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Summary. This extended abstract presents the key features of a THM analysis carried out to 
analyze the thermo-hydro-mechanical response of a mudstone under thermal loading. The 
analysis was performed in parallel with a large scale heating test. The good agreement 
observed between the measurements and the numerical results provides an incomparable 
validation of the model. 

 
 
1 INTRODUCTION 

To advance in the precise knowledge of the thermo-hydro-mechanical response of 
Callovo-Oxfordian mudstone, a heating experiment (TER) is being performed by ANDRA at 
the main level of Bure underground laboratory. The test consists in placing a heater in a 
horizontal borehole drilled from one of the drift excavated at this level. Temperature sensors, 
pore pressure sensors and extensometers installed in the rock around the borehole (Fig. 1.a) 
allow for the observation of the evolution of the variables concerned by the heating of the 
rock mass1. To help to the interpretation of measurements, a Finite Element model has been 
defined in parallel to the experiment and several simulations run with the objective to propose 
values for the THM parameters of the rock. Theoretical formulation allows for solving 
simultaneously equations of stress equilibrium, water mass balance, solid mass balance and 
energy balance. When completed with the corresponding restrictions and adequate 
constitutive equations (in particular the state equations for solid and water density and an 
elastic mechanical law), the system of partial differential equations can be shown to be 
equivalent to Biot formulation. Because of the large number of simulations required at this 
stage of analysis, a 2D axisymmetric geometry has been considered (Fig. 1.b) to limit the 
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computational effort. 
 

2 BACK-ANALYSIS OF THE FIRST HEATING PHASE 

TER experiment is composed up to date by two main phases of heating. During Phase I, a 
power input of 238W was applied during 20 days and then increased to 975W for the next 20 
days. After that, power was cut up to 200 days. Data obtained during the first 40 days have 
been used to calibrate the model. Three distances has been defined between, respectively, the 
temperature, pore pressure and displacement fields measured in situ and computed by the 
model. Then, maps of iso-distances have been built from a large number of simulations that 
covered systematically a wide range of THM parameters. Fig. 1.b and 1.c show for example 
maps of iso-distances in pore pressure and displacement fields obtained for different values of 
intrinsic permeability kw and thermal expansion T. Best values are found at the minimum 
distance  i.e. kw = 3.6 10-20 m2 and �T = 5.10-6 K-1. Fig. 1.a shows the evolution of 
temperature at the contact heater-rock for the back-analyzed thermal conductivity. 

 
 

 

Heater borehole

 

Figure 1: a) Setup of the field experiment; b) mesh used for the analysis. 
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3 PREDICTION OF THE SECOND HEATING PHASE AND COMPARISON WITH 
RECENT DATA 

Phase II is composed by a first heating at 150W during 20 days, followed by a second 
heating at 300W that is still running. A prediction of this phase has been performed with the 
parameters back-analyzed during the first heating. This prediction is compared in Fig. 3 with 
recent data of pore pressure and strain. A very good agreement can be observed between 
computed values and field measurements. 
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c) 

Figure 2: Back-analysis of the first heating phase: a) Comparison between temperature measurements on the 

heater and computed values for the best estimate of thermal conductivity; b) Map error on pore pressures and c) 

Map error on deformations. 
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Figure 3: Comparison between model prediction and measurements for the second heating phase. 
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