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Abstract— This paper describes the implementation of a
Ka-band satellite channel simulator with emphasis on the
synthesis of scintillation processes. The problem becomes
one of generating a given probability density function, the
Moulsley-Vilar distribution, with a specified power spectral
density using a Wiener model based on orthogonal Hermite
polynomials for the nonlinearity. A numerical procedure is
devised to calculate the filter and non-linearity coefficients
of the Wiener model. The generation of rain processes
conforms to the Maseng-Bakken model.

I. INTRODUCTION

The saturation of current satellite bands and the in-
creasing demand for broadband satellite services has
led to considering the Ka-band (18-30 GHz), where
propagation is subject to slowly time-varying attenua-
tion. Adaptive Coding and Modulation (ACM) is used
for matching the transmission rate to the instantaneous
channel conditions so that this slow variation in the
channel attenuation ultimately affects the global average
(ergodic) rate to the user population over a sufficiently
long time period. The availability of Channel State
Information (CSI), expressed in terms of the received
Signal-to-Noise Ratio (SNR), allows to select the most
appropriate modulation and coding rate for each user via
the ACM control loop.

The tropospheric propagation channel conforms to
a Frequency Flat Fading (FFF) model, whose time-
varying attenuation is the combination of two effects:
(i) attenuation by hydro-meteors, characterized by the
Maseng-Bakken model [1]; (ii) scintillation, turbulent
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tropospheric refraction due to random variations of the
refractive index [2]. Both a static and a dynamic model
are required for characterizing attenuation induced by
rain and scintillation. In the former, the Probability
Density Function (PDF) of the attenuation (dB) of both
effects have been found experimentally: the log-normal
and Moulsley-Vilar (MV) distributions [3] for rain and
scintillation, respectively. In the latter, the Power Spectral
Density (PSD) of the attenuation process is specified.
The stochastic dynamic model of rain attenuation consid-
ers a scheme for generating the log-normal distribution
of attenuation with a specified power spectral density,
with bandwidths in the milli-Hertz range and potentially
large attenuation events. Scintillation is characterized
instead by small (tenths of dB) attenuation and relatively
fast variations (typically in the Hz range).

The ACM control loop is mainly driven by rain
attenuation (slow variation) while scintillation is present
as relatively fast and small variations with respect to the
present value of rain attenuation. The ACM loop settings
(SNR thresholds between different modulation and cod-
ing schemes) have to be adjusted to take scintillation into
account: variations of 1 dB at 30 GHz may be typical
of scintillation [4], which lead to an order of magnitude
increase in the short-term Bit-Error Rate (BER).

Testbenches for the evaluation of Fading Mitigation
Techniques (FMT), as carried out in [5], require a
satellite channel simulator which models the described
FFF effects. As rain synthesis is fully specified in the
Maseng-Bakken model, we will consider a Wiener model
for the synthesis of scintillation in the channel simulator.

II. CHARACTERIZATION OF SCINTILLATION

The MV distribution refers to scintillation attenuation
expressed in dB. Theoretical models of the scintillation
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PSD have been derived, although they match experi-
mental data only partially. In this work, we provide a
synthesis method that conforms to the static and dynamic
characterization of scintillation. The MV PDF of the
scintillation process χ conditioned to a given standard
deviation σχ is expressed from a Gaussian density as,

p(χ|σχ) =
1√

2πσχ

· e−χ2/2σ2
χ (1)

where σ2
χ is itself a log-normally distributed random

variable. The probability density of its standard deviation
σχ becomes,

pσ(σχ) =

√
2
π
· 1
σχσσ

· exp

(
− ln2(σ2

χ/σ2
m)

2σ2
σ

)

with σm and σσ the parameters which control the mean
level and spread of the standard deviation σχ of scintilla-
tion, respectively. The peaky appearance of scintillation
is governed by the ratio σσ/σm. The exact expression
of the MV distribution cannot be calculated explicitly,
although approximations have been reported. It is given
by the following marginalization,

pX(χ) =
∫ +∞

0
p(χ|σχ)pσ(σχ)dσχ (2)

The PSD of scintillation has also been measured in
experimental campaigns and theoretical studies exist
that predict a spectral index of −8/3 from Turbulence
Theory [2][7] which has been verified experimentally, at
least within a band of the total scintillation spectrum.
Therefore, we have used the following approximation to
the true scintillation PSD,

Sχχ(f) = S0 · 1
1 + (f/fχ)ν

(3)

with ν = 8/3 and S0 a normalization term.

III. THE WIENER MODEL

We consider a Wiener model (filter followed by non-
linearity) fed with white Gaussian noise for the gener-
ation of scintillation, according to the scheme depicted
in figure (1). The synthesis of Gaussian processes with
a specified PSD from white Gaussian noise can be done
with a synthesis filter as this operation does not alter
Gaussianity. Nevertheless, when we intend to generate
a non-Gaussian PDF such as that of scintillation with a
pre-specified PSD, the nonlinearity modifies the PSD of
the input process. Hence, the computation of the filter
and non-linearity coefficients are coupled.

Previous results [6] can be used to solve this problem.
Let FX(x) and FN (x) denote the target and normal

cumulative distributions, respectively. Then, the nonlin-
earity that synthesizes the target distribution from normal
Gaussian noise is given by g(x) = F−1

X (FN (x)), with
F−1

X (x) the inverse function of the target distribution
such that FX(F−1

X (x)) = x. An expansion based on
Hermite polynomials Hk(x) is used to express g(x),

g(x) =
+∞∑

k=−∞
gkHk(x) (4)

with Hn(x) = (−1)nex2/2 dn

dxn e−x2/2 and orthogonal
with respect to the scalar product < f(x), g(x) >=∫ +∞
−∞ e−x2/2f(x)g(x)dx. Therefore, the coefficients of

the expansion are easily calculated from the following
expectation with respect to N ,

gk =
1
k!

· EN [g(N)Hk(N)] (5)

with N a normal random variable: pN (n) =
1√
2π

exp(−n2/2). The relationship between the (un-
known) input an (known) output correlation functions
of g(x) is expressed as,

ρXX [m] =
+∞∑
i=0

bi · ρi
CC [m] (6)

with ρCC [m] and ρXX [m] the m-th lag input and output
correlations, respectively, and bi = i!g2

i . Therefore,
Hermite polynomials allow to decouple the multivariate
non-linear equation system into a set of univariate non-
linear equations. If the target process can be synthesized
by a Wiener model, this procedure will generate the
required parameters.

IV. NUMERICAL PROCEDURE

In the implementation, we will use an approximation
ĝ(x) to the true g(x). This will be based on a finite power
expansion ĝ(x) =

∑L
k=0 ak · xk, where due to the even

symmetry of the MV PDF, only odd powers of x need
be considered. The coefficients ak will be calculated to
minimize a cost function by polynomial regression on
g(x) using a suitable kernel K(x). The choice of the
kernel is critical to minimize the impact of large, low-
probability values on the estimated coefficients.

The inverse Moulsley-Vilar cumulative distribution
F−1

X (x) cannot be calculated explicitly. Nevertheless, if
a sufficiently long data record x drawn according to this
distribution is available, sorting provides a sufficiently
accurate estimate of F−1

X (x) (for an infinitely long data
record, the profile of sorted data converges to F−1

X (x)).
Evaluating,

F̂−1
X (x) = sort[x] (7)



Filter g(x)WGNRNG

Fig. 1. Scintillation generation: a Random Number Generator
(RNG) based on a bank a Linear Feedback Shift Registers
(LFSR) feeds a White Gaussian Noise (WGN) generator,
which is spectrally shaped by a linear discrete filter and passed
through a memoryless nonlinearity g(x).

we can derive the estimate ĝ(x) = F̂−1
X (FN (x)), where

the cumulative distribution of normal noise is,

FN (x) =
1
2

(
1 + erf

(
x

σg

√
2

))
(8)

with σg the standard deviation of Gaussian noise. The
data input x to the sorting procedure must be drawn
according to the MV distribution. Fortunately, we are
only interested in estimating the inverse MV cumulative
distribution without regard to its PSD. Hence, it only
suffices to generate independent identically distributed
samples. This is easily accomplished from the definition
of the MV distribution, where normal Gaussian noise w
is multiplied by an independent log-normal process sχ.
We may write,

x = w · sχ (9)

The cost function for computing the unknown coeffi-
cients al is expressed in terms of a suitable kernel K(x)
as,

J =
1
M

M∑
p=1

K(xp) ·
∣∣∣∣∣ĝ(xp) −

∑
l

al · x2l+1
p

∣∣∣∣∣
2

(10)

Arranging the different powers x2l+1
p into the data matrix

X, the coefficients al into the vector a, the samples
ĝ(xp) into vector g and the kernel values K(xp) into
the diagonal matrix K, we can express the cost function
as,

J = (ĝ − Xa)TK(ĝ − Xa) (11)

from which we get the weighted least squares solution,

aopt = (XTKX)−1XTK · ĝ (12)

The high-order coefficients of aopt control the behaviour
of the tails of the synthesized probability density. The
kernel is responsible for controlling the effect of large
and relatively fewer values of xp, which has been chosen
as,

K(x) = (1 + μ · xα)−1 (13)

where the exponent α = 2 has proven to yield good
experimental results.

Thereafter we get the autocorrelation values ρCC [m]
at the input to the non-linearity by solving the set of
equations (6), an inverse prediction error filter is used
to synthesize an approximation to the corresponding
PSD using the Maximum Entropy Method (MEM) [8].
MEM will generate the flattest (highest entropy) PSD
consistent with a finite number of known correlation
lags ρCC [m] (it extrapolates the autocorrelation sequence
ρCC [m] outside the known range).

V. SIMULATIONS
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Fig. 2. Estimated Scintillation Non-Linearity: this odd non-
linear function, of increasing derivative, generates the heavy-
tailed distribution associated with scintillation on input a
coloured Gaussian noise process as in figure (1).
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FIG 2 Estimated PSD of scintillation
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Fig. 3. Verification of synthesized scintillation Power Spectral
Density (PSD) in double-logarithmic (above) and standard
axes (below).

In the simulations we have used parameters gathered
in the experimental campaigns of ACTS, Olympus and
Italsat. Figure (3) compares the target and synthesized
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Fig. 4. Depiction of the scintillation process.
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Fig. 5. Estimation (normalized histogram) of the probability
density function of scintillation. The heavy tails can be ob-
served in contrast to the parabolic shape of a Gaussian density.

PSD of a scintillation process, a random realization of
scintillation appears in figure (4) and its corresponding
PDF is shown in figure (5).

VI. IMPLEMENTATION

Representative scenarios for rain and scintillation have
been defined for the testbench [5], incorporating several
rain dynamics and independent weak/strong scintilla-
tion conditions. The corresponding parameters are pre-
computed and stored in the Channel Simulator (CS)
for operation. Combinations of eight and four rain and
scintillation scenarios, respectively, can be handled by
the final prototype. Figure (6) shows the complete struc-
ture of the fading process generation. Both rain and
scintillation are generated independently using a Wiener
model (dry/wet scintillation can also be incorporated
by modulating the scintillation process in terms of a
nonlinear transformation of the rain process). Generation
of rain and scintillation up to the output of nonlinearities

g(x) and f(x) is performed at low rate. The output multi-
stage interpolator increases the sampling rate to match
that of the input communications signal. An exponential
nonlinearity (not shown) performs the conversion of
the total attenuation process to linear scale. Additive
Gaussian Noise is added before the simulator output.
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Fig. 6. Total rain plus scintillation generation at sampling rate.

The Channel Simulator has been implemented in a
Xilinx Virtex II XC2V6000 FPGA. The package BF957
with a speed grade of −5 has been used, with a maxi-
mum 684 user I/Os.

The Channel simulator has taken up 6,250 Slice flip-
flops (9% of the total in the FPGA), 21,377 4-input LUTs
(31%). The total number of used slices is 12,762 (37%).
The design has required 60 I/Os (23%), 12 internal
Block RAMs (8%), 65 18x18-bit multipliers (45%) and
4 global clocks (25%). A total of 1,519,722 equivalent
gates have been estimated for this design.
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