respectively) may be

30

intrinsic or extrinsic to the instances of the first association. As Table IV indicates in its first

column, this criterion must be intrinsic for association redefinition and association specialization.

Conversely, it must be extrinsic for association subsetting. For the association redefinition case,

the intrinsic membership criterion is fixed, that is, the instances that belong to the redefining

association are necessarily the affected instances of the redefinition.

Different association. A feature that distinguishes redefinitions is that the redefining

association is not an association different from that of the redefined association. The purpose of

redefinitions is to improve the definition of an existing association but not to define a different

one. The instances of a redefining association do not represent information different from that of

the instances of its redefined association. By contrast, in specialization and subsetting, the

specific and subsetting associations define associations with a meaning different from that of

their general and subsetted associations, respectively.

Inclusion constraint. The three constructs establish an inclusion constraint between the

involved associations. In the case of the redefinition, instances of the redefining association are

also instances of the redefined association since the latter is not a new association but defines

more specifically the former. Although in the specialization (subsetting) case, both associations

involved have different meaning, it holds that instances of the specific (subsetting) association

are instances of the general (subsetted) association. For specializations and subsettings, the

inclusion constraint is explicitly stated in its translation to our basic UML layer. For

redefinitions, although the inclusion constraint is not explicit in the translations, it is implied by

them in all cases. The proof of this statement is provided in the appendix.

A remarkable difference related to inclusion constraints is that those established by association

redefinitions and specializations are always analytical while this is not necessarily true for

31

association subsettings.

Participation, Maximum and Minimum Cardinality Constraints. These constraints can be

induced by type and multiplicity association redefinitions, respectively. Minimum cardinality

constraints are also implied by association subsettings (specializations) since the minimum

cardinality of the subsetting association (specific association) is more restrictive than that of the

subsetted association (general association). Conversely, association specializations and

subsettings never induce participation or maximum cardinality constraints that can be specified

by means of association redefinitions. The proof of these statements is provided in the appendix.

H as P re fe re n ce

s

s 1 {sub se ts s}

S tuden t Sub j ect

A cce p ted

*

O ffered

*

E n ro ls * *

Fig. 6.1. Example of association subsetting

For example, if we consider the association subsetting depicted in Fig. 6.1, the following

participation constraint is not satisfied:

context Accepted inv:
 self.s->forAll(oclIsTypeOf(Offered))

The constraint expresses that, for an accepted student, all the subjects for which he has a

preference must be offered. This constraint is not implied by the diagram, i.e. an accepted student

may have a preference for a subject that is not offered.

VII. RELATED WORK

Since associations are central structural elements in UML, there has been a considerable

amount of research with the attempt to clarify and/or formalize specifically semantics of

associations and the semantics of concepts related to association ends.

Génova et al. [10] deal with the interpretation of multiplicity of n-ary associations. Stevens

32

[16] explores some issues that are often subject to several different interpretations such as static

vs dynamic associations, derived associations, multiplicity and multiple links. Barbier et al. [11]

focus on the part-whole relationship concept, analyse its relation to UML aggregation and

composition and propose an UML extension to fully cover it. [12] discusses a particular semantic

interpretation of the UML association aggregation and composition concepts. This interpretation

is obtained by applying a multidimensional framework that identifies a set of dimensions that

permits to unambiguously characterize these concepts. Diskin and Dingel [33] present a

framework that reconciles the structural and operational views of associations and Milicev [13]

addresses uniqueness and ordering of association ends. Some of these woks provide a

formalization to describe the semantics of the studied issues [11], [33], [13]. Others [12], [10],

[16] provide precise descriptions that clarify them.

Association redefinition is not a new concept in conceptual modeling. It was already

considered in conceptual modelling languages as Syntropy [27] and TAXIS [28]. Syntropy

permits to define type and multiplicity association redefinitions but not name redefinitions.

TAXIS only considers type redefinitions.

Some authors have studied the concept of association redefinition in UML. Kleppe and

Rensink [21], [34] use type graphs to represent UML class diagrams. Classes are represented as

nodes, attributes and associations are represented as unidirectional edges with their name as label

and generalization/specialization relationships between classes are represented as unlabelled

arrows with a triangular arrow head. Association redefinitions (only type redefinitions are

considered) are specialization constraints between edges. These constraints are precisely defined

as a formal extension of type graphs indicating that the edge corresponding to a redefined end is

overridden by the edge corresponding to its redefining end. Büttner and Gogolla [35] describe the

33

concept of redefinition applied to methods, attributes and associations and discusses which

consequences arise when this construct is implemented. Moreover, they point out some concerns

with the UML 2.0 specification of this construct. In a previous work [36], we describe how to use

association redefinitions and analyze the interactions between taxonomic constraints and

association redefinitions. Moreover, we establish some conditions that are necessary to guarantee

well-formed association redefinitions. Olivé [31] uses UML association redefinitions to describe

participant refinements and cardinality constraint strengthening [37].

Very little works have dealt with the association specialization concept in UML. This construct

has been analysed by Stevens in [16]. This work states that specialization for associations in

UML 1.4 may be used in two different contexts: to represent an inclusion constraint between

associations and to represent a participation constraint over an association (i.e. a type

redefinition). Olivé [31] defines that a relationship type R’ is a specialization of a relationship

type R if R’ has the defining properties of R and others. R’ is more specialized because it

contains more defining properties than R does.

Most conceptual modelling languages, as for instance Syntropy [27] and ORM [32], permit to

define subset constraints between associations as UML does. A lot of works have dealt with the

association subsetting concept in UML. Kleppe and Rensink [34] formalize this concept as a

formal extension of a type graph. Concretely, the formalization states that an edge of a graph can

be declared as subset of another if both its source node and its target node specialize those of the

other. This means that only one of the possible scenarios for this construct is considered (see Fig

5.1, scenario b)). The meaning for this construct is that an edge of the superclass should exist

whenever an edge of the subclass exists in the instance graph. Alanen and Porres [15] present a

set-theoretic formalization of metamodels and models and define pre- and postconditions for

34

basic operations on element creation, deletion and modification, including the subset property.

According to Olivé [31], association subsetting represents an inclusion constraint that cannot be

seen as an association specialization. Moreover, the work points out by means of examples the

differences between the association specialization and subsetting.

The work presented here contributes to the related work of the area in several aspects. We give

a precise semantics of UML association redefinition whereas the majority of mentioned previous

works only describe the construct and its use. Just [21] provides a formalization but only for type

redefinitions. In the same way, we provide an unambiguous semantics for association

specialization. The semantics for this construct has not been defined in the literature. Only [31]

provides a clear definition. As far as UML association subsetting concerns, we provide its formal

semantics as [34], [15] do and we give some hints to distinguish this construct from

specialization of associations. Moreover, we have analyzed the abstract syntax of these constructs

and we have added some missing well-formedness rules. Finally, we have compared the three

constructs remarking the similarities and differences.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has studied three constructs related to UML associations. Concretely, the paper

reviews the syntax and defines the precise semantics of the association redefinition, association

specialization and association subsetting. These constructs are not clearly defined in the UML 2.0

specification and their semantics is, in some aspects, ambiguous.

We have stated the semantics for these constructs by establishing a mapping between their

abstract syntax and a set of already known and well-understood UML concepts that we called

basic UML layer. These mappings provide a precise explanation of these constructs by means of

the concepts clearly defined in the UML layer. Moreover, the paper has analyzed the similarities

35

and differences concerning the syntax and the semantics among the three constructs. This

analysis may help designers to choose the appropriate construct to model a specific domain.

As a further research, we would like to extend this work in several directions. We are

interested in defining the semantics of these three constructs considering derived associations as

well as other types of association redefinitions. We are also interested in studying other

constructs related to UML associations as union properties. Moreover, we want to complete and

formalize the ontological analysis presented in this paper. Additionally, we plan to define a set of

analysis patterns to help designers to select the more suitable construct for a concrete domain.

APPENDIX

Theorem 1: Participation constraint not entailed by association subsetting (specialization)
Let A and B be two classes and R a binary association between them. Let b be the association end that connects R to
class B. Let A1 be a subclass of A, B1 a subclass of B and R1 a binary association between them. Let b1 be the end that
connects R1 to B1. Assume that the end b1 subsets the end b (R1 is a specialization of R). Then, the participation
constraint expressed as context A1 inv: self.b->forAll(oclIsTypeOf(B1)) is not entailed by the
association subsetting (specialization) (see Fig. A.1).

R b

b1 {sub sets b}

A B

(no t en ta iled) co n te x t A 1 in v : s elf .b -> fo rA ll(oc lI sT yp eO f (B 1))

A 1 B 1
R 1

R b
A B

A 1 B 1
R 1 b1

Fig. A.1. Participation constraint not entailed by subsetting or specialization

Proof. (1) The translation of the declared subsetting (specialization) into our basic UML layer requires the inclusion
constraint expressed as context A1 inv: self.b -> includesAll(self.b1). Fig. 5.5 b) (Fig. 4.4 b))
depicts the translated schema.
(2) Assume an information base (IB) where:

(2.1) x and y are instances of B and x is also an instance of B1.
(2.2) z is an instance of A and A1.
(2.3) z is R-related to x and to y and z is R1-related to x.

(3) The IB described in (2) satisfies all the constraints of the translated schema described in (1), i.e. it satisfies the
inclusion constraint together with the graphical constraints stated over the translated diagram.
(4) The IB described in (2) does not satisfy the participation constraint because, according to that constraint,
instances x and y should be of type B1, and, from step (2) only x is an instance of B1.
(5) Therefore, from (3) and (4) the participation constraint is not entailed by the association subsetting
(specialization).

Theorem 2: Minimum cardinality constraint entailed by association subsetting (specialization)

36

Let A and B be two classes and R a binary association between them. Let b be the association end that connects R to
class B. Let A1 be a subclass of A and R1 a binary association between A1 and B. Let b1 be the end that connects R1 to
B and minb1 the minimum cardinality at the end b1. Assume that the end b1 subsets the end b (R1 is a specialization of
R). Then, the minimum cardinality constraint expressed as context A1 inv: self.b->size() >= minb1
is entailed by the association subsetting (specialization) (see Fig. A.2).

R b

b1 { subse ts b }

A B

(en ta iled) c o n te x t A 1 in v : s e lf .b -> s iz e() > = minb 1

A 1

R 1

minb 1 .. m ax b1
m in b..maxb

R b
A B

A 1
R 1

m in b1 .. m a xb1
m in b. .max b

b1

Fig. A.2. Minimum cardinality constraint entailed by subsetting or specialization

Proof. (1) The translation of the declared association subsetting (specialization) into our basic UML layer requires
the inclusion constraint expressed as context A1 inv: self.b -> includesAll(self.b1). Fig. 5.5 c)
(Fig. 4.4 c)) depicts the translated schema.
(2) Since self.b contains all the elements of self.b1 the size of self.b must be greater than or equal to the size of
self.b1.Then, self.b->size() >=self.b1->size().
(3) Since minb1 is the minimum cardinality at the end b1 the size of self.b1 must be greater than or equal to minb1.
Then, self.b1->size() >= minb1.
(4) Therefore, from (2) and (3) the minimum cardinality constraint is entailed by the association subsetting
(specialization).

Theorem 3: Maximum cardinality constraint not entailed by association subsetting (specialization)
Let A and B be two classes and R a binary association between them. Let b be the association end that connects R to
class B and maxb the maximum cardinality at the end b. Let A1 be a subclass of A and R1 a binary association
between A1 and B. Let b1 be the end that connects R1 to B and maxb1 the maximum cardinality at the end b1. Assume
that the end b1 subsets the end b (R1 is a specialization of R). Then, the maximum cardinality constraint expressed as
context A1 inv: self.b->size() <= maxb1 is not entailed by the association subsetting
(specialization) (see Fig. A.3).

R b

b1 { subse ts b }

A B

(n o t en ta iled) c o n te x t A 1 in v : s elf.b -> size () < = m a xb 1

A 1

R 1

minb 1 .. m ax b1
m in b..maxb

R b

b1

A B

A 1

R 1

m in b1 .. m a xb1
m in b..maxb

Fig. A.3. Maximum cardinality not entailed by subsetting or specialization

Proof. (1) The translation of the declared subsetting (specialization) into our basic UML layer requires the inclusion
constraint expressed as context A1 inv: self.b -> includesAll(self.b1). Fig. 5.5 c) (Fig. 4.4 c))
depicts the translated schema.
(2) Assume an information base (IB) where:

(2.1) x and y are instances of B.
(2.2) z is an instance of A and A1.
(2.3) maxb = 2 and maxb1 = 1.
(2.4) z is R-related to x and to y and z is R1-related to x.

(3) The IB described in (2) satisfies all the constraints of the translated schema described in (1), i.e. it satisfies the
inclusion constraint together with the graphical constraints stated over the translated diagram.
(4) The IB described in (2) does not satisfy the maximum cardinality constraint because, according to that constraint,
z can be R-related at most to an instance of type B, and, from step (2) z is R-related to x and to y.

37

(5) Therefore, from (3) and (4) the maximum cardinality constraint is not entailed by the association subsetting
(specialization).

Theorem 4: Inclusion constraint is entailed by any type of redefinition (i.e. name, type and multiplicity)
Let A and B be two classes, R a binary association between them and A1 a subclass of A. Let b be the association end
that connects R to class B. Assume that b1 is a redefinition of the end b and that its opposite end is connected to A1.
Then, the inclusion constraint expressed as context A1 inv: self.b->includesAll(self.b1) is
entailed by the association redefinition (see Fig. A.4).

 R b

b1 { re de fin es b }

A B
R b

b1 { re de fin es b}

A B

A 1 B 1
a) b)

A 1

(en ta iled) c o n te x t A 1 in v : s e lf .b -> in clud e sA ll(se lf.b 1)
Fig. A.4. Inclusión constraint entailed by any type of redefinition

Proof. (1) We distinguish two cases:
(1.1) The end b1 also redefines the name of the end b. Then, the translation of the redefinition into our basic UML
layer replaces b1 by b in OCL expressions and the inclusion constraint is translated to context A1 inv:
self.b->includesAll(self.b)
(1.2) The end b1 redefines the end b but both end names are equal. Then, the inclusion constraint can also be
formulated as context A1 inv: self.b->includesAll(self.b).
(2) Since self.b contains all the elements of self.b, the inclusion constraint is entailed by the redefinition in both
cases.

REFERENCES
[1] Object Management Group: Unified Modeling Language (OMG UML), Superstructure, V2.1.2, OMG Available Specification without

Change Bars (formal/2007-11-02). (2007).

[2] Object Management Group: Unified Modeling Language 2.0 Superstructure Specification, OMG Adopted Specification, 2005. Available

online at http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[3] Burgués, X., Franch, X., Ribó, J.M.: Improving the accuracy of UML metamodel extensions by introducing induced associations. Software

and Systems Modeling 7 (2008) 361-379.

[4] Conesa, J., Olivé, A.: A Method for Pruning Ontologies in the Development of Conceptual Schemas of Information Systems. J. Data

Semantics V: 64-90 (2006)

[5] France, R. B.: A Problem-Oriented Analysis of Basic UML Static Requirements Modeling Concepts. In Proc. ACM SIGPLAN Conf.

Object-Oriented Programming, Systems, Languages and Applications, (1999), pp. 57-69.

[6] Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL, in: Object Modeling with the OCL, LNCS, vol. 2263

(2002), pp. 85-114.

[7] Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H-J.: An Integrated Semantics for UML Class, Object and State Diagrams Based on

Graph Transformation. In: Integrated Formal Methods, LNCS, vol. 2335, (2002) pp. 11-28.

[8] Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language OCL, In: International Conference on Conceptual

Modeling , LNCS, vol. 1507 (1998) pp. 449 - 464.

[9] Szlenk, M.: Formal Semantics and Reasoning about UML Class Diagram, In: Proceedings of the International Conference on

Dependability of Computer Systems, IEEE Computer Society, (2004), pp. 51-59.

[10] Génova, G., Llorens, J., Martínez, P.: The meaning of multiplicity of n-ary associations in UML. Software and Systems Modeling 1 (2002)

86-97.

[11] Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J. M.: Formalization of the Whole-Part Relationship in the Unified

Modelling Language. IEEE Transactions on Software Engineering 29 (2003) 459-470.

[12] Albert, M., Pelechano, V., Fons, J. et al.: Implementing UML Association, Aggregation, and Composition. A Particular Interpretation

Based on a Multidimensional Framework. In: Advanced Information Systems Engineering , LNCS, vol. 2681, (2003), pp. 143-158.

[13] Milicev, D.: On the Semantics of Associations and Association Ends in UML. IEEE Transactions on Software Engineering 33 (2007) pp.

238-251.

[14] Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual, 2nd edn, (Addison-Wesley, 2005).

[15] Alanen, M., Porres, I.: Basic Operations over Models Containing Subset and Union Properties. In Nierstrasz, O., Whittle, J., Harel, D.,

Reggio, G. (Eds.), Model Driven Engineering Languages and Systems, LNCS, vol. 4199, (2006), pp. 469-483.

38

[16] Stevens, P.: On the interpretation of binary associations in the Unified Modelling Language. Software and Systems Modeling 1 (2002), pp.

68-79.

[17] Object Management Group: MDA Guide Version 1.0.1, OMG, omg/2003-06-01, 2003.

[18] Harel, D., Rumpe, B.: Meaningful Modeling: What's the Semantics of "Semantics"?., In: IEEE Computer, vol 37, n. 10, (2004), pp. 64-72.

[19] Rumpe, B.: A Note on Semantics (with an Emphasis on UML), In: European Conference on Object-Oriented Programming Workshops,

Workshop on Precise Behavioral Semantics (with an Emphasis on OO Business Specifications), LNCS, vol. 1543 (1998).

[20] Object Management Group: Object Constraint Language (OCL), Version 2.0, OMG Available Specification (formal/2006-05-01). (2006)

http://www.omg.org/docs/ptc/03-10-14.pdf.

[21] Kleppe, A., Rensink, A.: On a Graph-Base Semantics for UML Class and Object Diagrams, In: Electronic Communications of the

EASST,vol. 10, (2008)

[22] Zhan, X., Miao, H.: An Approach to Formalizing the Semantics of UML Statecharts, in: International Conference on Conceptual Modeling,

LNCS, vol. 3288 (2004) pp. 753-765.

[23] Andreopoulos, W.: Defining Formal Semantics for the Unified Modeling Language, Research Report of Department of Computer Science,

University of Toronto, (2000) http://www.cs.toronto.edu/~chechik/courses99/csc2108/projects/index.html.

[24] France, R., Evans, A., Lano, A., Rumpe, B.: The UML as a Formal Notation, In: The Unified Modeling Language (UML'98) - Beyond the

Notation. First International Workshop, LNCS, vol. 1618, (1998) pp. 336-348.

[25] Kent, S., Evans, A., Rumpe, B.:UML Semantics FAQ, In: European Conference on Object-Oriented Programming Workshops, LNCS, vol.

1743, (1999) pp. 33-56.

[26] Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language OCL, In: International Conference on Conceptual

Modeling, LNCS, vol. 1507 (1998) pp. 449 - 464.

[27] Cook, S., Daniels, J.: Designing Object Systems: Object-Oriented Modelling with Syntropy, (Prentice Hall, 1994).

[28] Milopoulos, J., Bernstein, P.A., Wong, H.K.T.: A Language facility for Designing Database-Intensive Applications. TODS, vol. 5, n. 2

(1980) pp. 185-207.

[29] Wand, Y., Storey, V.C., Weber, R.: An Ontological Analysis of the Relationship Construct in Conceptual Modeling. ACM Trans. Database

Syst. 24(4), (1999), pp. 494-528.

[30] Welty, C.A., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data Knowl. Eng. 39(1): 51-74 (2001).

[31] Olivé, A.: Conceptual modeling of information systems, (Springer-Verlag, 2007).

[32] Halpin, T.: Information Modeling and Realtional Databases: From Conceptual Analysis to Logical Design, (Morgan Kaufmann, 2001)

[33] Diskin, Z., Dingel, J.: Mappings, Maps and Tables: Towards Formal Semantics for Associations in UML2. In Model Driven Engineering

Languages and Systems, LNCS, vol. 4199, (2006), pp. 230-244.

[34] Kleppe, A., Rensink, A.: A Graph-Based Semantics for UML Class and Object Diagrams, in: Technical Report TR-CTIT-08-06 Centre for

Telematics and Information Technology, University of Twente, Enschede, (2008)

[35] Büttner, F., Gogolla, M.; On Generalization and Overriding in UML 2.0, UML Workshop on OCL and Model Driven Engineering, Lisbon

(Portugal), 2004.

[36] Costal, D., Gómez, C.: On the Use of Association Redefinition in UML Class Diagrams. In: Conceptual Modeling, LNCS, vol. 4215,

(2006), pp. 513-527.

[37] Costal, D., Olivé, A., Teniente, E.; Relationship Type Refinement in Conceptual Models with Multiple Classification. In: 20th International

Conference on Conceptual Modeling., LNCS, vol. 2224, pp. 397-411.

