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Abstract 
 

Collaborative learning is based on groups of 

students working together with traditional and 

computer-based tools or applications. We have 

found that to make these supporting applications 

more effective we need to address the problem of 

automating group awareness in CSCL applications 

by estimating group arrangements from location 

sensors and the history of interaction. This 

contextual information can enable the construction 

of applications that facilitate communication 

among group members in synchronous and 

collocated collaborative learning activities. We 

used data traces collected from the study of 

students‟ behavior to train and test an intelligent 

system. Results show that context-information can 

be effectively used as a basis for a middleware for 

automating group management. Inferring group 

membership is technically feasible, can be 

integrated in group-support applications and can 

be used in real-world settings. 

1. Introduction 

The ambient intelligence (AmI) vision describes 

an ubiquitous environment which is furnished 

with computational artifacts that remain in the 

background of our lives and that have intelligent 

capabilities to support user-centered activities 

[14]. An intelligent environment is ubiquitous in 

the sense that it enhances the physical 

environment with heterogeneous computational 

and wireless communication devices naturally 

integrated and, at the same time, invisible to the 

user [15]. Hence, AmI applications need 

intelligent capabilities to be adaptive to users and 

reactive to context in order to provide high quality 

services based on their preferences. Context-

awareness allows AmI environments to take on 

the responsibility of serving users, by tailoring 

itself to their needs, and perform tasks according 

to the nature of the physical space. 

A particular ambient that can benefit from 

using context-aware applications are Cooperative 

learning activities. Cooperative learning is an 

instruction method based on students working 

together in small groups to accomplish shared 

learning goals [11]. Cooperative learning entails a 

dynamic setting where multiple parallel groups of 

students join and disband rapidly to form new 

groups. In addition, beyond paper and pencil, 

students may use mobile devices –such as laptops 

or PDAs, with wireless network connections– 

combined with computer applications, which 

provide support not only in the creation and 

manipulation of data, but also in facilitating and 

encouraging cooperation among the students. 

However, in this scenario there is a potential 

barrier on the effort required for the integration of 

physical and digital objects. Bridging this barrier 

by sharing contextual information makes 

interaction across real-world and computer-based 

objects invisible to the user [10].   

Computer-Supported Collaborative Learning 

(CSCL) applications are used in collocated 

cooperative learning settings to support group 

tasks in planned and unplanned situations. Such 

applications require up-to-date contextual 

information about the groups that are participating 

in the collaborative activity. Since this 

information is changing continuously, its manual 

introduction may be of concern to the already 

overloaded teacher and introduce delays and 

additional burden to any participant in a real-time 

collaboration. Thus, there is need to automate the 

detection of changes in the physical world. An 

intelligent environment can use sensors to detect 

changes and learn about the behavior of 

participants and automatically detect group 

membership. 

In this paper, we explore how intelligent 

environments can detect automatically the 

arrangement of participants in groups for 

unplanned and planned situations. That is, if 

students participate in collaborative activities –

either within the classroom or in the campus–, the 



  

 

system could proactively set up a certain group 

before members explicitly request for it.   

Our main goal is to provide support to the 

students‟ activities using an Intelligent System, 

which takes into account contextual information 

to estimate group membership. In addition, we 

present a case study where we show how this 

information can be used in collaborative 

applications. The contributions of this paper are: 

 We define a contextual model: a list of 

requirements and relationships on basic 

contextual information that every intelligent 

system needs to automatically detect the 

creation of groups. (Sections 2 and 4) 

 We propose both, training and estimating 

processes for the intelligent system, in order to 

obtain high accuracy in the group membership 

estimations. (Section 6) 

 We demonstrate that predicting groups‟ 

membership is technically feasible and that it 

can be easily incorporated in CSCL 

applications. (Sections 7 and 9) 

2. Context model for group awareness 

To identify relevant contextual information we 

have used the framework for CSCL/CSCW 

system awareness proposed in [5] as starting 

point. In order to achieve our goals, we have 

considered information related to the 

identification of individuals and groups enriched 

with time and place information. 

According to [3] our context-aware scenario is 

a model Class C: Context as a matter of user 

activity. The focus of this class of models is on 

“what the user is doing”, consequently context 

history and reasoning are important issues. Time 

and space are considered relevant as far as they 

provide information about the user‟s current 

activity. The context definition is in general 

centralized and the user is the subject of the 

model. Automatic learning is used to guess user 

activity from sensor readings. 

Based on [7], we defined a context model 

(Figure 1) that divides the current contextual 

information –identified by a timestamp– into three 

parts: Location, User identity and Group activity. 

This context model is centralized and users 

periodically update their sensed context 

information and record every context update with 

different timestamps.  

The three parts of the model have the 

following relationships: At a given moment 

(timestamp) a User is in a particular Location with 

other users –neighbors–. By reasoning on these 

context components we can infer the Group 

activity –group membership estimation–. 

This context model can bring us the following 

features [3]: 

 Context reasoning: indicates whether the 

context model enables reasoning on context 

data to infer properties or more abstract 

context information (e.g., to deduce user 

activity combining sensor readings). 

 Automatic learning features: highlights 

whether the system, by observing user 

behavior, individual experiences of past 

interactions with others, or the environment, 

can derive knowledge about the context (e.g., 

by studying the user‟s browsing habits, the 

system learns user preferences). 

 

Figure 1. Context Model 

3. Context architecture for dynamic 

group prediction 

The architecture of our system (Figure 2) consists 

of three components deployed in two nodes. The 

first node, with which the user directly interacts, 

includes the context provider component –where 

information about the users‟ context is gathered. 

The second node contains the intelligent system 

where two other components reside: context 

collector –where contextual information is pre-

processed– and the machine learning engine –

where contextual information is consumed–. 

At the user side, context information is 

gathered to generate a fingerprint for that user that 

is sent to the system periodically or every time a 

change occurs. 

 



  

 
When the system receives new contextual 

information related to such user, the context 

collector pre-processes this information and 

generates the inputs to the machine learning 

component which estimates a specific group 

formation and delivers this estimation to the 

system in order to automatically create the group 

and set up the collaborative environment and the 

CSCL applications.  

 

Figure 2. Context Architecture 

The whole prediction process works as 

follows: the user triggers some actions related to 

group management: creating, joining and leaving 

groups. All these actions are also sent to the 

intelligent system, which uses this data to learn 

about user behavior –with who collaborate and 

when the collaboration is done–. When new 

contextual information from the user arrives to the 

intelligent system, it uses what it had previously 

learnt to predict if the user is going to join a 

particular group, and automatically set up the 

group‟s working environment. 

4. Contextual information 

We considered information related to the 

identification of individuals and groups [5] and we 

enriched it with time and location information. 

This contextual information –gathered by the 

context provider–  is always associated to the user 

id and can be static –acquired only once– or 

dynamic –obtained periodically or every time it 

changes–.  

We analyzed which contextual information 

was relevant for training a machine learning and 

we discarded information that did not improve 

recognition accuracy. For instance, we found a 

significant increase in accuracy by including in 

the contextual information all the Bluetooth 

devices (physical proximity) sensed for the user, 

instead of only the devices of the students that had 

previously collaborated with him. In the 

experiments, we confirmed that such information 

was crucial for the machine learning to be able to 

accurately identify the context (Table 4). 

We finally selected the following items as 

relevant for predicting group creation (Figure 2): 

 Timestamp: the time and the day of the week. 

 User identifier: a unique Id. based on the 

identity of the user and his mobile device. 

(e.g. username and Bluetooth MAC address). 

 Location: based on the access point 

fingerprint [4], our system obtains 

information about where users are placed: 

classroom, cafeteria, library, etc. 

 Neighborhood: list of all sensed Bluetooth‟ 

MAC addresses.  

5. Machine learning 

In a previous research work [13], we addressed 

the same problem of how to estimate group 

membership. We used a strategy that did not 

include any machine learning algorithm. The 

limitation  of this solution was its static character 

(known users, familiar places, specific 

configuration of the algorithms for those users and 

places, etc.). In this work, we seek a solution 

where the system learns from context changes 

(users, locations and time) and could adapt itself 

dynamically according to such changes. In order 

to obtain a dynamic behavior, we trained and 

evaluated two  machine learning algorithms to 

detect when collaboration among people starts in 

the real-world and thus a group should be created 

in the computer-based environment. For this 

purpose, we used the Weka workbench system 

[9], a framework that incorporates a variety of 

learning algorithms and some tools for the 

evaluation and comparison of the results. The two 

algorithms used are: Instance-based learning 

(IBL) and Bayesian Network (BayesNet). 

Both algorithms are very simple and have 

either few or no parameters to be tuned. They also 

produce classification models that can be easily 

interpreted. We chose IBL because it is a simple, 

yet robust learning algorithm, can tolerate noise 

and irrelevant attributes and can exploit inter-

attribute relationships. On the other hand, we 

selected BayesNet as a baseline because it is a 

well-known learning algorithm. 

 



  

 

Instance-based learning (IBL) stores the 

training data. When a new input vector arrives, a 

set of similar related instances is retrieved from 

memory and their corresponding outputs are used 

to predict the output for the new input vector [1].  

IBL algorithms are derived from the nearest 

neighbor classifier. It classifies an unknown input 

vector by choosing the output of the nearest 

instance in the training set as measured by a 

distance metric. A generalization of this method is 

the k-nearest neighbor (k-NN) method, when 

more than one neighbor is used.  

Bayesian Networks (BayesNet) are structured 

as a combination of a directed acyclic graph of 

nodes and links, and a set of conditional 

probability tables [12]. Nodes represent features 

or classes, while links between nodes represent 

the relationship between them.  An estimation 

algorithm is used to create the conditional 

probability. We used the Simple Estimator 

algorithm, which estimates probabilities directly 

from the training data. 

6. Training and estimating processes 

Both training and estimating processes are divided 

into two stages: 1) an individual phase for 

training/estimating the specific groups to which 

the user belongs to and the context required for 

such groups to be created and 2) a shared phase 

when the system checks if the users required for 

the creation of a particular group are active or not. 

This second stage, unlike the individual one, is 

unique for all group members and the training and 

estimation processes are common to the group 

members. The estimation process of this group 

phase is only performed after the first stage in 

order to confirm the former estimation process.   

6.1. Training  process 

The individual training phase is different for every 

user in the system. Each user has his own history 

with the groups which he has belonged to and the 

specific context that he sensed while he was 

working in each group. The action of joining a 

group by a user is the start signal for the collection 

of training data (Figure 3).  

 The training data is composed of a set of 

context vectors sent by the users to the context 

collector. C[n] is the n-esim context vector sensed 

by the user at the arrival of a group joining event, 

and C[m] represents the m-esim context vector 

sensed upon arrival of a group leaving event.  

 

Figure 3. Training process 

This data is collected according to the 

following pattern:  

 Group joining event: Upon arrival of this 

user action, the collected training data consist 

of the preceding context event C[n-1], 

associated with non-group state, and the 

current context event C[n] associated with 

the group just created (Group X). 

 Group operation period: During this phase, 

the sequence of training data is composed of 

the context events periodically sensed by the 

user C[n+1], C[n+2],…  –associated with the 

time period during which the group remains 

working–.  

 Group leaving event: Finally, at the time of 

arrival of this action –for finishing the group 

collaboration–, the training data is composed 

of the last context event C[m] –associated 

with the group operation state– and the next 

context event C[m+1]  –associated with the 

following non-group state–. 

The shared training phase consists in a record 

of the group history. It stores the different 

combinations of active members sensed during the 

group operation period of the training process.  

6.2. Estimation  process 

The individual estimating phase is the first step 

for the prediction of a group formation. In this 

stage the system predicts the formation of groups 

based upon the particular history of each user. 

Therefore, the groups estimated for different users 

can be different.  

The Intelligent System launches the groups‟ 

estimations according to the next pattern:  

 



  

 
E[n] denotes the n-esim group formation 

estimation and C[n] represents the  n-esim context 

vector sensed by the user. This C[n] vector 

indicates that one or more changes have occurred 

in the context sensed since the last estimation.  

 

Figure 4. Estimation process  

From the last group estimation E[n], a 

minimum (min) and a maximum (max) time are 

defined to make the next group estimation E[n+1]. 

A group estimation is performed depending on 

when significant contextual changes occur: 

 In Figure 4A, if one or more contextual 

changes, C[n], occur before the minimum 

time interval of 5 minutes (min), the next 

estimation, E[n+1], will be done at min time. 

 In Figure 4B, if a contextual change event 

C[n] occurs within a period of from 5 to 15 

minutes, the estimation E[n +1] will be done 

at the time of the arrival of the C[n] event. 

 In Figure 4C, if no changes occur, the 

estimation E[n+1] will be done at the end of 

the 15 minutes period (max). 

The shared estimating phase simply consists 

in the verification that the Bluetooth devices of 

the members required for the creation of the group 

estimated in the previous phase, are active. The 

number and identity of the required members are 

determined according to the group history 

recorded during the shared training phase.  

7. Experiments and results 

This section presents the experimental setting and 

results of the simulations conducted to assess the 

automatic recognition of group formations. 

7.1. Experimental setting 

This study has been done at the EPSC campus of 

UPC, an engineering school designed for 

collaborative and project based learning models. 

The classrooms are equipped with tables and 

chairs that facilitate teamwork. In addition, each 

student has a laptop equipped with WiFi and 

Bluetooth cards so they can interact with one or 

more peers through the learning activities. 

We studied the behavior of the students during 

15 weeks in order to identify the students‟ 

activities and the relevant contextual information 

needed to represent such activities. We recorded 

the time of each of the students‟ actions and some 

data regarding to the nature of such actions: the 

place, the list of students involved in a certain 

group activity, the subject they were attending at 

that moment, etc. We gathered information to 

develop a model that describes the students‟ 

activities and their characteristics. 

The model used to perform our experiments 

considered a group of 30 students. These students 

represent a set of all the students in the campus 

that can collaborate with each other in any 

different situation. Only 20 of these students 

follow the same course and the rest are others who 

can form a group out of the classroom context. 

Six different sites were selected as potential 

locations where the students could collaborate: 

classroom, library, group study room, cafeteria, 

vending machines and university grounds. Some 

of these places are not typical for a learning 

meeting but are daily meeting places for students 

where collaboration can occur spontaneously. 

It was also identified that a particular student 

can be part of an average of 6 different groups 

during an academic semester. Of these groups, 4 

are planned for regular work and the other 2 are 

spontaneous (unplanned) groups formed 

unexpectedly when the students have an 

opportunity to collaborate. 

The regular class schedule of the considered 

set of students comprises six daily hours on 

mornings beginning at 8 o‟clock. Moreover, the 

students have 6 different subjects (which are 

taught in the same classroom) but only 4 of them 

require teamwork.  

Out of the lectures hours, students meet in 

different places in other to carry out the tasks 

requested by their teachers. 

7.2. Data collection 

We use data traces collected from the study of the 

students‟ behavior to train and test our system. 

 



  

 

This data represent the contextual information of 

the activities of the selected group of students 

during a whole week while they are collaborating. 

The traces contain:  

 The week day and time.  

 The user Id: the username and  Bluetooth 

MAC address. 

 The place where they are located: based on 

the access points fingerprint [4], our system 

obtains information about where users are 

placed (classroom, cafeteria, library, etc).  

 The neighbors list: obtained by recording the 

MAC addresses of the Bluetooth devices 

sensed by the user. For the collection of the 

Bluetooth traces, we run a Java API for 

discovering Bluetooth devices (JSR 82). This 

API sensed the signals transmitted from 

Bluetooth USB devices connected to laptops.  

 The activity that is being performed (group 

or non-group identifier). 

 
Time stamp User Place Neighbors 

Week day Time Username 
Bluetooth 

MAC 

Bluetooth 

MAC 
… 

Monday 9h30 Anna 00:FF… Cafeteria 00:FF… … 

Monday 9h45 Anna 00:FF… Cafeteria 00:FF… … 

Table 1. Contextual input vector 

We transform the traces into input vectors for 

our system (Table 1). These vectors include the 

contextual information of a given activity from the 

point of view of one of the students, and the 

outputs of the system are the estimated group or 

non-group identifiers associated to such activity. 

This information is used to train the learning 

algorithms, which store this training data and use 

it later to predict the output at the arrival of a new 

contextual event. 

The training data is a set of input vectors and 

the corresponding outputs (group membership). 

The items of an input vector are: a numerical 

value representing the time, a class corresponding 

to the day of the week, another class for the 

possible locations where collaboration could take 

place, and finally, a set of class items 

corresponding to the number of students that 

participate in the collaborative activity. These last 

items are Boolean values reflecting the presence 

or absence of Bluetooth signal from the students‟ 

devices.   

The testing data is similar to the training one. 

It has similar input vectors but it includes all the 

contextual information that the student senses at 

any time and not only when the student joins, 

leaves or is working in a given group. Moreover, 

we found that the testing data has differences in 

contextual information, such as the starting time 

and duration of the group operation period, some 

sensed Bluetooth MAC addresses, etc.     

For our simulations we collected data during 

two weeks. We gathered a total number of 132 

training vectors during the first week. On the other 

hand, we collected another set of 214 vectors 

during the second week that was used for testing. 

7.3. Selection of the algorithm 

We performed some experiments using the data 

gathered during the first week for training the 

system. The purpose of these experiments was to 

validate the quality of the proposed learning 

model and to confirm experimentally that the IBL 

algorithm is appropriate for our objectives. We 

used the training data set as input for the learning 

model created by the machine learning algorithm 

to confirm that we obtain the expected outputs. It 

shows the ratio of correctly and incorrectly 

classified contextual events when the system‟s 

input is the same data used to construct the model. 

Due to the nature of the IBL algorithm and the 

importance that it gives to the training data when 

estimating the output for a new input vector, it 

achieves a recognition rate of 100%. In contrast, 

BayesNet gets the proper output in 85% of events.  

Subsequently, we applied another method of 

evaluation that uses only some parts of the 

training data to create the model and the rest are 

used to test the performance of the system. We 

selected a method that randomly splits the original 

data sample into 10 subsamples. Then, 1 

subsample is used as validation data for testing the 

model and the remaining 9 subsamples are used 

for training. This process is repeated 10 times 

using each of the subsamples exactly once for 

validation. Lastly, the results from the 10 testing 

subsamples are combined to obtain a single 

estimation. Table 2 shows the results of this 

validation method. The percentage of success 

decreases because the learning algorithm has less 

input information for training, and in addition, the 



  

 
discarded information might be more relevant 

than the remaining one.  

 

 Correct Incorrect 

BayesNet  106 (80.3%) 26 (19.7%) 

IBL (K=1) 107 (81.1%)  25 (18.9%)            

Table 2. Predictions accuracy using different 
subsamples of the training data 

 Finally, we used a different data set –gathered 

during the second week– to make a more realistic 

evaluation. This new data is used as testing data 

and it is different from the training data –collected 

the first week–. It also includes a wider context 

sensing. Therefore, The training data is used to 

create the model and the testing data is used to 

assess the performance of such model when it has 

to make a prediction based on new contextual 

information. Once again, the system computes the 

ratio of correctly estimated contextual events. 

 

 Correct Incorrect 

BayesNet 149 (69.6%) 65 (30.4%) 

IBL (K=1) 208 (97.2%) 6 (2.8%)  

IBL (K=2) 202 (94.4%) 12 (5.6%) 
IBL (K=3) 136 (63.6%) 78 (36.4%) 

Table 3. Predictions‟ accuracy using the testing data  

Table 3 compares the accuracy in the 

prediction of group formation for the BayesNet 

and the IBL algorithms when using a testing data 

set different from the training one. For the IBL 

algorithm, we tested several configurations with 

different values of the K parameter. When using 

the default configuration (K=1), IBL classifies an 

unknown input vector by choosing the output of 

the nearest instance in the training set. In order to 

use more than one nearest instances for the 

classification of the input vectors, we also used 

K=2 and K=3.  

Using this evaluation method, we can see the 

actual performance of the system and the 

differences between IBL and BayesNet. The 

results obtained show a clearly superior 

performance of IBL. It is also noticeable the fact 

that for higher K values the accuracy of the results 

decreases. However, both IBL K=1 and K=2 still 

have a clear superior performance than BayesNet.  

The results show that IBL with K=1 has the 

higher prediction accuracy, however we also 

chose K=2 because it estimates the output by 

using the 2 nearest instances. It allows us to detect 

in which estimations of the IBL algorithm, the 

degree of confidence is not 100%. This is due to 

the possibility that the 2 nearest instances can 

result in different outputs –non-group versus a 

group identifier or two different group identifiers–

. This information can be useful as an indicator of 

the quality of context information.  

7.4. Results and findings 

We evaluated our model and the quality of the 

contextual information selected.  

 

All sensed MACs Correct Incorrect 

IBL (K=1) 208 (97.2%) 6 (2.8%) 
IBL (K=2) 202 (94.4%) 12 (5.6%) 

Only known MACs   Correct Incorrect 

 IBL (K=1) 145 (67.8%) 69 (32.2%) 
 IBL (K=2) 140 (65.4%) 74 (34.6%) 

Table 4. Assessment of Bluetooth‟ MAC impact  

Table 4 shows the results of the experiments when 

considering all the MAC addresses of the 

Bluetooth devices sensed by the user versus the 

results when the contextual vector only includes 

the MAC addresses of the students‟ devices that 

have previously formed a group with the user. The 

results prove that it is very important to include in 

the contextual vector all the MACs sensed by the 

user and not only the MACs of the known group 

members. Not including this information would 

result in a drop of the rate of correctly classified 

instances from 97.2% to 67.8%. 

 

 Group  No Group  

Group 102 (47.7%) 8 (3.7%) 
No Group 26 (12.1%) 78 (36.5%) 

Table 5. Confusion matrix of group predictions 

Table 5 shows the confusion matrix in IBL 

K=1. In this table, „Group‟ represents all groups to 

which the user has belonged whereas „No Group‟ 

represents the non-group activity state. The matrix 

shows the number of correctly classified events in 

the diagonal and we can see that in this test, the 

ratio of incorrectly classified events –items out of 

the diagonal– was approximately 15.8%. From the 

matrix, we can deduce that the worst results are 

obtained because sometimes IBL confuses the „No 

group‟ state with the „Group‟ ones. However, 

some of the incorrectly classified items are not a 



  

 

major problem because although groups are not 

properly detected, they do not confuse or disturb 

the students while they are working.  

In the previous experiments, we assumed our 

model inputs were accurate. However, in practice, 

inputs might be calculated through error-prone 

methods or the real-world context of the user 

might be considerably different from the context 

used for training the machine learning component. 

To address this, we tested our model‟s robustness 

by introducing noise into the contextual vector 

that we use as input data for our system.  

 

 Correct  Incorrect  

Test data  Total errors Time errors  

IBL (K=1) 208 (97.2%)     6 (2.8%)      4 

IBL  (K=2) 202 (94.4%)   12 (5.6%)       10  

Test data with time errors Total errors Time errors  

IBL (K=1) 183 (85.5%)  31 (14.5%)       19  

IBL (K=2) 180 (84.1%)  34 (15.9%)       22 

Table 6. System‟s robustness to time errors 

We define an error as a highly significant 

change or a missed value in the contextual vector. 

In order to assess the system‟s robustness, we 

tested its sensitivity to each of the contextual 

vector items. Table 6 shows the effect in the 

accuracy of the results by introducing errors in the 

“time” item of the vector. This table compares the 

results obtained using the original testing data 

with those obtained by introducing errors in time 

on the order of hours. It specifies the number of 

incorrectly classified instances that are due to such 

errors in time. 

 

Figure 5.  Estimations accuracy of spontaneous group 

formation versus number of training instances 

In addition to the previous experiments for the 

evaluation of the accuracy of the estimations, we 

also calculated the evolution of the estimations 

accuracy with the number of training instances 

used to construct the learning model. Figure 5 

shows the results when testing the accuracy in the 

estimation of the formation of a spontaneous 

group for IBL K=1 and K=2. We can see how the 

ratio of correctly classified instances increases by 

incrementing the number of training instances. In 

K=1 we obtained a 87% accuracy ratio when we 

have 21 training instances. 

Finally, we performed some tests in order to 

identify the effect of the number of groups used 

for training in the estimations accuracy of a 

specific group. Therefore, we intended to evaluate 

if the rest of the groups in the user history could 

be a source of interferences for the estimations. 

This could be interesting to know if there is a 

maximum limit for the system to be able to 

distinguish two different groups. Figure 6 shows 

the results of this experiment for both, planned 

and spontaneous groups. As expected, the 

accuracy (100%) of planned groups seems to be 

independent of the number of total groups –at 

least for 6 or less groups–. However, the accuracy 

of spontaneous groups estimations decreases up to 

87% for 3 or more interfering groups.  

 

Figure 6. Estimations accuracy versus the number of  

interfering groups of the training data 

 By performing all our experiments, we 

observed the importance of the appropriate 

selection of the time intervals to collect the 

training data. In addition, the necessity of 

including in the training data some events with the 

contextual information when no groups were 

established was also noticeable. If such events 

were not included, the ratio of correctly classified 

events suffered a dramatic decrease. 

On the other hand, we observed a slight 

improvement when multiple events reinforcing the 

fact of the existence of a group were introduced.  

8. Effect on the user: interruptions 

It should be noted that an erroneous estimation 

does not necessarily imply an interruption in the 

 

 



  

 
attention of the student. For example, two 

consecutive erroneous or uncertain estimations are 

not two interruptions but actually they are just 

one. The first one interrupts the student and 

changes its focus away from the main activity 

towards the change of context, tools, group, etc. 

decided by the system, but the second one does 

not cause any interruption because the student has 

already left his main activity. 

For that reason we defined a burst as a 

sequence of erroneous estimations. The end of the 

errors burst, i.e., the return to the correct behavior, 

is identified with two correct consecutive 

estimations. From the log data we identified the 

bursts of erroneous estimations. The impact on the 

activity of the student, measured in number of 

interruptions. When no interruptions management 

is used, each student has an average of 26 

interruptions during a week. We think that it is a 

very large value and can complicate the execution 

of the groups and student activities. By 

introducing management of error bursts, these 

interruptions go down to an average of 4. We 

believe this new value is acceptable and has little 

impact in the student activities. 

9. A case study 

The system described in this paper can be easily 

integrated into some existing collaborative 

learning support environments such as Sugar [16].  

Sugar is a software platform that provides a 

collaboration framework for learning. 

Collaboration is implemented with the telepathy 

library (telepathy Gabble), a D-Bus/XMPP 

framework for Instant Messaging protocols. 

Figure 7 shows how our system can be 

integrated into Sugar. At the user side, both Sugar 

and the Context Provider are executed. The 

Context provider sends all the information related 

to one user to the intelligent system through the 

same XMPP server that Sugar uses.  

When our Intelligent System predicts if the 

user is going to collaborate with a particular 

group, it sets up the group working environment. 

In the case of the Sugar framework, the system 

starts an activity, for example file sharing, and it 

shares this activity with the other users who are 

part of the group by sending invitations (telepathy 

library) to them through the XMPP server. Only 

those users who receive an invitation can share the 

activity. 

 

Figure 7. Intelligent System integration with Sugar  

The screenshot in Figure 8, shows users 

working together on a collaborative activity. 

Three users are working in a group detected 

automatically by the Intelligent System and are 

learning Mathematics through a Sugar 

memorization activity.  

 

Figure 8. Sugar collaboration screenshot 

10. Related work 

Although there are many tools for providing some 

degree of automation and support for activities 

within a group, we have not found specific tools 

for providing the applications with automatic 

group awareness based on environmental 

contextual data. 

In [6], the authors present an approach to the 

classroom context by identifying the students‟ 

activity. The main goal is to acquire physical 

interaction identifying and obtaining context 

services. This proposal facilitates a service to a 

single user taking into account his contextual 

information but it does not provide service 

adaptation. Our system proposes a complementary 

approach. We intend to provide services to a 

group of students instead of just one student. In 

addition, we adapt the service provided to the user 

dynamically, learning from new situations.  

 

 



  

 

MCI-Supporter [2] is an application 

supporting collaborative learning methods in the 

classroom. It was conceived by first analyzing the 

best known collaborative learning practices trying 

to find out which are the real needs for mobility 

and face-to-face. However, the groups have to be 

manually established by the teacher. In [8], the 

authors discuss on contextual information about 

groups. They focus on workspace and social 

awareness and they even comment on team 

formation support: closed and open teams joined 

and left manually and dynamic teams formed 

automatically by the system based on context and 

meta-information. Our approach differs from the 

presented above mainly because we predict users‟ 

interactions taking into account the users past 

actions and our system does not require the users‟ 

intervention. Related works are less flexible, use 

only static information, do not learn and self-adapt 

depending on the circumstances, and they need 

the users to perform some extra actions. 

11. Conclusion 

In this paper, we presented the motivation and the 

problem of automating the incorporation of group 

awareness information into CSCL applications 

without shifting this burden to group participants 

or overloading the teacher. 

We proposed an Intelligent System which, 

based on contextual information, is able to 

automatically estimate group membership. We 

evaluated its utility in terms of the rate of group 

recognition success. Simulations showed that 

context-information can be effectively used as a 

basis for a middleware for automatic and dynamic 

group management. Therefore, we conclude that 

inferring group membership is technically viable 

and can be used in real-world settings. 

Our results could facilitate the construction of 

applications that effectively assist group members 

in automatically sharing, communicating and 

coordinating as they move and reorganize in 

synchronous and collocated collaborative learning 

activities. 
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