

OLERDOLA'S CAVE, CATALONIA, PAST AND PRESENT: A VIRTUAL REALITY RECONSTRUCTION FROM TERRESTRIAL LASER SCANNER AND GIS DATA

B. Pucci^a, A. Marambio^a

Virtual City Modelling Lab, Politecnical University of Catalonia, 08012 Barcelona, Spain – barbara.pucci@upc.edu, alejandro.marambio@upc.edu

1. OLERDOLA'S CAVE

2. PROJECT WORKFLOW

3. TERRESTRIAL LASER SCANNER

4. TERRESTRIAL LASER SCANNER

Pre Processing

Polygonal Model

GIS APPLICATION

DTM

GIS Analysis

VIRTUAL REALITY

Platform

Final Model

CONCLUSIONS

Data collection:

- RIEGL LMS Z420i and Nikon D100
- One field day
- 28 scan positions (@10m, 0.1º FOV 80x180º)
- 1,5 million points per scan
- 70 calibrated images
- No registration targets

2 scanpositions

5. TERRESTRIAL LASER SCANNER

6. TERRESTRIAL LASER SCANNER

Post Processing (Polygonal Model)

- Triangulation of the optimized point cloud
- •RAW Model: 45 millions polygons, 250Mb
- Decimation
- •Model: 4 millions polygons, 50Mb
- Texture Application
- •140 images (3008x2000pixel)

Platform

Final Model

CONCLUSIONS

7. GIS APLICATION

8. VIRTUAL REALITY

9. VIRTUAL REALITY

INTRODUCTION

LASER SCANNER

Data Collection

Pre Processing

Polygonal Model

GIS APPLICATION

DTM

GIS Analysis

VIRTUAL REALITY

Platform

Final Model

CONCLUSIONS

Alice Software:

- High-quality visualization thanks to the use of different algorithms and other high-end technologies.
- High range of navigation options accessible trough classic interactive hardware or using different tracking devices.
- Stereoscopic vision from different virtual reality hardware: 3d glasses, head mounted displays, CAVE, PowerWall and Workbench.
- Space referenced sound
- Collaboration workspace
- Plugin for importing VRML97 (WRL), AutoCAD (DXF), y 3DStudio MAX 4.0(MAX) files

9. VIRTUAL REALITY

10. VIRTUAL REALITY

GIS APPLICATION

DTM

GIS Analysis

VIRTUAL REALITY

Platform

Final Model

CONCLUSIONS

11. CONCLUSIONS

	Š.	ADVANTAGES	PROBLEMS AND POSSIBLE SOLUTIONS
INTRODUCTION LASER SCANNER Data Collection Pre Processing Polygonal Model GIS APPLICATION	LASER SCANNER	 Is a valid alternative where traditional survey techniques doesn't give enough information for complex 3d models environments Data collection is fast and accurate. 	The triangulation of a point cloud is not a standard process, is still significantly time consuming. Moreover, accuracy lost in this process cannot be exactly controlled. The development of tools able to introduce a dense colored high resolution point cloud in the Virtual Reality platform could permit to reduce the post processing time and to maintain all laser measurement.
DTM GIS Analysis VIRTUAL REALITY Platform	GIS	 Enriches the 3d virtual environment, allowing different standard analysis to work interactively with the virtual model. There are many free available databases online, which can be used to adequately represent the context. 	More possibilities of exploiting GIS data in Virtual environments need further studies to be tested at different level of detail and scales
Final Model CONCLUSIONS	IRTUAL REALITY	 Allows laser scanner and GIS data real-time visualization. Permits a first-class interaction between different users and complex data by easy position tracking. 	Flexibility of data integration must be improved and high resolution visualization can be implemented. A more portable and easy to use device is needed. This work in progress project opens new future scenarios, in which a more portable and easy to use device can be applied and an augmented reality application

can be developed.

www-upc.es/Imvc

VIRTUAL CITY MODELING LAB Universitat Politècnica de Catalunya

Barcelona, SPAIN

