
Supporting context-aware collaborative learning through

automatic group formation

R. Messeguer, E. Medina, D. Royo, L. Navarro
Universitat Politècnica de Catalunya, Spain

P. Damian-Reyes, J. Favela
CICESE, Mexico

Abstract

Collaborative learning is based on groups of

students working together with traditional and

computer-based tools or applications. We have

found that to make these supporting applications

more effective we need to address the problem of

automating group awareness in CSCL applications

by estimating group arrangements from location

sensors and the history of interaction. This

contextual information can enable the construction

of applications that facilitate communication

among group members in synchronous and

collocated collaborative learning activities. We

used data traces collected from the study of

students‟ behavior to train and test an intelligent

system. Results show that context-information can

be effectively used as a basis for a middleware for

automating group management. Inferring group

membership is technically feasible, can be

integrated in group-support applications and can

be used in real-world settings.

1. Introduction

The ambient intelligence (AmI) vision describes

an ubiquitous environment which is furnished

with computational artifacts that remain in the

background of our lives and that have intelligent

capabilities to support user-centered activities

[14]. An intelligent environment is ubiquitous in

the sense that it enhances the physical

environment with heterogeneous computational

and wireless communication devices naturally

integrated and, at the same time, invisible to the

user [15]. Hence, AmI applications need

intelligent capabilities to be adaptive to users and

reactive to context in order to provide high quality

services based on their preferences. Context-

awareness allows AmI environments to take on

the responsibility of serving users, by tailoring

itself to their needs, and perform tasks according

to the nature of the physical space.

A particular ambient that can benefit from

using context-aware applications are Cooperative

learning activities. Cooperative learning is an

instruction method based on students working

together in small groups to accomplish shared

learning goals [11]. Cooperative learning entails a

dynamic setting where multiple parallel groups of

students join and disband rapidly to form new

groups. In addition, beyond paper and pencil,

students may use mobile devices –such as laptops

or PDAs, with wireless network connections–

combined with computer applications, which

provide support not only in the creation and

manipulation of data, but also in facilitating and

encouraging cooperation among the students.

However, in this scenario there is a potential

barrier on the effort required for the integration of

physical and digital objects. Bridging this barrier

by sharing contextual information makes

interaction across real-world and computer-based

objects invisible to the user [10].

Computer-Supported Collaborative Learning

(CSCL) applications are used in collocated

cooperative learning settings to support group

tasks in planned and unplanned situations. Such

applications require up-to-date contextual

information about the groups that are participating

in the collaborative activity. Since this

information is changing continuously, its manual

introduction may be of concern to the already

overloaded teacher and introduce delays and

additional burden to any participant in a real-time

collaboration. Thus, there is need to automate the

detection of changes in the physical world. An

intelligent environment can use sensors to detect

changes and learn about the behavior of

participants and automatically detect group

membership.

In this paper, we explore how intelligent

environments can detect automatically the

arrangement of participants in groups for

unplanned and planned situations. That is, if

students participate in collaborative activities –

either within the classroom or in the campus–, the

system could proactively set up a certain group

before members explicitly request for it.

Our main goal is to provide support to the

students‟ activities using an Intelligent System,

which takes into account contextual information

to estimate group membership. In addition, we

present a case study where we show how this

information can be used in collaborative

applications. The contributions of this paper are:

 We define a contextual model: a list of

requirements and relationships on basic

contextual information that every intelligent

system needs to automatically detect the

creation of groups. (Sections 2 and 4)

 We propose both, training and estimating

processes for the intelligent system, in order to

obtain high accuracy in the group membership

estimations. (Section 6)

 We demonstrate that predicting groups‟

membership is technically feasible and that it

can be easily incorporated in CSCL

applications. (Sections 7 and 9)

2. Context model for group awareness

To identify relevant contextual information we

have used the framework for CSCL/CSCW

system awareness proposed in [5] as starting

point. In order to achieve our goals, we have

considered information related to the

identification of individuals and groups enriched

with time and place information.

According to [3] our context-aware scenario is

a model Class C: Context as a matter of user

activity. The focus of this class of models is on

“what the user is doing”, consequently context

history and reasoning are important issues. Time

and space are considered relevant as far as they

provide information about the user‟s current

activity. The context definition is in general

centralized and the user is the subject of the

model. Automatic learning is used to guess user

activity from sensor readings.

Based on [7], we defined a context model

(Figure 1) that divides the current contextual

information –identified by a timestamp– into three

parts: Location, User identity and Group activity.

This context model is centralized and users

periodically update their sensed context

information and record every context update with

different timestamps.

The three parts of the model have the

following relationships: At a given moment

(timestamp) a User is in a particular Location with

other users –neighbors–. By reasoning on these

context components we can infer the Group

activity –group membership estimation–.

This context model can bring us the following

features [3]:

 Context reasoning: indicates whether the

context model enables reasoning on context

data to infer properties or more abstract

context information (e.g., to deduce user

activity combining sensor readings).

 Automatic learning features: highlights

whether the system, by observing user

behavior, individual experiences of past

interactions with others, or the environment,

can derive knowledge about the context (e.g.,

by studying the user‟s browsing habits, the

system learns user preferences).

Figure 1. Context Model

3. Context architecture for dynamic

group prediction

The architecture of our system (Figure 2) consists

of three components deployed in two nodes. The

first node, with which the user directly interacts,

includes the context provider component –where

information about the users‟ context is gathered.

The second node contains the intelligent system

where two other components reside: context

collector –where contextual information is pre-

processed– and the machine learning engine –

where contextual information is consumed–.

At the user side, context information is

gathered to generate a fingerprint for that user that

is sent to the system periodically or every time a

change occurs.

When the system receives new contextual

information related to such user, the context

collector pre-processes this information and

generates the inputs to the machine learning

component which estimates a specific group

formation and delivers this estimation to the

system in order to automatically create the group

and set up the collaborative environment and the

CSCL applications.

Figure 2. Context Architecture

The whole prediction process works as

follows: the user triggers some actions related to

group management: creating, joining and leaving

groups. All these actions are also sent to the

intelligent system, which uses this data to learn

about user behavior –with who collaborate and

when the collaboration is done–. When new

contextual information from the user arrives to the

intelligent system, it uses what it had previously

learnt to predict if the user is going to join a

particular group, and automatically set up the

group‟s working environment.

4. Contextual information

We considered information related to the

identification of individuals and groups [5] and we

enriched it with time and location information.

This contextual information –gathered by the

context provider– is always associated to the user

id and can be static –acquired only once– or

dynamic –obtained periodically or every time it

changes–.

We analyzed which contextual information

was relevant for training a machine learning and

we discarded information that did not improve

recognition accuracy. For instance, we found a

significant increase in accuracy by including in

the contextual information all the Bluetooth

devices (physical proximity) sensed for the user,

instead of only the devices of the students that had

previously collaborated with him. In the

experiments, we confirmed that such information

was crucial for the machine learning to be able to

accurately identify the context (Table 4).

We finally selected the following items as

relevant for predicting group creation (Figure 2):

 Timestamp: the time and the day of the week.

 User identifier: a unique Id. based on the

identity of the user and his mobile device.

(e.g. username and Bluetooth MAC address).

 Location: based on the access point

fingerprint [4], our system obtains

information about where users are placed:

classroom, cafeteria, library, etc.

 Neighborhood: list of all sensed Bluetooth‟

MAC addresses.

5. Machine learning

In a previous research work [13], we addressed

the same problem of how to estimate group

membership. We used a strategy that did not

include any machine learning algorithm. The

limitation of this solution was its static character

(known users, familiar places, specific

configuration of the algorithms for those users and

places, etc.). In this work, we seek a solution

where the system learns from context changes

(users, locations and time) and could adapt itself

dynamically according to such changes. In order

to obtain a dynamic behavior, we trained and

evaluated two machine learning algorithms to

detect when collaboration among people starts in

the real-world and thus a group should be created

in the computer-based environment. For this

purpose, we used the Weka workbench system

[9], a framework that incorporates a variety of

learning algorithms and some tools for the

evaluation and comparison of the results. The two

algorithms used are: Instance-based learning

(IBL) and Bayesian Network (BayesNet).

Both algorithms are very simple and have

either few or no parameters to be tuned. They also

produce classification models that can be easily

interpreted. We chose IBL because it is a simple,

yet robust learning algorithm, can tolerate noise

and irrelevant attributes and can exploit inter-

attribute relationships. On the other hand, we

selected BayesNet as a baseline because it is a

well-known learning algorithm.

Instance-based learning (IBL) stores the

training data. When a new input vector arrives, a

set of similar related instances is retrieved from

memory and their corresponding outputs are used

to predict the output for the new input vector [1].

IBL algorithms are derived from the nearest

neighbor classifier. It classifies an unknown input

vector by choosing the output of the nearest

instance in the training set as measured by a

distance metric. A generalization of this method is

the k-nearest neighbor (k-NN) method, when

more than one neighbor is used.

Bayesian Networks (BayesNet) are structured

as a combination of a directed acyclic graph of

nodes and links, and a set of conditional

probability tables [12]. Nodes represent features

or classes, while links between nodes represent

the relationship between them. An estimation

algorithm is used to create the conditional

probability. We used the Simple Estimator

algorithm, which estimates probabilities directly

from the training data.

6. Training and estimating processes

Both training and estimating processes are divided

into two stages: 1) an individual phase for

training/estimating the specific groups to which

the user belongs to and the context required for

such groups to be created and 2) a shared phase

when the system checks if the users required for

the creation of a particular group are active or not.

This second stage, unlike the individual one, is

unique for all group members and the training and

estimation processes are common to the group

members. The estimation process of this group

phase is only performed after the first stage in

order to confirm the former estimation process.

6.1. Training process

The individual training phase is different for every

user in the system. Each user has his own history

with the groups which he has belonged to and the

specific context that he sensed while he was

working in each group. The action of joining a

group by a user is the start signal for the collection

of training data (Figure 3).

 The training data is composed of a set of

context vectors sent by the users to the context

collector. C[n] is the n-esim context vector sensed

by the user at the arrival of a group joining event,

and C[m] represents the m-esim context vector

sensed upon arrival of a group leaving event.

Figure 3. Training process

This data is collected according to the

following pattern:

 Group joining event: Upon arrival of this

user action, the collected training data consist

of the preceding context event C[n-1],

associated with non-group state, and the

current context event C[n] associated with

the group just created (Group X).

 Group operation period: During this phase,

the sequence of training data is composed of

the context events periodically sensed by the

user C[n+1], C[n+2],… –associated with the

time period during which the group remains

working–.

 Group leaving event: Finally, at the time of

arrival of this action –for finishing the group

collaboration–, the training data is composed

of the last context event C[m] –associated

with the group operation state– and the next

context event C[m+1] –associated with the

following non-group state–.

The shared training phase consists in a record

of the group history. It stores the different

combinations of active members sensed during the

group operation period of the training process.

6.2. Estimation process

The individual estimating phase is the first step

for the prediction of a group formation. In this

stage the system predicts the formation of groups

based upon the particular history of each user.

Therefore, the groups estimated for different users

can be different.

The Intelligent System launches the groups‟

estimations according to the next pattern:

E[n] denotes the n-esim group formation

estimation and C[n] represents the n-esim context

vector sensed by the user. This C[n] vector

indicates that one or more changes have occurred

in the context sensed since the last estimation.

Figure 4. Estimation process

From the last group estimation E[n], a

minimum (min) and a maximum (max) time are

defined to make the next group estimation E[n+1].

A group estimation is performed depending on

when significant contextual changes occur:

 In Figure 4A, if one or more contextual

changes, C[n], occur before the minimum

time interval of 5 minutes (min), the next

estimation, E[n+1], will be done at min time.

 In Figure 4B, if a contextual change event

C[n] occurs within a period of from 5 to 15

minutes, the estimation E[n +1] will be done

at the time of the arrival of the C[n] event.

 In Figure 4C, if no changes occur, the

estimation E[n+1] will be done at the end of

the 15 minutes period (max).

The shared estimating phase simply consists

in the verification that the Bluetooth devices of

the members required for the creation of the group

estimated in the previous phase, are active. The

number and identity of the required members are

determined according to the group history

recorded during the shared training phase.

7. Experiments and results

This section presents the experimental setting and

results of the simulations conducted to assess the

automatic recognition of group formations.

7.1. Experimental setting

This study has been done at the EPSC campus of

UPC, an engineering school designed for

collaborative and project based learning models.

The classrooms are equipped with tables and

chairs that facilitate teamwork. In addition, each

student has a laptop equipped with WiFi and

Bluetooth cards so they can interact with one or

more peers through the learning activities.

We studied the behavior of the students during

15 weeks in order to identify the students‟

activities and the relevant contextual information

needed to represent such activities. We recorded

the time of each of the students‟ actions and some

data regarding to the nature of such actions: the

place, the list of students involved in a certain

group activity, the subject they were attending at

that moment, etc. We gathered information to

develop a model that describes the students‟

activities and their characteristics.

The model used to perform our experiments

considered a group of 30 students. These students

represent a set of all the students in the campus

that can collaborate with each other in any

different situation. Only 20 of these students

follow the same course and the rest are others who

can form a group out of the classroom context.

Six different sites were selected as potential

locations where the students could collaborate:

classroom, library, group study room, cafeteria,

vending machines and university grounds. Some

of these places are not typical for a learning

meeting but are daily meeting places for students

where collaboration can occur spontaneously.

It was also identified that a particular student

can be part of an average of 6 different groups

during an academic semester. Of these groups, 4

are planned for regular work and the other 2 are

spontaneous (unplanned) groups formed

unexpectedly when the students have an

opportunity to collaborate.

The regular class schedule of the considered

set of students comprises six daily hours on

mornings beginning at 8 o‟clock. Moreover, the

students have 6 different subjects (which are

taught in the same classroom) but only 4 of them

require teamwork.

Out of the lectures hours, students meet in

different places in other to carry out the tasks

requested by their teachers.

7.2. Data collection

We use data traces collected from the study of the

students‟ behavior to train and test our system.

This data represent the contextual information of

the activities of the selected group of students

during a whole week while they are collaborating.

The traces contain:

 The week day and time.

 The user Id: the username and Bluetooth

MAC address.

 The place where they are located: based on

the access points fingerprint [4], our system

obtains information about where users are

placed (classroom, cafeteria, library, etc).

 The neighbors list: obtained by recording the

MAC addresses of the Bluetooth devices

sensed by the user. For the collection of the

Bluetooth traces, we run a Java API for

discovering Bluetooth devices (JSR 82). This

API sensed the signals transmitted from

Bluetooth USB devices connected to laptops.

 The activity that is being performed (group

or non-group identifier).

Time stamp User Place Neighbors

Week day Time Username
Bluetooth

MAC

Bluetooth

MAC
…

Monday 9h30 Anna 00:FF… Cafeteria 00:FF… …

Monday 9h45 Anna 00:FF… Cafeteria 00:FF… …

Table 1. Contextual input vector

We transform the traces into input vectors for

our system (Table 1). These vectors include the

contextual information of a given activity from the

point of view of one of the students, and the

outputs of the system are the estimated group or

non-group identifiers associated to such activity.

This information is used to train the learning

algorithms, which store this training data and use

it later to predict the output at the arrival of a new

contextual event.

The training data is a set of input vectors and

the corresponding outputs (group membership).

The items of an input vector are: a numerical

value representing the time, a class corresponding

to the day of the week, another class for the

possible locations where collaboration could take

place, and finally, a set of class items

corresponding to the number of students that

participate in the collaborative activity. These last

items are Boolean values reflecting the presence

or absence of Bluetooth signal from the students‟

devices.

The testing data is similar to the training one.

It has similar input vectors but it includes all the

contextual information that the student senses at

any time and not only when the student joins,

leaves or is working in a given group. Moreover,

we found that the testing data has differences in

contextual information, such as the starting time

and duration of the group operation period, some

sensed Bluetooth MAC addresses, etc.

For our simulations we collected data during

two weeks. We gathered a total number of 132

training vectors during the first week. On the other

hand, we collected another set of 214 vectors

during the second week that was used for testing.

7.3. Selection of the algorithm

We performed some experiments using the data

gathered during the first week for training the

system. The purpose of these experiments was to

validate the quality of the proposed learning

model and to confirm experimentally that the IBL

algorithm is appropriate for our objectives. We

used the training data set as input for the learning

model created by the machine learning algorithm

to confirm that we obtain the expected outputs. It

shows the ratio of correctly and incorrectly

classified contextual events when the system‟s

input is the same data used to construct the model.

Due to the nature of the IBL algorithm and the

importance that it gives to the training data when

estimating the output for a new input vector, it

achieves a recognition rate of 100%. In contrast,

BayesNet gets the proper output in 85% of events.

Subsequently, we applied another method of

evaluation that uses only some parts of the

training data to create the model and the rest are

used to test the performance of the system. We

selected a method that randomly splits the original

data sample into 10 subsamples. Then, 1

subsample is used as validation data for testing the

model and the remaining 9 subsamples are used

for training. This process is repeated 10 times

using each of the subsamples exactly once for

validation. Lastly, the results from the 10 testing

subsamples are combined to obtain a single

estimation. Table 2 shows the results of this

validation method. The percentage of success

decreases because the learning algorithm has less

input information for training, and in addition, the

discarded information might be more relevant

than the remaining one.

 Correct Incorrect

BayesNet 106 (80.3%) 26 (19.7%)

IBL (K=1) 107 (81.1%) 25 (18.9%)

Table 2. Predictions accuracy using different
subsamples of the training data

 Finally, we used a different data set –gathered

during the second week– to make a more realistic

evaluation. This new data is used as testing data

and it is different from the training data –collected

the first week–. It also includes a wider context

sensing. Therefore, The training data is used to

create the model and the testing data is used to

assess the performance of such model when it has

to make a prediction based on new contextual

information. Once again, the system computes the

ratio of correctly estimated contextual events.

 Correct Incorrect

BayesNet 149 (69.6%) 65 (30.4%)

IBL (K=1) 208 (97.2%) 6 (2.8%)

IBL (K=2) 202 (94.4%) 12 (5.6%)
IBL (K=3) 136 (63.6%) 78 (36.4%)

Table 3. Predictions‟ accuracy using the testing data

Table 3 compares the accuracy in the

prediction of group formation for the BayesNet

and the IBL algorithms when using a testing data

set different from the training one. For the IBL

algorithm, we tested several configurations with

different values of the K parameter. When using

the default configuration (K=1), IBL classifies an

unknown input vector by choosing the output of

the nearest instance in the training set. In order to

use more than one nearest instances for the

classification of the input vectors, we also used

K=2 and K=3.

Using this evaluation method, we can see the

actual performance of the system and the

differences between IBL and BayesNet. The

results obtained show a clearly superior

performance of IBL. It is also noticeable the fact

that for higher K values the accuracy of the results

decreases. However, both IBL K=1 and K=2 still

have a clear superior performance than BayesNet.

The results show that IBL with K=1 has the

higher prediction accuracy, however we also

chose K=2 because it estimates the output by

using the 2 nearest instances. It allows us to detect

in which estimations of the IBL algorithm, the

degree of confidence is not 100%. This is due to

the possibility that the 2 nearest instances can

result in different outputs –non-group versus a

group identifier or two different group identifiers–

. This information can be useful as an indicator of

the quality of context information.

7.4. Results and findings

We evaluated our model and the quality of the

contextual information selected.

All sensed MACs Correct Incorrect

IBL (K=1) 208 (97.2%) 6 (2.8%)
IBL (K=2) 202 (94.4%) 12 (5.6%)

Only known MACs Correct Incorrect

 IBL (K=1) 145 (67.8%) 69 (32.2%)
 IBL (K=2) 140 (65.4%) 74 (34.6%)

Table 4. Assessment of Bluetooth‟ MAC impact

Table 4 shows the results of the experiments when

considering all the MAC addresses of the

Bluetooth devices sensed by the user versus the

results when the contextual vector only includes

the MAC addresses of the students‟ devices that

have previously formed a group with the user. The

results prove that it is very important to include in

the contextual vector all the MACs sensed by the

user and not only the MACs of the known group

members. Not including this information would

result in a drop of the rate of correctly classified

instances from 97.2% to 67.8%.

 Group No Group

Group 102 (47.7%) 8 (3.7%)
No Group 26 (12.1%) 78 (36.5%)

Table 5. Confusion matrix of group predictions

Table 5 shows the confusion matrix in IBL

K=1. In this table, „Group‟ represents all groups to

which the user has belonged whereas „No Group‟

represents the non-group activity state. The matrix

shows the number of correctly classified events in

the diagonal and we can see that in this test, the

ratio of incorrectly classified events –items out of

the diagonal– was approximately 15.8%. From the

matrix, we can deduce that the worst results are

obtained because sometimes IBL confuses the „No

group‟ state with the „Group‟ ones. However,

some of the incorrectly classified items are not a

major problem because although groups are not

properly detected, they do not confuse or disturb

the students while they are working.

In the previous experiments, we assumed our

model inputs were accurate. However, in practice,

inputs might be calculated through error-prone

methods or the real-world context of the user

might be considerably different from the context

used for training the machine learning component.

To address this, we tested our model‟s robustness

by introducing noise into the contextual vector

that we use as input data for our system.

 Correct Incorrect

Test data Total errors Time errors

IBL (K=1) 208 (97.2%) 6 (2.8%) 4

IBL (K=2) 202 (94.4%) 12 (5.6%) 10

Test data with time errors Total errors Time errors

IBL (K=1) 183 (85.5%) 31 (14.5%) 19

IBL (K=2) 180 (84.1%) 34 (15.9%) 22

Table 6. System‟s robustness to time errors

We define an error as a highly significant

change or a missed value in the contextual vector.

In order to assess the system‟s robustness, we

tested its sensitivity to each of the contextual

vector items. Table 6 shows the effect in the

accuracy of the results by introducing errors in the

“time” item of the vector. This table compares the

results obtained using the original testing data

with those obtained by introducing errors in time

on the order of hours. It specifies the number of

incorrectly classified instances that are due to such

errors in time.

Figure 5. Estimations accuracy of spontaneous group

formation versus number of training instances

In addition to the previous experiments for the

evaluation of the accuracy of the estimations, we

also calculated the evolution of the estimations

accuracy with the number of training instances

used to construct the learning model. Figure 5

shows the results when testing the accuracy in the

estimation of the formation of a spontaneous

group for IBL K=1 and K=2. We can see how the

ratio of correctly classified instances increases by

incrementing the number of training instances. In

K=1 we obtained a 87% accuracy ratio when we

have 21 training instances.

Finally, we performed some tests in order to

identify the effect of the number of groups used

for training in the estimations accuracy of a

specific group. Therefore, we intended to evaluate

if the rest of the groups in the user history could

be a source of interferences for the estimations.

This could be interesting to know if there is a

maximum limit for the system to be able to

distinguish two different groups. Figure 6 shows

the results of this experiment for both, planned

and spontaneous groups. As expected, the

accuracy (100%) of planned groups seems to be

independent of the number of total groups –at

least for 6 or less groups–. However, the accuracy

of spontaneous groups estimations decreases up to

87% for 3 or more interfering groups.

Figure 6. Estimations accuracy versus the number of

interfering groups of the training data

 By performing all our experiments, we

observed the importance of the appropriate

selection of the time intervals to collect the

training data. In addition, the necessity of

including in the training data some events with the

contextual information when no groups were

established was also noticeable. If such events

were not included, the ratio of correctly classified

events suffered a dramatic decrease.

On the other hand, we observed a slight

improvement when multiple events reinforcing the

fact of the existence of a group were introduced.

8. Effect on the user: interruptions

It should be noted that an erroneous estimation

does not necessarily imply an interruption in the

attention of the student. For example, two

consecutive erroneous or uncertain estimations are

not two interruptions but actually they are just

one. The first one interrupts the student and

changes its focus away from the main activity

towards the change of context, tools, group, etc.

decided by the system, but the second one does

not cause any interruption because the student has

already left his main activity.

For that reason we defined a burst as a

sequence of erroneous estimations. The end of the

errors burst, i.e., the return to the correct behavior,

is identified with two correct consecutive

estimations. From the log data we identified the

bursts of erroneous estimations. The impact on the

activity of the student, measured in number of

interruptions. When no interruptions management

is used, each student has an average of 26

interruptions during a week. We think that it is a

very large value and can complicate the execution

of the groups and student activities. By

introducing management of error bursts, these

interruptions go down to an average of 4. We

believe this new value is acceptable and has little

impact in the student activities.

9. A case study

The system described in this paper can be easily

integrated into some existing collaborative

learning support environments such as Sugar [16].

Sugar is a software platform that provides a

collaboration framework for learning.

Collaboration is implemented with the telepathy

library (telepathy Gabble), a D-Bus/XMPP

framework for Instant Messaging protocols.

Figure 7 shows how our system can be

integrated into Sugar. At the user side, both Sugar

and the Context Provider are executed. The

Context provider sends all the information related

to one user to the intelligent system through the

same XMPP server that Sugar uses.

When our Intelligent System predicts if the

user is going to collaborate with a particular

group, it sets up the group working environment.

In the case of the Sugar framework, the system

starts an activity, for example file sharing, and it

shares this activity with the other users who are

part of the group by sending invitations (telepathy

library) to them through the XMPP server. Only

those users who receive an invitation can share the

activity.

Figure 7. Intelligent System integration with Sugar

The screenshot in Figure 8, shows users

working together on a collaborative activity.

Three users are working in a group detected

automatically by the Intelligent System and are

learning Mathematics through a Sugar

memorization activity.

Figure 8. Sugar collaboration screenshot

10. Related work

Although there are many tools for providing some

degree of automation and support for activities

within a group, we have not found specific tools

for providing the applications with automatic

group awareness based on environmental

contextual data.

In [6], the authors present an approach to the

classroom context by identifying the students‟

activity. The main goal is to acquire physical

interaction identifying and obtaining context

services. This proposal facilitates a service to a

single user taking into account his contextual

information but it does not provide service

adaptation. Our system proposes a complementary

approach. We intend to provide services to a

group of students instead of just one student. In

addition, we adapt the service provided to the user

dynamically, learning from new situations.

MCI-Supporter [2] is an application

supporting collaborative learning methods in the

classroom. It was conceived by first analyzing the

best known collaborative learning practices trying

to find out which are the real needs for mobility

and face-to-face. However, the groups have to be

manually established by the teacher. In [8], the

authors discuss on contextual information about

groups. They focus on workspace and social

awareness and they even comment on team

formation support: closed and open teams joined

and left manually and dynamic teams formed

automatically by the system based on context and

meta-information. Our approach differs from the

presented above mainly because we predict users‟

interactions taking into account the users past

actions and our system does not require the users‟

intervention. Related works are less flexible, use

only static information, do not learn and self-adapt

depending on the circumstances, and they need

the users to perform some extra actions.

11. Conclusion

In this paper, we presented the motivation and the

problem of automating the incorporation of group

awareness information into CSCL applications

without shifting this burden to group participants

or overloading the teacher.

We proposed an Intelligent System which,

based on contextual information, is able to

automatically estimate group membership. We

evaluated its utility in terms of the rate of group

recognition success. Simulations showed that

context-information can be effectively used as a

basis for a middleware for automatic and dynamic

group management. Therefore, we conclude that

inferring group membership is technically viable

and can be used in real-world settings.

Our results could facilitate the construction of

applications that effectively assist group members

in automatically sharing, communicating and

coordinating as they move and reorganize in

synchronous and collocated collaborative learning

activities.

Acknowledgement

This work has been partially supported by the

Spanish MEC project P2PGrid TIN2007-68050-

C03-01

References

[1] Aha, D. Kibler, D. Albert, M.: Instance-based

learning algorithms, Machine Learning, Kluwer

Academic Publishers, 37-66, 1991.

[2] Baloian, N. Zurita G.: MC-Supporter: Flexible

Mobile Computing Supporting Learning though
Social Interactions, Journal of Universal Computer

Science, Vol. 15, No. 9, 2009

[3] Bolchini, C. Curino, C.A. Quintarelli, E. Schreiber,
F.A. Tanca, L.: A data-oriented survey of context

models. SIGMOD Rec. 36, 4, 19-26, 2007

[4] Bolliger, P.: Redpin - adaptive, zero-configuration

indoor localization through user collaboration Proc.

Workshop on Mobile Entity Localization and
Tracking in GPS-Less Environments, 2008

[5] Borges, M.R.S. Brézillon, P. Pino, J.A. Pomerol J.
C.: Groupware System Design and the Context

Concept, Proc. Computer Supported Cooperative

Work in Design 2004

[6] Bravo, J. Hervás, R. Chavira, G.: Ubiquitous

Computing in the Classroom: An approach thorough
Identification Process, Journal of Universal

Computer Science, Vol. 11, No 9, 2005

[7] Derntl, M. Hummel, K.A.: Modeling Context-Aware
e-Learning Scenarios. Proc. Pervasive Computing

and Communications Workshops, IEEE, 2005.

[8] Ferscha, A. Holzmann, C. Oppl S.: Team Awareness

in Personalized Learning Environments, Proc.

Mobile Learning, 2004.

[9] Hall, M. Frank, E. Holmes, G. Pfahringer, B.

Reutemann, P. Witten, I.H.: The WEKA Data
Mining Software: An Update; SIGKDD

Explorations, Vol. 11, No 1, 2009

[10] Hwang, G.J. Tsai, C.C. Yang, S.J.H.: Criteria,
Strategies and Research Issues of Context-Aware

Ubiquitous Learning. Educational Technology &
Society, Vol. 11 No 2, 2008

[11] Johnson, D.W. Johnson, R.T.: An overview of
cooperative learning, J. Thousand, A. Villa and A.

Nevin (Eds), Creativity and Collaborative Learning;

Brookes Press, Baltimore, 1994

[12] Langley, P. John, G.H.: Estimating continuous

distributions in bayesian classifiers. Proc.

Uncertainty in Artificial Intelligence, 1995.

[13] Messeguer, R. Damián-Reyes, P. Favela, J.

Navarro, L.: Context awareness and uncertainty in
collocated collaborative systems, Proc. CRIWG,

Vol. 5411 of LNCS. Springer, 41-56, 2008.

[14] Shadbolt, N. Ambient Intelligence. IEEE
Intelligent Systems. Vol. 18 No. 2, 2-3, 2003.

[15] Weiser, M., The Computer for the 21st Century.
Sci American. Vol. 265 No. 3, 94 -104, 1991.

[16] http://www.sugarlabs.org

