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Abstract. Controlled tabular adjustment (CTA), and its minimum distance variants, is a recent methodology for the 
protection of tabular data. Given a table to be protected, the purpose of the method is to fi nd the closest one that guarantees 
the confi dentiality of the sensitive cells. This is achieved by adding slight adjustments to the remaining cells, preferably 
excluding total ones, whose values are preserved. Unlike other approaches, this methodology can effi ciently protect large 
tables of any number of dimensions and structure. In this work, we test some minimum distance variants of CTA on a 
close-to-real data set, and analyze the quality of the solutions provided. As another alternative, we suggest a restricted 
CTA (RCTA) approach, where adjustments are only allowed in a subset of cells. This subset is a priori computed, for 
instance by a fast heuristic for the cell suppression problem. We discuss benefi ts of RCTA, and suggest several approaches 
for its solution.

1.  Introduction

Data collected within government statistical systems must be provided as to fulfi ll requirements of 
many users differing widely in the particular interest they take in the data. For data in tabular form, 
this implies that most tables made publicly available belong to a system of multiple, hierarchically 
structured, overlapping tables which are all publicly available. Usually, some cells of these tables 
contain information on single, or very few respondents. Especially in the case of establishment data, 
given the meta information provided along with the cell values (typically: industry, geography, size 
classes), those respondents could be easily identifi able. Therefore, measures for protection of those 
data have to be put in place. Traditionally, agencies suppress part of the information (cell suppres-
sion). Effi cient algorithms for cell suppression are offered f.i. by the software package τ -ARGUS 
(Hundepool et al., 2004). Cell suppressions, however, must be coordinated between tables. This im-
plies certain restrictions on the release of tabular data which is in some contrast to the fl exibility and 
capacity of modern (OnLine) Data Base systems. Cell perturbation, as alternative to, or in combina-
tion with cell suppression may offer a way out of the dilemma. 

Minimum distance controlled tabular adjustment (or CTA for short) (Dandekar and Cox, 2002; Cas-
tro, 2006) is a recent technique to generate synthetic, i.e. perturbed values that may be used to replace 
original entries of tables provided for a publication. Although CTA is very effi cient from a compu-
tational point of view, NSAs are still reluctant to use it, because offering synthetic data might be in 
confl ict to their responsibility to produce data that are ’as accurate as possible’. In order to introduce 
CTA into practice, it is therefore essential to prove that data sets protected by CTA can provide a suf-
fi cient amount of accurate information, compared to the standards set by cell suppression. Instead of 
considering how to preserve second order statistics, like variance and covariance, proposed in Cox et 
al. (2004), in this paper we focus on the following simple criteria for a robust CTA that allow com-
parison to, or combination with cell suppression to some extent: 

1 Work supported by the Spanish MCyT project TIC2003-00997.
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• The number of cells with a large relative deviation (i.e., over 5%, 10%, or any other prede-
fi ned threshold value) should be as low as possible (hopefully, zero). Such large deviations 
are in some sense equivalent to the suppression of the cell, which is exactly the technique we 
plan to replace by using CTA. 

• Cells that provide aggregated information on a high level (for geography, for instance, state, 
or whole country level), should remain unchanged, or only slightly modifi ed. 

• CTA should be able to provide a feasible solution if deviations are only allowed in a reduced 
subset of cells. For instance, this enables to fi lter through CTA data previously protected by 
other techniques like cell suppression: in this case the suppressed cells would be the subset 
of cells allowed for deviations, as suggested in Giessing (2004). 

The structure of the paper is as follows. Section 2 sketches the minimum distance CTA family of 
methods. Section 3 reports and analyzes the results obtained with some close-to-real instances. In 
Section 4 we discuss a restricted CTA procedure, which improves the quality of the protected tables, 
although it signifi cantly increases the solution time. Some strategies are discussed for the effi cient 
solution of the restricted CTA procedure. 

2.  Outline of minimum distance controlled tabular adjustment

Any problem instance, either with one table or a number of tables, can be represented by the follow-
ing elements: 

i

the vector of ai’s).

• A lower and upper bound 1, . . . , n, respectively ai and ai,
If no previous knowledge

i i = −∞ if a ≥ 0 is not required) and ai = + ∞
can be used.

• A set P = {i1, i2, . . . , ip} ⊆ {1, . . . , n} of indices of confldential cells.

• A lower and upper protection
lpli and upli, such that the released values satisfy either xi ≥ ai + upli or
xi ≤ ai − lpli.

is assumed for cell i a = 0 (a

• A set of cells a , i = 1, . . . , n, that satisfy some linear relations Aa = b (a being

which are considered to be known by any attacker.

ilevel for each con dential cell i ∈ P , respectively

for each cell i =

f

CTA attempts to fi nd the closest safe values 1ix i … n, = , , , according to some distance L , that makes 
the released table safe. This involves the solution of the following optimization problem:

 

min
x

||x − a||L
sub ject to Ax = b

ai ≤ xi ≤ ai i = 1, . . . , n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P .

 

(1)

 



Monographs of offi cial statistics - Work session on statistical data confi dentiality - Geneva, 9-11 November 2005 335

Problem (1) can also be formulated in terms of deviations from the current cell values. Defi ning 
1i i iz x a i … n= − , = , ,  —and similarly ii i axz = −  and zi = xi − ai—, (1) can be recast as: 

   
 

min
z

||z||L
subject to Az = 0

zi ≤ zi ≤ zi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ P ,

 

(2)

 being the vector of deviations.
It has been observed that the best quality solutions are obtained with the 1L  and 2L  distances (Castro, 
2006). Using the 1L  distance, and after some manipulation, (2) can be written as 

 

min
z+,z−

n∑
i=1

wi(z
+
i + z−i )

subject to A(z+ − z−) = 0
0 ≤ z+

i ≤ zi i = 1, . . . , n
0 ≤ z−i ≤ −zi i = 1, . . . , n{

z+
i ≥ upli

z−i = 0

}
or

{
z−i ≥ lpli
z+

i = 0

}
i ∈ P ,

 

(3)

z+  and z−  being the vector of positive and negative deviations in absolute value. For 2L , we have 

   
 

min
z

n∑
i=1

wiz
2
i

sub ject to Az = 0
zi ≤ zi ≤ zi i = 1, . . . , n
zi ≤ −lpli or zi ≥ upli i ∈ P .

 (4)

Combinations of 1L  and 2L  were tested in Castro (2004). 

In practice the sense for the “or” constraint is heuristically fi xed a priori (Dandekar and Cox, 2002). 
In the computational results of Section 3 we set the “upper level protection” for all the sensitive cells. 
This can lead to infeasible problems, as it will be discussed in Section 4. An alternative that overcomes 
the infeasibility at the expense of increasing the computational complexity, is to include the “or” deci-
sion within the mathematical model (1), adding a binary variable iy  and two extra constraints for each 
confi dential cell: 

 

xi ≥ −M (1 − yi) + (ai + upli)yi i ∈ P ,
xi ≤ Myi + (ai − lpli)(1 − yi) i ∈ P ,
yi ∈ {0, 1} i ∈ P ,

 

(5)

M  in (5) being a large value. In terms of deviations, the equivalent constraints for the 1L  model 
(3) are 

 
upliyi ≤ z+

i ≤ Myi i ∈ P ,
lpli(1 − yi) ≤ z−i ≤ M (1 − yi) i ∈ P ,

yi ∈ {0, 1} i ∈ P;

 (6)
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and for the 2L  model (4) we should add 

 

 

zi ≥ −M (1 − yi) + upliyi i ∈ P ,
zi ≤ Myi − lpli(1 − yi) i ∈ P ,
yi ∈ {0, 1} i ∈ P .

 (7)

The above constraints result in a combinatorial optimization problem, which is discussed in Section 4. 

3.  Computational testing

From the perspective of a data provider, it is essential to avoid that in the released table there are 
large deviations in cells that provide aggregated information on a high level, and at the same time we 
want to keep the number of cells with large relative deviations (e.g., over 5% or 10%) low. These are 
contradictory objectives. Large absolute deviations in total cells are avoided if we choose cell weights 

1iw =  in (3) or (4). On the other hand, relative deviations are kept small for 1i iw a= /  (if 0ia =  the 
cell can not be perturbed, and we set iw  to any value, e.g., 1). Both weights belong to the family 

1i iw aγ= / , for 0γ =  and 1γ = . Weights with 0 5γ = .  are also a reasonable choice, since in theory they 
should balance relative and absolute deviations. 

Table 1.  Dimensions of the complex instances

Name n |P| m N.coef
bts4 36570 2260 36310 136912
destatis 5940 621 1464 18180
five20b 34552 3662 52983 208335
five20c 34501 4022 58825 231345
hier13 2020 112 3313 11929
hier16 3564 224 5484 19996
nine12 10399 1178 11362 52624
nine5d 10733 1661 17295 58135
ninenew 6546 858 7340 32920
two5in6 5681 720 9629 34310

We tested the three weights for 0 1 2 1γ = , / ,  and the 1L  and 2L  distances with a set of complex in-
stances: the seven most complex instances used in (Dandekar, 2003; Castro, 2006) (named “bts”, 
“hier13”, “hier16”, “nine12”, “nine5d”, “ninenew”, and “two5in6”) which seem to present frequency 
counts, and a close-to-real instance provided by Destatis (named the “destatis” instance in the fol-
lowing). The latter instance represents a tabulation of a strongly skewed variable (like “turnover”, 
f.i.), typical for business statistics. We also attempted the recently released “fi ve20b” and “fi ve20c” 
twenty-dimensional tables (Dandekar, 2005). However, unlike the former, which are solved in sec-
onds, these two instances are computationally challenging. For instance, the protection procedure was 
stopped after 10 hours of CPU time without a solution for “fi ve20b”, using either the dual or primal 
simplex algorithm of Cplex 9.1 on a Pentium-4 at 1.8GHz; “fi ve20c” was not attempted with simplex 
algorithms. On the other hand, interior-point algorithms seem to be a more effi cient choice for large 
multidimensional tables. For instance, the interior-point option of Cplex 9.1 protected the “fi ve20b” 
and “fi ve20c” instances in, respectively, 10 and 20 minutes of CPU using the 1L  distance, and 5 and 
10 minutes of CPU using the 2L  distance. In principle there is room for improvement using special-
ized interior-point methods, as done for three-dimensional tables in Castro (2005). Table 1 provides 
the dimensions of each instance: number of cells (column “ n ”), number of sensitive cells (column 
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“½P½”), number of constraints (column “ m ”), and number of nonzeros in constraints matrix (column 
“N.coef”). Table 2 shows the number of cells with relative deviations between 2% and 5% and over 
5% for each value γ . It is observed that, in general, the number of cells with large relative deviations 
increases when γ  tends to zero. Another observation is that for the business data instance the choice 
of the cost function seems to have a stronger effect as with the other instances. 

Table 2.  Number of cells with a relative deviation between 2% and 5% (a)), and greater than 5% 
(b)), for 0 1 2 1γ = , / ,  and the complex instances

γ = 0 γ = 1/2 γ = 1
Instance L1 L2 L1 L2 L1 L2

bts4 1402 1515 1016 1184 962 933
destatis 164 396 125 416 119 309
five20b 2841 3013 2478 2815 2426 2605
five20c 3218 3477 2769 3096 2777 2822
hier13 101 103 75 82 79 68
hier16 127 145 108 124 112 95
nine12 787 889 685 787 695 709
nine5d 875 999 947 993 978 918
ninenew 613 646 521 598 531 510
two5in6 451 529 388 499 424 384

a) relative deviation between 2% and 5%
γ = 0 γ = 1/2 γ = 1

Instance L1 L2 L1 L2 L1 L2

bts4 741 799 353 521 279 292
destatis 352 1012 11 524 7 70
five20b 1284 1434 650 1161 445 579
five20c 1352 1542 699 1202 559 706
hier13 32 32 26 27 26 24
hier16 60 69 29 46 17 112
nine12 378 427 162 310 120 149
nine5d 606 724 223 523 163 128
ninenew 298 360 154 258 107 131
two5in6 244 80 128 163 90 86

b) relative deviation greater than 5%

In the following, we analyze in more detail this instance “destatis”. It is a 3 dimensional table where 
one of the 3 variables is hierarchical with 3 levels. Plots a), b) and c) of Figure 1 show the deviations 
obtained for the cell values (in log scale). As expected the pattern for 0γ =  provides the lowest vari-
ability, and most deviations concentrate around 0. The number of cells by ranges of relative devia-
tions is shown in Table 3. From that table it is clear that 0γ =  gives the greatest number of cells with 
large relative deviations. The opposite behaviour is observed for 1γ = . For 1 2γ = /  we get a small 
number of cells with large relative deviations, although, from Figure 1, deviations are still fairly large 
for the highest-valued cells, mainly for 1L . 
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Table 3.  N. of cells by ranges of relative deviation for 0 1 1 2γ = , , /  for “destatis” instance

γ = 0 γ = 1/2 γ = 1
Range L1 L2 L1 L2 L1 L2

0% 2164 0 2407 0 2439 0
(0%,2%] 540 1812 677 2280 655 2841
(2%,5%] 164 396 125 416 119 309

(5%,10%] 78 233 7 195 4 61
(10%,100%] 274 779 4 329 3 9
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c) γ = 1

As a compromise closer to 0γ =  we considered weights 1 logi iw a= / , both for 1L  and 2L ; corre-
sponding results are shown in Figure 2.b. Another alternative approach has been suggested in Giess-
ing (2004), a heuristic implementation of a ’restricted CTA’ (RCTA) procedure which is presented 
in the following section 4. Table 4 proves that this particular RCTA heuristic, referred to as SUP8 in 
the fi gures, outperforms the CTA variant with weights 1 logi iw a= /  in the sense that it reduces the 
number of cells with a relative deviation beyond 10% from 98 (for 1L ; 709 for 2L ) to 1. Comparison 
of Figures 2.a (referring to SUP8) and 2.b shows that large changes in large values are also prevented 
more effi ciently as by the 1L  variant. 

Figure 1.   Deviations for a) 0γ = , b) 1 2γ = /  and c) 1γ =  in the “destatis” instance
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Figure 2.   a) Deviations for SUP8. b) Deviations for weights 1 logi iw a= / , for 1L  and 2L  
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a) SUP8 b) wi = 1/ log ai

Table 4.  N. of cells by ranges of relative deviation for 1 logi iw a= /  and SUP8

wi = 1/ log ai SUP8
Range L1 L2

0% 2300 0 2341
(0%,2%] 644 1857 641
(2%,5%] 136 402 169

(5%,10%] 42 252 88
(10%,100%] 98 709 1

However, the patterns of Figures 1 and 2 only give a fi rst impression of the performance with respect 
to the quality issue we are actually interested in, e.g. that cells on a high level of aggregation should 
remain unchanged, or be only slightly modifi ed. Most of these cells are among the cells with the larg-
est values, but some are not. A more direct approach to achieve the goal of small deviations for high-
level cells is to choose the parameter γ  adaptively according to the cell hierarchy, such that cells with 
large hierarchies (i.e., national cells) have γ  close to 0 (i.e., absolute deviations minimized), and low 
hierarchy cells have γ  close to 1 (i.e., relative deviations minimized). Assuming that 1ih i … n, = , ,  
gives the hierarchy of cell i , and that max{ 1 }ih h i … n= , = , ,  the rule considered was 

 
( )i

i

h h

h
γ −= .

Figure 3 shows the deviations by cell value for these adaptive γ  values. We observe that the adaptive 
γ  outperforms 1γ =  and 1 2γ = / , and provides deviations closer to those obtained with 0γ = . As 
for the relative deviations, Table 5 reports the number of cells by ranges of relative deviations. The 
adaptive γ  provides better results than 0γ = , but the number of cells with large relative deviations 
is still greater than for 1γ = . 
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Figure 3.    Deviations for adaptive γ  according to cell hierarchies for 1L  and 2L
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Table 5.  Number of cells by ranges of relative deviation for adaptive γ

Range L1 L2

0% 2320 0
(0%,2%] 577 2233
(2%,5%] 124 423

(5%,10%] 63 223
(10%,100%] 136 341

We imagine now that data providers request that on the top levels of a hierarchical table, CTA should 
present as many reliable results as cell suppression. For such highly aggregated data, even a change of 
1% is usually considered far too much. For our instance “destatis” we consider as top levels the 2 top 
levels of the hierarchical variable which are inner cells with respect to at most one of the non-hierar-
chical variables. Within this set of 111 cells, the modular method of τ-ARGUS selects 20 secondary 
suppressions. For the following analysis, we consider a high-level cell value a  as changed too much 
for publication, when the amount of change exceeds a . With this concept, only adaptive γ  for 1L  
leads to an acceptable result: 11 cells change too much, while all other CTA variants lead to more than 
20 cells lost because they lack precision (see Table 6). 

Table 6.  Number of high level cell values changed too much for publication

γ = 0 γ = 1/2 γ = 1 adaptive γ wi = 1/ log ai SUP8
L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

33 65 76 86 83 82 11 28 48 66 40

In the next section we present ideas to combine cell suppression and CTA methodology which may 
turn out to be of special interest in the context of protecting linked tables. 
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4.  The restricted CTA method

Large relative deviations, independently of the value γ  used for weights, can be avoided by imposing 
constraints 

 (1 − αi)ai ≤ xi ≤ (1 + βi)ai i = 1, . . . , n,  (8)

for some 0i iα β, ≥ , to the general model (1), or, equivalently, 

 0 ≤ z+
i ≤ βiai i = 1, . . . , n

0 ≤ z−i ≤ αiai i = 1, . . . , n
 (9)

for the 1L  model (3), and 

 −αiai ≤ zi ≤ βiai i = 1, . . . , n ≥ 0,  (10)

for the 2L  model (4). The parameters 
i
 and 

i
 bound the relative deviations on cell values. Im-

posing, e.g., 
i
 =

i
= 0.05 for all 1i … n= , ,  we avoid relative deviations larger than 5%. Imposing 

i
 =

i
0 0 i F= . , ∈  for some subset of cells F , we guarantee that cells of F  will remain unchanged 

in the protected table. Such a set could f.i. be the set of cells a table has in common with another 
table that has already been protected in the case of linked tables. In the procedure SUP8 presented in 
Giessing (2004) this set has been determined by a fast heuristic for the cell suppression problem, i.e. 
the GHMITER hypercube algorithm (Repsilber, 2002; Giessing, 2003) considering +/-8% a priori 
bounds on the cell values. For the CTA step deviations in this subset of cells were allowed with at 
most 

i
 =

i
 0 09= . . For the cost function we used weights with 1γ =  and 1L  distances. The resulting 

procedure is more restrictive than the original CTA method, since deviations are only allowed in some 
cells, and such deviations are confi ned within some bounds. We call the new procedure the Restricted 
Controlled Tabular Adjustment (RCTA for short). 

The main benefi t of RCTA is that we can precisely control through constraints, instead of through 
the weights, the relative deviations of the cells. The drawback is that small values for 

i
 and 

i
 result 

in infeasible problems, at least if the sense of protection (“upper” or “lower”) is a priori fi xed. For 
instance, imposing 

i
 =

i
 0=  in the subset of cells previously computed by the GHMITER hyper-

cube heuristic for cell suppression, instance “destatis” becomes infeasible, naturally, when we use 
the “upper protection sense” for all primary cells. Even when we allow deviations in all cells with 

i
 =

i
0 1= . , instance “destatis” remains infeasible using the “upper protection sense” for all primary 

cells. For 
i
 =

i
0 5= .  the instance becomes feasible, again with the “upper protection sense” for all 

primary cells. However a 50% of relative variation is impractical. 

To avoid infeasibility problems with RCTA we are forced to include in the optimization problem the 
binary decision for the “upper” or “lower” protection sense, either adding constraints (6) to the 1L  
model (3) or adding (7) to the 2L  model (4). Unfortunately this transforms the linear and quadratic 
models for 1L  and 2L  to combinatorial ones, signifi cantly increasing the solution time. For instance, 
for 1L  we attempted the optimization problem (3,6), using the mixed-integer-programming solver of 
Cplex 9.1 on a Pentium-4 at 1.8GHz. We stopped the procedure after 10 hours of CPU without a solu-
tion. The same model without the binary constraints (6) is solved in about 1 second. 

Possible solution strategies to overcome the excessive time of RCTA with the binary variables are: 

• Optimal solution through Bender’s decomposition, moving binary decisions to a master 
problem, and solving a sequence of the easy continuous subproblems (3) or (4). 

• Use of a heuristic for a good initial choice of the protection senses (either “lower" or “up-
per"). Once fi xed, only one solution of either (3) or (4) is needed. 
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• Metaheuristic, as genetic algorithms, for adjusting the binary decisions, which involves the 
solution of a sequence of subproblems (3) or (4). 

• The last option consists of removing the binary decisions, and to allow deviations go beyond 
their bounds, penalizing such bound violations in the objective function by a large penalty 
term. This guarantees an always feasible problem, at the expense of providing a table with 
some unprotected sensitive cells. Only one easy linear or quadratic problem has to be solved 
in that case, but some kind of post processing is eventually required to fi x underprotection 
problems. 

The SUP8 procedure of Giessing (2004) makes a heuristic choice of the protection senses (Raben-
horst, 2003), solving infeasibility problems by penalizing bound violations. In the “destatis” instance, 
this resulted in 3 signifi cantly underprotected sensitive cells. 

All the previous approaches are currently being investigated by the authors. 

5.  Summary and fi nal conclusions

In this paper, we have compared several variants of CTA with a special focus on an instance from 
business statistics. Our experiments show that at least in the context of strongly skewed business data, 
the parameters of a CTA approach, such as the choice of a particular cost function, have considerable 
effect on the output data quality. Spending some effort here on fi ne tuning of a method seems to be 
worthwhile. 

As CTA is discussed as an alternative to well established cell suppression, we also included a qual-
ity criterion that allows direct comparison of the performance of CTA to cell suppression, to some 
extent. First results are promising, indicating that it may be possible to make CTA procedures provide 
at least as much data meeting the high data quality standards of offi cial statistics for data of a certain 
relevance as cell suppression. We also suggested restricted RCTA as an option to combine cell sup-
pression and CTA, or to facilitate use of CTA in the context of linked tables. RCTA allows to control 
relative and absolute deviations more precisely than CTA. Unfortunately, RCTA is more sensible to 
the protection sense (“upper” or “lower”) of sensitive cells than CTA, leading to infeasibility prob-
lems. Several strategies have been discussed for a proper choice of protection sense, leading to both 
optimal and heuristic solutions. Heuristic solutions are likely to be the best practical option, since 
they will provide a reasonable quality protected table within reasonable time. All these approaches 
for RCTA are currently under development by the authors. 
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