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Abstract

In the history of mechanics, there have been two points of view for

studying mechanical systems: The Newtonian and the Cartesian.

According the Descartes point of view, the motion of mechanical

systems is described by the first-order differential equations in the N

dimensional configuration space Q.

In this paper we develop the Cartesian approach for mechanical

systems with three degrees of freedom and with constraint which are

linear with respect to velocity. The obtained results we apply to dis-

cuss the integrability of the geodesic flows on the surface in the three

dimensional Euclidian space and to analyze the integrability of a heavy

rigid body in the Suslov and the Veselov cases .
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1 Introduction.

In ”Philosophiae Naturalis Principia Mathematica” (1687), Newton considers
that movements of celestial bodies can be described by differential equations
of the second order. To determine their trajectory, it is necessary to give
the initial position and velocity. To reduce the equations of motion to the
investigation of a dynamics system it is necessary to double the dimension
of the position space and to introduce the auxiliary phase space.

Descartes in 1644 proposed that the behavior of the celestial bodies be
studied from another point of view. These ideas were stated in ”Principia
Philosophiae” (1644) and in ”Discours de la métode” (1637). According to
Descarte the understanding of cosmology starts from acceptance of the initial
chaos, whose moving elements are ordered according to certain fixed laws and
form the Cosmo. He consider that the Universe is filled with a tenuous fluid
matter (ether), which is constantly in a vortex motion. This motion moves
the largest particle of matter of the vortex axis, and they subsequently form
planets. Then, according to what Descartes wrote in his ”Treatise on Light”,
”the material of the Heaven must be rotate the planets not only about the
Sun but also about their own centers...and this will hence form several small
Heavens rotating in the same direction as the great Heaven.”[2]. Thus the
equation of motion in the Descartes theory must be of the first order

ẋ = v(x, t). (1.1)

Hence, to determine the trajectory from Descartes’s point of view it is nec-
essary to give only the initial position.

In the modern scientific literature the study of the Descarte ideas we can
find in the monographic of V.V. Kozlov [2] in which the author give the
following result.

Theorem 1.1 The manifold y = u(x, t), where u is a covector on Q is an
invariant manifold for the canonical Hamiltonian equations with the Hamil-
tonian H(x, y, t) if and only if field u satisfies the Lamb equation

∂tu(x, t) + (rotu(x, t))v(x, t) = −gradh(x, t) (1.2)

where (rotu) = ∂xu − (∂xu)t ia skew-symmetric n × n matrix,

v(x, t) = ∂yH(x, y)|y=u(x,t), h(x, t) = H(x, y, t)|y=u(x,t) (1.3)
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From the physical standpoint, equations (1.1), (1.2) and (1.3)describe the
motion of the collisionless medium: particles moving along different trajec-
tories do not interact.

In [2] affirm that ”solving dynamics problem is possible inside the con-
figuration space”. For this it is necessary to solve Lamb equations which
is a system of partial differential equations on Q, and then, using (1.3) to
calculate the vector field v from the solution of the Lamb equation to solve
(1.1).

In [3] we developed the Cartesian approach for mechanical system with
configuration space Q and with constraints linear with respects to velocity.
The aim of the present paper is to develop the results obtained for mechanical
system with three degrees of freedom in the particular case in which Q =
E

3 is the three dimensional Euclidean space and Q = S0(3) is the special
orthogonal group of rotations of E

3.

2 Cartesian vector field on three dimensional

Euclidean space

Let E
3 be the three dimensional Euclidian space with cartesian coordinates

x = (x1, x2, x3).
We consider a particle with Lagrangian function

L =
1

2
||ẋ||2 − U(x)

and constraints
(ẋ, a) = 0 (2.1)

where ( , ) denotes the scalar product in E
3, ẋ = (ẋ1, ẋ2, ẋ3) and a(x) =

(a1(x) , a2(x), a3(x)) is a smooth vector field in E
3

It is well known that the equations of motions can be deduced from the
d’Alembert-Lagrange principle [9]

{

ẍ = Ux + µa(x),
(a, ẋ) = 0, ,

(2.2)

where µ is the Lagrangian multiplier, Ux = (Ux1, Ux2, Ux3), Uxj
= ∂xj

U.

In [3] we introduce the following definition
Definition 1
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We say the smooth vector field v(x) = (v1(x), v2(x), v3(x)) is the Carte-
sian vector field for a constrained particle in E

3 with the constraints (2.1)
if

[v(x) × rotv(x)] = Λ(x)a(x). (2.3)

where [× ] denotes the vector product in E
3,

rotv = (∂x2v3 − ∂x3v2, ∂x3v1 − ∂x1v3, ∂x1v2 − ∂x2v1).

and Λ is a function:

Λ =
1

||a||2 ([v(x) × rotv(x)], a(x)).

By a simple computation from (2.3) we can see that

{

(a(x),v(x)) = 0,
(a(x), rotv(x)) = 0.

(2.4)

Corollary 2.1 Let v the Cartesian vector field. Then the following relations
hold

{

ẍ = (1
2
||v(x)||2)x + Λ(x)a(x)

(ẋ,a) = 0,
(2.5)

The proof it is easy to obtain in view of the equality

ẍ = (
1

2
||v(x)||2)x + [v(x) × rotv(x)]

which is deduced after derivation the differential equations generated by the
vector field v

ẋ = v(x) (2.6)

The system (2.5) can be obtained from the Lagrangian equations with La-
grangian function

L =
1

2
||ẋ − v(x)||2

where v is a Cartesian vector field.
Definition 2

The study of the behavior of the constrained particle in E
3 by using the

equations (2.2) or (2.6),(2.3) or (2.5) say the Classical, Cartesian and La-
grangian approach respectively.
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We illustrate the above ideas in the following example
A non-holonomically constrained particle in R3.

Consider a particle with the kinetic energy T = 1
2
||ẋ||2 and non-holonomic

constraints
ẋ1 + â(x3)ẋ2 = 0

This instructive academic example, in the particular case when â(x3) = x3

due to Rosenberg [8]. This example was also used to illustrate the theory in
Bates and Sniatycki [1].

The Descartes approach in this case produces the vector field v :

v = λ2(â(x3)∂x1 − ∂x2) − λ3∂x3

and condition (2.4) for this case takes the form

(rotv, a(x)) = 0 ⇐⇒ 1

2
∂x3((1 + â2)λ2

2) + (â(x3)∂x1λ3 − ∂x2λ3)λ2 = 0.

We shall study the case when this relation holds in view of the equalities

λ2 =
A

√

1 + â2(x3)
, λ3 = b2(x3),

for A an arbitrary constant and b2 an arbitrary function on x3.

The equations generated by the vector field v in this case can be written
as























ẋ1 =
â(x3)A

√

1 + â2(x3)

ẋ2 = − A
√

1 + â2(x3)
ẋ3 = −b2(x3)

(2.7)

The all trajectories of these equations are easy to obtain.
The Lagrangian approach produces the following differential equations































ẍ1 = −b(x3)∂x3(
Aâ(x3)

√

1 + â2(x3)
)

ẍ2 = b(x3)∂x3(
A

√

1 + â2(x3)
)

ẍ3 = ∂x3

1

2
b2(x3)
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Corollary 2.2 All the trajectories of the equation of motion of the con-
strained Lagrangian system

< E3, L =
1

2
||ẋ||2 − U(x3), {ẋ1 + â(x3)ẋ2 = 0} >

can be obtained from (2.7) with b(x3) = ±
√

h + U(x3).

In fact, the equations of motion obtained from the D’Alembert-Lagrange
Principle are















ẍ1 = µ

ẍ2 = â(x3)µ
ẍ3 = ∂x3U(x3)
ẋ1 + â(x3)ẋ2 = 0

Therefore,
d

dt
(ẋ2 − â(x3)ẋ1) = −dâ(x3)

dx3
ẋ3ẋ1

hence,

ẋ2 =
A

√

1 + â2(x3)

where A is an arbitrary constant.
On the other hand from the equation

ẍ3 = ∂x3U(x3)

we easily obtain ẋ3 = ∓
√

2(U(x3) + h), where h is an arbitrary constant.
Finally by considering the constraints we deduce the system of the first

order ordinary differential equations (2.7). In this example the Descartes,
the lagrangian and Classical approach coincide .

Below we determine the Cartesian vector field for a particle on the surface
in E

3.

First we introduce the ve ctor fields X, , Y, Z which are characteristic
elements of the 1-form

Ω = a1(x)dx1 + a2(x)dx2 + a3(x)dx3







X = a3∂y − a2∂z

Y = a1∂z − a3∂x

Z = a2∂x − a1∂y

(2.8)
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Clearly, the most general element of the given 1-form Ω is

v = w1X + w2Y + w3Z

hence

v(x) = [a(x) ×w(x)] (2.9)

where w(x) = (w1(x), w2(x), w3(x)) is an arbitrary smooth vector field
which we shall determine in such a way that (2.4) takes place.

By using the identity

rot[a(x) × b(x)] = [a, b] + divb(x)a(x) − diva(x)b(x)

where [a, b] is the Lie bracket of the smooth vector field a and b, one can
prove the following assertion

Corollary 2.3 The condition (2.3),(2.9) can be written as follows

div([a(x) × [a(x) ×w(x)]]) = ([a(x) × rota(x)],w(x)) (2.10)

Proposition 2.1 Let us suppose that the vector field a is such that

[a(x) × rota(x)] = 0 (2.11)

then the Cartesian vector field exist i and only if

a(x) = fx(x) (2.12)

for a certain smooth function f.

Proof

From (2.10), (2.11) follows that

[a(x) × [a(x) ×w(x)]]

is a solenoidal vector field, hence

[a(x) × [a(x) × w(x)]] = rotW(x)

for arbitrary vector field W, thus the following representation holds

w =
(a(x),w(x))

||a(x)||2 a(x) +
rotW(x)

||a(x)||2
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as a consequence

(a(x), rotW(x)) = 0. (2.13)

Clearly if (a(x), rotW(x)) 6= 0 then the Cartesian vector field does not
exist if (2.11) holds. If we choose

a(x) = fx(x), W(x) = ΦGx(f, Φ)

when Φ, G are an arbitrary smooth functions, then we obtain that (2.13)
holds identically and a consequence the vector w takes the form

w(x) =
(fx(x),w(x))

||fx(x)||2 + ν(x)[fx(x) × Φx], ν(x) =
∂fG(f, Φ)

||fx(x)||2 (2.14)

Corollary 2.4 The Cartesian vector field for a particle in E
3 which is con-

strained to move on the surface

f(x) = c, c 6= 0 (2.15)

generated the following differential system

ẋ = ν(x)(||fx(x)||2Φx(x) − (fx(x), Φx(x))fx(x)) (2.16)

Corollary 2.5 The Lagrangian approach for a particle in E
3 which is con-

strained to move on the surface (2.15) produces the following differential
equations

ẍ =
∂

∂x

(1

2
ν2(x)||fx(x)||2||[fx(x) × Φx(x)]||2

)

+ Λ(x)fx(x) (2.17)

Corollary 2.6 If there exist a function G and Φ such that

||[fx(x) × Φx(x)]||2 =
2h(f)g

Gf(f, Φ)
≡ Ψ(f, Φ) g (2.18)

Then the equations (2.17) take the form

ẍ = λ0(x)fx(x), λ0(x) = hf(f) + Λ(x). (2.19)
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If one introduce the matrix A(x) :

A(x) =





fx1x1 fx1x2 fx1x3

fx1x2 fx2x2 fx2x3

fx1x3 fx2x3 fx3x3,



 (2.20)

then one checks, that the equations (2.17) may be written as

ẍ =
(A(x)v(x),v(x))

||fx(x)||2 fx(x),

where v is the Cartesian vector field generated the differential equations
(2.16). The differential equations (2.19) determined the geodesic flows on
the surface (2.15) and admits the energy integral

||ẋ||2 = 2h(f).

If there is an additional first integral, functionally independent with the
energy integral , then the geodesic flow is integrable.

In order to study the integrability of the geodesic flow on the given surface
we introduce the following functions which we determine from (2.16)














































F1 =
( ||[fx × ẋ]||

||fx||
)2

⇐⇒ F1 = ||ẋ||2,

F2 =
( ||fx||||[Φx × ẋ]||

(fx, Φx)

)2

, if (fx, Φx) 6= 0;

F3 =
( ||Φx||||[x× ẋ]||

||[x × Φx]||
)2

, if (fx, Φx) = 0, Φx 6= κ(x)x.

In view of (2.18), it is easy to show that

Fj = 2h(f), j = 1, 2, 3.

3 Integrability of the geodesic flow on the ho-

mogeneous surface.

We now consider the surface
{

f(x) = c, c 6= 0,
(x, fx(x)) = mf(x).

(3.1)
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which we will call the homogeneous surface of degree m.

From the Euler formula follow that c = 0 is the unique critical value of
f. hence for c 6= 0 the function

g = ||fx(x)||2 > 0

on the given homogeneous surface.
Taking (3.1) into account we deduce the relations

A(x)xT = (m − 1)fT
x(x), (3.2)

(x, gx(x)) = 2(m − 1)g(x) (3.3)

Below we use the following notation

{F, G, H} ≡

∣

∣

∣

∣

∣

∣

Fx1 Fx2 Fx3

Gx1 Gx2 Gx3

Hx1 Hx2 Hx3

∣

∣

∣

∣

∣

∣

Clearly, if F, G, H are independent functions then {F, G, H} 6= 0.
The integrability of the geodesic flow on the homogeneous surface we shall

study in the following two cases

{f, g, r2} = 0, (3.4)

{f, g, r2} 6= 0 (3.5)

where r2 = x2
1 + x2

2 + x2
3.

We analyze the first case. We study only the particular subcase when the
homogeneous surface is such that

||fx(x)||2 = g(f, r). (3.6)

Hence, in view of (3.3) we give

mf∂fg + r∂rg = 2(m − 1)g(f, r). (3.7)

We assume that the arbitrary function Φ is such that

Φx = x,

10



thus the differential equation generated by the Cartesian vector field and
second order differential equations of the geodesic flows under the indicated
condition take the form respectively

ẋ = ν(x)(g x − m ffx), (3.8)

ẍ =
m∂rgfh(f)

r2g2
fx (3.9)

where

ν2g(f, r)(g(f, r)r2 − m2f 2) (3.10)

Proposition 3.1 The geodesic flow on the homogeneous surface under the
assumption (3.6) is integrable

Proof

First we observe that there is the function ν such that (3.10) holds , i.e.,

G2
f (f, r) =

2h(f)g(f, r)

g(f, r)r2 − m2f 2
,

hence exist the additional first integral F2 which in this case takes the
form

F2 =
g(f, r)||[fx(x) × ẋ]||2

m2f 2
⇔ g(f, r)||[fx(x) × ẋ]||2 = 2m2f 2h(f).

The particular class of the study homogeneous surface are the following.
If m = 1 then (x, gx) = 0, in particular this relation holds if

g = Ψ(
f

r
)

A concrete example we obtain from the celestial mechanics [5]:

f(x) = r + (b,x) = c, c 6= 0, (3.11)

where b = (b1, b2, b3) is a constant vector field. In this case we have

g =
2f

r
+ ||b||2 − 1

11



The first integral for this particular case are

{ ||ẋ||2 = 2h(f),

(
2f

r
+ ||b||2 − 1)||[x× ẋ]||2 = 2f 2h(f)

(3.12)

It is interesting to deduce the equations of motion of a particle constrained
to move in the surface (3.11) with the subsidiary condition that there is a
nonzero constant vector field c̆ = (c1, c2, c3) :

(x, c̆) = 0, (b, č) = 0 ⇒ (fx(x), c̆) = 0, (3.13)

from the Lagrangian approach.
By choosing the function Φ as follows

Φ = (c3 − c2)x1 + (c1 − c3)x2 + (c2 − c1)x3

and introducing the new time σ as

dσ = (
x1 + x2 + x3

r
+ b1 + b2 + b3)dt

and letting the prime denote differentiation with respect to σ, we have that
the equation generated by the Cartesian vector field can be written as

x
′

=
1

||c̆||2 [fx(x) × c̆] (3.14)

By considering that

rot[fx × c̆] =
c̆

r

we obtain that the Lagrangian approach generated the second order differ-
ential equations

x
′′

= − f(x)x

||c̆||2r3

Thus , if
f(x) = ||c̆||2

then we obtain the well known equations

x
′′

= − x

r3
(3.15)
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These equations admit the following first integrals



































||x′ ||2 =
2

r
+

||b||2 − 1

||c̆||2

[

x
′ × c̆

]

= −(
x

r
+ b)

[

x × x
′
]

= c̆

(3.16)

These relations are easy to obtain from (3.18).
The equations (3.18), after the orthogonal transformation

ξ =
(b,x)

||b|| , η =
([c̆ × b],x)

||c̆|| ||b|| , ζ =
(c̆,x)

||c̆|| ,

take the form






























ξ
′′

= − ξ
√

(ξ2 + η2)3
,

η
′′

= − η
√

(ξ2 + η2)3

ζ = 0.

(3.17)

These equations describe the behavior of the particle with Lagrangian func-
tion

L =
1

2
(ξ

′2
+ η

′2
) − 1

√

(ξ2 + η2)

constrained to move on the one curve of the family of conics

f̆(x) =
√

ξ2 + η2 + ||b||ξ = ||c̆||2

The differential equations generated by the Cartesian vector field in this co-
ordinates can be represented in Hamiltonian form with Hamiltonian function
f̆ [10]

We now turn to the study the particular case of the homogeneous surface
with the condition g = g(f, r).

If

g = r2(m−1)Ψ(
f

rm
), Ψ(

f

rm
) 6= (

f

rm
)2

13



then after the change

F =

∫

d(ξ)
√

Ψ(ξ) − ξ2
, ξ =

f

rm
,

we obtain

||Fx(x)||2 =
1

r2
.

Finally, if

g = f
2(m−1)

m Ψ(
f

rm
)

then after the change
f = F m

we deduce the equation

||Fx(x)||2 = Ψ̃(
F

r
),

which show that this case is equivalent to the first case study above.
We have already studied the case in which {f, g, r2} = 0. Now we begin

to study the case in which the functions f, g, r2 are independent. Hence

{f, g, r2} 6= 0. (3.18)

Under this assumption we obtain that

xj = xj(f, g, r2), j = 1, 2, 3

thus we deduced that

{

Φ = Φ(f, g, r2)

Φx = ∂fΦ fx + ∂gΦ gx +
∂rΦ

r
x

(3.19)

Proposition 3.2 If there exists the functions Φ and G such that







Φ = Φ(f, g, r2), G = G(f, Φ)
gν = Gf(f, Φ)
||fx||2||Φx × fx||2ν2 = 2h(f)

(3.20)

then the geodesic flow on the homogeneous surface of degree m > 1 is inte-
grable.

14



Proof

We prove this assertion only for the case when

(Φx, fx) = 0, (3.21)

thus the surface Φ = c1 is orthogonal to the given homogeneous surface.
Under this assumption we obtain that the differential equations deduced
from the Cartesian and Lagrangian approach are respectively

{

ẋ = ν(x)Φx(x)
ẍ = λ0(x)fx(x)

(3.22)

where λ0 can be determined as follows

λ0(x) = ν2(fx, ∂x(
1

2
||Φx||2)) = hf(f) − ν||Φx||2

g
(fx, νx)

After derivation the function

F3 =
( ||Φx||||[x× ẋ]||

||[x × Φx]||
)2

along the solutions of (3.22) we obtain

dF3

dt
= (Φx, ∂x(ν2||Φx||2)).

which is equal to zero in view of (3.20), (3.21) thus the function F3 is the first
integral of the geodesic flow.

Clearly, in order to assess the integrability of the geodesic flow in this
case we need first to check whether function ν exists such that (3.20) holds.

4 The geodesic flow on the quadrics and the

third-order surface

In order to illustrate the above ideas we consider the algebraic surface of
degree three:

f(x) = x1 x2 x3 = c, c 6= 0. (4.1)

15



This case was examined already by Riemann in his study of motion of a
homogeneous liquid ellipsoid. More exactly, Riemann examined the integra-
bility of the geodesic flow on (4.1).

In [7] the author state the following problem.
”Is it true that the geodesic flow on a generic third-order algebraic surface

is not integrable?. In particular I do not know a rigorous proof of non-
integrability for the surface (4.1)”

By considering that in this case

g = (x1x2)
2 + (x1x3)

2 + (x3x2)
2

thus the functions f, g and r2 are independent. The dependence xj =
xj(f, g, r2), j = 1, 2, 3 we obtain as follows.

We introduce the cubic polynomial in z :

P (z) = z3 − r2z2 + gz − f 2 = (z − x2
1)(z − x2

2)(z − x2
3),

and by using Cardano’s formula we obtain the require dependence.
In order to construct the Cartesian approach in this case first we observe

that the surface
Φ(ξ, η, ζ) = c1

where

ξ =
1

2
(x2

1 − x2
2), η =

1

2
(x2

3 − x2
1), ζ =

1

2
(x2

2 − x2
3)

is orthogonal to surface (4.1). Thus the differential equations generated by
the cartesian vector field are







ẋ1 = ν(Φξ − Φη) x1

ẋ2 = ν(Φζ − Φξ) x2

ẋ3 = ν(Φη − Φζ) x3

(4.2)

To determine the existence the solution of (3.20) or, what is the same,

||Φx||2 =
2h(f)

G2
f(f, Φ)

≡ Ψ(f, Φ),

is for us an open problem.
Now we study the subcase when the given surface is such that

f(x) =
1

2
(b1x

2
1 + b2x

2
2 + b3x

2
3) (4.3)
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First we state and solve the following problem.
Problem 1

Let X, Y, Z are the vector fields (2.8), (2.12).
We require to determine the function f in such a way that these vector

field formed a three dimensional Lie algebra.
The solution of this problem it is easy to obtain in view of the equality

Υ1 = A(x) Υ2, (4.4)

where A is the matrix given by the formula (2) and

Υ1 = col([Y, Z], [Z, X], [X, Y ]), Υ2 = col(X, Y, Z)

and by using the Bianchi representation

Υ3 = B(x) Υ4, (4.5)

where Υ3 = col([U, V ], [V, W ], [W, U ]), Υ4 = col(U, V, W ), where U, V, W

are the vector fields, B is the matrix:

B(x) =





0 a b3

b1 0 0
0 b2 −a





and a, b1, b2, b3 are certain constants
From (4.4) and (4.5) after integration we obtain the class of functions

which generated the three dimensional Lie algebra.















1. f = b1 x2 + b2 y2 + b3 z2

2. f = b1 x2 + a (y2 − z2) + 2 b yz

3. f = 2b y x + b3 z2

4. f = b y2 + 2 b1 z x

(4.6)

We construct the Cartesian vector field for the first case.
In view of the relation

g = b2
1x

2
1 + b2

2x
2
2 + b2

3x
2
3

we observe that f, g, r2 are independent functions. The following equalities
it is easy to obtain:

17

















































x2
1 =

b2b3r
2 − 2(b2 + b3)f + g

(b1 − b2)(b1 − b3)

x2
2 =

b1b3r
2 − 2(b1 + b3)f + g

(b2 − b1)(b2 − b3)

x2
3 =

b2b1r
2 − 2(b2 + b1)f + g

(b3 − b2)(b3 − b1)

(4.7)

Notice that
Φ(ξ, η, ζ) = c1,

where

ξ =
xb2

3

xb3
2

, η =
xb1

2

xb2
1

, ζ =
xb3

1

xb1
3

is an orthogonal surface to the given surface we obtain that the differential
equations generated by the Cartesian vector field in this case can be written
as







































ẋ1 =
ν

x1
(Φζζb3 − Φηηb2)

ẋ2 =
ν

x2
(Φηηb1 − Φξξb3)

ẋ1 =
ν

x3
(Φξξb2 − Φζζb1)

(4.8)

Now we introduce the elliptic coordinates in R
3 :































x2
1 =

(λ1 + b−1
1 )(λ2 + b−1

1 )(λ3 + b−1
1 )

(b−1
1 − b−1

2 )(b−1
1 − b−1

3 )

x2
2 =

(λ1 + b−1
2 )(λ2 + b−1

2 )(λ3 + b−1
2 )

(b−1
2 − b−1

1 )(b−1
2 − b−1

3 )

x2
3 =

(λ1 + b−1
3 )(λ2 + b−1

3 )(λ3 + b−1
3 )

(b−1
3 − b−1

2 )(b−1
3 − b−1

1 )

(4.9)

where λ1, λ2, λ3 are the roots of the cubic polynomial in w :






−w3 + (x2
3 + x2

1 + x2
2 − b−1

1 − b−1
2 − b−1

3 )w2 + (x2
1(b

−1
2 + b−1

3 ) + x2
2(b

−1
1 + b−1

3 )
+x2

3(b
−1
1 + b−1

2 ) − b−1
1 b−1

2 − b−1
1 b−1

3 − b−1
2 b−1

3 )w
+b−1

1 b−1
2 b−1

3 (b1x
2
1 + b2x

2
2 + b3x

2
3 − 1) = 0
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In this coordinates we obtain

||ẋ||2 = g11λ̇
2
1 + g33λ̇

2
2 + g33λ̇

2
3

where






























g11 =
(λ1 − λ2)(λ1 − λ3)

4(λ1 − b−1
1 )(λ1 − b−1

2 )λ1 − b−1
3 )

g22 =
(λ2 − λ1)(λ2 − λ3)

4(λ2 − b−1
1 )(λ2 − b−1

2 )λ2 − b−1
3 )

g33 =
(λ3 − λ2)(λ3 − λ3)

4(λ3 − b−1
1 )(λ3 − b−1

2 )λ3 − b−1
3 )

(4.10)

The differential equations (4.8) in elliptic coordinates can be transformed to
the form










































ẇ = 0

u̇ =
2ν

b1b2b3

((b2 − b3)Φζζ + (b1 − b2)Φηη + (b3 − b1)Φξξ) ≡ Ψ1(λ1, λ2)

v̇ =
2ν

b1b2b3

(
1

b1

+
1

b2

+
1

b3

)((b2 − b3)b1Φζζ + (b1 − b2)b3Φηη + (b3 − b1)b2Φξξ) ≡ Ψ2(λ1, λ2)

u = λ1 + λ2 + λ3, v = λ1λ2 + λ1λ3 + λ2λ3, w = λ1λ2λ3,

and by putting
λ3 = 0,

after some calculations we deduce the planar system











λ̇1 =
Ψ1(λ1, λ2)λ1 − Ψ2(λ1, λ2))

λ1 − λ2

λ̇2 =
Ψ1(λ1, λ2)λ2 − Ψ2(λ1, λ2))

λ1 − λ2
.

In order to deduce the differential equations for the geodesic flow by using
the Lagrangian approach first, it is necessary in the first place obtain the
solution of the equations (3.20).

The integrability of the geodesic flow on the quadric (m=2) by using the
classical approach, was proved by Jacobi and Chasles.
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5 The geometrical and physical meaning of

the Cartesian vector field

The purpose of this section is to determine the geometrical and physical
meaning of the Cartesian vector field constructed above.

Hertz’s principle of least curvature is a special case of Gauss’ principle,
restricted by the two conditions that there be no applied forces and that all
masses are identical. (Without loss of generality, the masses may be set equal
to one.) Under these conditions, Gauss’ minimized quantity can be written

Z =
N

∑

j=1

|d
2xj

dt2
|2

The kinetic energy

T =
1

2
||ẋ||2

is also conserved under these conditions
Since the line element ds2 in the 3N -dimensional space of the coordinates

is defined

ds2 = 2Tdt2 ⇐⇒ ds2

dt2
= 2T

by considering the conservation of energy we obtain

ds2

dt2
= 2h

Dividing Z by 2T yields another minimal quantity

K =

N
∑

j=1

|d
2xj

ds2
|2

Since
√

K is the local curvature of the trajectory in the 3N -dimensional space
of the coordinates, minimization of K is equivalent to finding the trajectory of
least curvature (a geodesic) that is consistent with the constraints. Hertz’s
principle is also a special case of Jacobi’s formulation of the least-action
principle. Curvature refers to a number of loosely related concepts in different
areas of geometry. In mathematics, a geodesic is a generalization of the
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notion of a straight line to curved spaces. Definition of geodesic depends on
the type of curved space. If the space carries a natural metric then geodesics
are defined to be (locally) the shortest path between points on the space.

Below we restricted to the case when the configuration space is the three
dimensional Euclidean space with Cartesian coordinates x = (x1, x2, x3).
The geodesic flow on the surface f(x) = c is determined by the second- order
differential equations

d2xj

dt2
= µfxj

, µ =
(A(x)ẋ, ẋ)

||fx||2
j = 1, 2, 3

which, by considering the energy integral, can be written as follows

d2xj

ds2
= µ̃fxj

, µ̃ =
(A(x)τ, τ)

||fx||2
j = 1, 2, 3

where

τ =
dx

ds
, ||τ ||2 = 1.

Clearly that
√

K =
|(A(x)τ, τ)|

||fx||2
The Hertz’s Principle of Least Curvature and problem on the determi-

nation the principal directions on the surface lead us to state the following
problem.

Problem 2

Determine the
extremum(A(x)τ, τ)

under the conditions
{

||τ ||2 − 1 = 0
(fx, τ) = 0

Solution

Note that in this case the Lagrangian function is

L = (A(x)τ, τ) + σ(fx, τ) + z(||τ ||2 − 1)
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where σ and z are the Lagrangian multiplier and computer











































∂L

∂τj

= 0, j = 1, 2, 3 ⇐⇒ (A(x) + zI)τT + σfT
x = 0

∂L

∂σ
= 0 ⇔ (fx, τ) = 0

∂L

∂z
= 0 ⇔ ||τ ||2 − 1 = 0

where τT = col(τ1, τ2, τ3) and I is the diagonal matrix: I = diag(1, 1, 1),
from the first group of equations, we deduced the following equalities

τT (x) = −σ(A(x) + zI)−1fT
x(x)) (5.1)

and
Rzχ = ~0 (5.2)

if
det (A(x) + zI) 6= 0,

where χ = col(τ1, τ2, τ3, σ) and Rz is the following family of matrixes

Rz =









fx1x1 + z fx1x2 fx1x3 fx1

fx1x2 fx2x2 + z fx2x3 fx2

fx1x3 fx2x3 fx3x3 + z fx3

fx1 fx2 fx3 0









In view of that the vector χ is non-zero vector then from (5.2) one can
deduce that

detRz = 0 (5.3)

In order to establish the relation between the vector field with components
given by (5.1) and Cartesian vector field (2.16) we introduce the family of
vector fields vz :

vz = ((A(x) + zI)−1fx, ∂x), ∂x = (∂x1 , ∂x2 , ∂x3) (5.4)

where z is a complex parameter. After some calculations one can prove
that vz admits the representations
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vz =

∣

∣

∣

∣

∣

∣

∣

∣

fx1x1 + z fx1x2 fx1x3 fx1

fx1x2 fx2x2 + z fx2x3 fx2

fx1x3 fx2x3 fx3x3 + z fx3

∂x1 ∂x2 ∂x3 0

∣

∣

∣

∣

∣

∣

∣

∣

=
z2X1 + zX2 + X3

det (A + zI)
(5.5)

which are equivalents equivalent to (5.4), where △f = ∂x1x1f+∂x2x2f+∂x3x3f.

and X1, X2, X3 denote the vector fields:







X1 = (fx, ∂x)
X2 = (gx, ∂x) −△f (fx, ∂x), g = ||fx||2
X3 = det A(x) vz|z=0

(5.6)

We now introduce the function

F (z) = df(vz) =
z2df(X1) + zdf(X2) + df(X3)

det (A + zI)
(5.7)

which in view of (5.5) may be written as

F (z) = det (A + zI) detRz

Corollary 5.1 If the function f is a homogeneous function of degree m then

X3 = g2(x)K(x) (x, ∂x), g = ||fx||2 (5.8)

where K is the Gaussian curvature of the homogeneous surface which one
can calculate as follows

K(x) =















−f{fx1, fx2 , fx3}
(m − 1)g2

if m 6= 1;

−f{f, fx2 , fx3}
x1 g2

if m = 1;
(5.9)

Below we shall study only the case when the function f :

(df(X2))
2 − 4df(X3)df(X1) > 0 (5.10)

Clearly, under this assumption the function F has two different real roots
which we shall denote by z1, z2
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Corollary 5.2 Let v1, v2 are the vector fields such that

vj = vz|z=zj
, j = 1, 2

then the solution of the problem 2 are the vector fields :











τ (j) =
vj

||vj(x)|| , j = 1, 2

(τ (1), τ (2)) = 0

The proof it is easy to obtain.

Proposition 5.1 Let f(x) = c, c 6= 0 be the homogeneous surface which
satisfies (5.10).

Then the most general vector field tangent to the given surface admits the
development

v(x) = [fx(x) × [fx(x) × (µ1(x) gx(x) + µ2(x) x )]]. (5.11)

where µ1, µ2 are arbitrary smooth functions.

Proof

One can check direct from the above that the most general vector field
tangent to the given homogeneous surface can be written as

v(x) = a1(x)v(1)(x) + a2(x)v(2)(x)

where a1, a2 are arbitrary smooth functions.
A brief calculation show that

v(x) = λ1(x) fx(x) + λ2(x) gx(x) + λ3(x)x (5.12)

where














λ1(x) = â1(x)(z2
1 −△f z1) + â2(x)(z2

2 −△f z2)
λ2(x) = â1(x) z1 + â2(x) z2

λ3(x) = g2(x)K(â1(x) + â2(x))
aj(x) = âj det (A(x) + zjI), j = 1, 2

One can see that the equation
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gλ1 + (fx, gx)λ2 + mfλ3 = 0 (5.13)

holds identically.
To complete the proof, we show the equivalence of (5.11) and (5.12),

(5.13). Indeed, using (5.13) we obtain that

λ1 = −(
(fx, gx)λ2 + mfλ3

g
),

inserting into (5.12) and introducing the notations

µ1(x) =
λ3

g
, µ2(x) =

λ2

g

we get (5.11).

Proposition 5.2 The vector field (5.11) is Cartesian vector field if the fol-
lowing relation holds

{f, g, r}(∂rµ1 − ∂gµ2 −
µ2

g
) = 0 (5.14)

From the definition we obtain that the given vector field is Cartesian (see
definition 1) if the following equality takes place

(fx, (rot([fx(x) × [fx(x) × (µ1(x) gx(x) + µ2(x)x ))]]) = 0 (5.15)

which is equivalent to (5.14).
From (5.14) after straightforward calculations we can prove the following

assertion

Corollary 5.3 Let us suppose that (5.14) holds, then the vector field (5.12)
admits the representation

v(x) = κ [fx × [fx × Φx]] (5.16)

where κ and Φ functions such that

κ =











κ(f, Φ) if {f, g, r} 6= 0;

µ1
gr

r
+ µ2 if {f, g, r} = 0;

(5.17)
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and

Φx =







Φx(f, g, r) if {f, g, r} 6= 0;

x if {f, g, r} = 0;
(5.18)

By comparing (5.16), (5.17) with (2.16) we obtain that the solution of
the problem 2 under the condition (5.17), (5.18) coincide with the Cartesian
vector field constructed in the section 3. In such a way we obtain the physical
and geometrical meaning of the constructed above Cartesian vector field.

Remark.

The physical and geometrical meaning of the Cartesian vector field for
the case when the given vector field a :

(a, rota) 6= 0 (5.19)

can be obtained analogously to the case study above by considering that
under condition (5.19) the equation deduced from the Lagrangian approach,
can be written as follows

ẍ =
(A(x)ẋ, ẋ)

||fx||2
a

where

A(x) =





∂1a1
1
2
(∂1a2 + ∂2a1)

1
2
(∂1a3 + ∂3a1)

1
2
(∂1a2 + ∂2a1) ∂2a2

1
2
(∂2a3 + ∂3a2)

1
2
(∂1a3 + ∂3a1)

1
2
(∂2a3 + ∂3a2) ∂3a3





The problem 2 in this case we can state as follows
Problem 3

Determine the
extremum(A(x)τ, τ)

under the conditions
{

||τ ||2 − 1 = 0
(a, τ) = 0
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6 Descartes approach for non-holonomic sys-

tem with three degree of freedom and one

constraints .

Our goal in this section is to extend the Cartesian approach developed above
for natural mechanical system with configuration space

Q, dimQ = 3

in this space the metric (kinetic energy)

T =
1

2

3
∑

j,k=1

Gjk(x)ẋj ẋk ≡ 1

2
||ẋ||2

allows calculating the rot of the vector field v on Q. The invariant definition
of rotv we can find in [2]. If we assign a covector field p = (p1, p2, p3) with
components

pj =

3
∑

k=1

Gjk(x)vk(x) (6.1)

to the vector field v = (v1(x), v2(x), v3(x)), then the components of rotv we
can write explicitly

rotv(x) = (
1√
G

(∂2p3 − ∂3p2),
1√
G

(∂3p1 − ∂1p3),
1√
G

(∂1p2 − ∂2p1))

where G = det (Gkj(x)).
The vector field (2.9) for this mechanical system we shall represented as

follows
ẋ = [a(x) × (λ1 b(x) + λ2c(x))] (6.2)

where a, b, c are the independent smooth vector in Q, i.e.,

Υ = (a, [b× c]) 6= 0 (6.3)

and λ1, λ2 are smooth function which we determine as a solution of the
equation

(a, rot[a× (λ1 b + λ2c)]) = 0 (6.4)
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The Lagrangian approach produces the following second-order differential
equations

d

dt

∂T

∂ẋk
− ∂T

∂xk
=

∂ 1
2
||v||2
∂xk

+ Λak(x), k = 1, 2, 3 (6.5)

We shall illustrate this case for the Chapliguin-Caratheodory sleigh and
for the heavy rigid body in the Suslov case.

The Chapliguin-Caratheodory sleigh

We shall now analyze one of the most classical nonholonomic systems :
Chapliguin-Carathodory’s sleigh [15]. The idealized sleigh is a body that has
three points of contact with the plane. Two of them slide freely but the third,
A, behaves like a knife edge subjected to a constraining force R which does
not allow transversal velocity. More precisely, let yoz be an inertial frame
and ξ Aη a frame moving with the sleigh. Take as generalized coordinates
the Descartes coordinates of the center of mass C of the sleigh and the angle
x between the y and the ξ axis. The reaction force R against the runners
is exerted laterally at the point of application A in such a way that the η

component of the velocity is zero. Hence, one has the constrained system M

with the configuration space X = S1 × R
2, with the kinetic energy

T =
m

2
(ẏ2 + ż2) +

Ic

2
ẋ2,

and with the constraint

ǫẋ + sin xẏ − cos xż = 0,

where m is the mass of the system and Jc is the moment of inertia about a
vertical axis through C and ǫ = |AC|. Observe that the ”javelin” (or arrow
or Chapliguin’s skate) is a particular case of this mechanical system and can
be obtained when ǫ = 0

To apply the Descartes approach for this system, first we determine the
vector b and a in such a way that the determinant Υ 6= 0. In this subcase,
we achieve this condition if

a = (ǫ, sin x, − cos x) b = (0, cosx, sinx), c = (1, 0, 0).

Under these restrictions we obtain that Υ = 1 and it is easy to show that
the vector field v takes the form:

v = λ3(∂x + ǫ sin x∂y + ǫ cos x∂z) − λ2(cos x∂y − sin x∂z).
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The Descartes approach produce the differential equations [16]







ẋ = λ3(x, y, z, ǫ)
ẏ = λ2(x, y, z, ǫ) cos x − ǫλ3 sin x

ż = λ2(x, y, z, ǫ) sin x + ǫλ3 cos x

(6.6)

where λ2, λ3 are solutions of the partial differential equations

sin x(J∂zλ3 + ǫm∂yλ2) + cos x(J∂yλ3 − ǫm∂zλ2)−m(∂xλ2 − ǫλ3) = 0 (6.7)

where J = JC + ǫ2m.

Clearly,

||v||2 = (JC + mǫ2)λ2
3(x, y, z, ǫ ) + mλ2

2(x, y, z, ǫ )

Hence, for the arrow (ǫ = 0) we have






ẋ = λ3(x, y, z, 0)
ẏ = λ2(x, y, z, 0) cosx

ż = λ2(x, y, z, 0) sinx

JC(sin x∂zλ3 + cos x∂yλ3) − m∂xλ2 = 0

Clearly, the equation (6.7) holds in particular if















∂yλ3 =
ǫm

JC + ǫ2m
∂zλ2

∂zλ3 = − ǫm

JC + ǫ2m
∂yλ2

∂xλ2 = ǫλ3

After some calculations we can prove that the functions


















λ2 = cos α V1(y, z, ǫ) + sin α V2(y, z, ǫ) + a
∫

K(x, ǫ)dx

λ3 =
am

JC + a2m

(

cosα V2(y, z, a) − sin α V1(y, z, ǫ)
)

+ K(x, ǫ),

α =
ǫ2mx

JC + ǫ2m

are solutions of (6.7), where K is an arbitrary function and V1, V2 are
functions which satisfy the Cauchy-Riemann conditions:

{

∂yV1(y, z, ǫ) = ∂zV2(y, z, ǫ)
∂zV1(y, z, ǫ) = −∂yV2(y, z, ǫ).
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Corollary 6.1 The all trajectories of the Chapliguin skate (ǫ = 0) under
the action of the potential field of force with components (0, mg, 0) can be
obtained from the Descartes approach

Proof.

In fact, for the case when ǫ = 0 the classical approach for Chapliguin-
Carathodory’s sleigh gives the following equations of motion















ẍ = 0
ÿ = mg + sin xµ

z̈ = − cos xµ

sin xẏ − cos xż = 0

Hence,by derivation we obtain

d

dt
(

ż

sin x
) = g cos x

as a consequence,


















ẋ = C0, C0 6= 0

ẏ = (
g sin x

C0

+ C1) cosx

ż = (
g sin x

C0
+ C1) sin x

or,







ẋ = 0
ẏ = (gt cosx0 + C1) cosx0

ż = (gt cosx0 + C1) sin x0

Clearly, the solutions of these equations coincide with the solutions of (6.6), (6.7)
with the subsidiary conditions [16]

JCλ2
3 + mλ2

2 = mgy + h.

are particular cases of the equations obtained from the Descartes ap-
proach.

Corollary 6.2 The all trajectories of Chapliguin -Carathodory’s sleigh by
inertia can be obtained from the Descartes approach
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Proof

Let us suppose that

λj = λj(x, ǫ), j = 1, 2

then the all trajectories of the equation (6.6) can be obtained from the for-
mula































y = y0 +
∫ (λ2(x, ǫ) cos x − ǫλ3 sin x)dx

λ3(x, ǫ)

z = z0 −
∫ (λ2(x, y, z, ǫ) sin x − ǫλ3 cos x)dx

λ3(x, ǫ)

t = t0 +
∫ dx

λ3(x, ǫ)

On the other hand, for the Chapliguin- Caratheodory sleigh by inertia
from the classical approach we deduce the following equations















JC ẍ = ǫµ

mÿ = sin xµ

mz̈ = − cos xµ

ǫẋ + sin xẏ − cos xż = 0

Hence, after straightforward calculations we obtain the system











ẋ = qC0 cos(qǫx + C), q2 =
m

JC + mǫ2

ẏ = C0(sin(qǫx + C) cos x − qǫ cos(qǫx + C) sin x)
ż = C0(sin(qǫx + C) sin x + qǫ cos(qǫ + C) cos x)

where q2 =
m

JC + mǫ2
,

which are particular case of the equations (6.6) with

λ2 = C0 sin(qǫx + C), λ3 = C0q cos(qǫx + C)

Evident that in this case

2||v||2 = (JC + mǫ2)λ2
3(x, ǫ ) + mλ2

2(x, ǫ ) ≡ mC2
0
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7 The rigid body around a fixed point in the

Suslov and Veselov cases.

In this section we study one classical problem of non-holonomic dynamics
formulated by Suslov [12]. We consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints (ã, ω) = 0
where ω is a body angular velocity and ã is a constant vector. Suppose
the body rotates in an force field with potential U(γ1, γ2, γ3). Applying the
method of Lagrange multipliers we write the equations of motion in the form







Iω̇ = [Iω × ω] + [γ × ∂U
∂γ

] + µã

γ̇ = [γ × ω]
(ã, ω) = 0

(7.1)

Where
I = diag(I1, I2, I3)

γ = (γ1 = sin z sin x, γ2 = sin z cos x, γ3 = cos z)

I1, I2, I3 are the inertial moment of the body.
If we assume that the vector ã = (0, 0, 1) [12], then































I1ω̇1 = γ3∂γ2U − γ2∂γ3U

I2ω̇2 = γ1∂γ3U − γ3∂γ1U

(I1 − I2)ω1ω2 + γ2∂γ1U − γ1∂γ2U + µ = 0
γ̇1 = −γ3ω2

γ̇2 = γ3ω1

γ̇3 = γ1ω2 − γ2ω1

(7.2)

The above system always has two independent first integrals

K1 = 1
2
(I1ω

2
1 + I2ω

2
2) − U(γ1, γ2, γ3)

K2 = γ2
1 + γ2

2 + γ2
3

For the real motions K2 = 1.
By the Jacobi’s theorem about the last multiplier, if there exits a third

independent first integral K3 which is functionally independent together with
K1 and K2, then the Suslov problem is integrable by quadratures [12]

To determine the integrable cases of the Suslov problem seems interesting
the following result which we can prove after straightforward calculations.
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Proposition 7.1 Let us suppose that the potential function U in (7.2) is
determine as follows

U =
1

2I1I2
(I1µ

2
1 + I2µ

2
2) − h (7.3)

where µ1, µ2are solutions of the partial differential equations

γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
) − γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
= 0, (7.4)

then the equations (7.2), (7.3) admits the first integrals

I1ω1 = µ2, I2ω2 = −µ1 (7.5)

The aim of this apartat is to propose the Descartes approach for heavy rigid
body in the Suslov case.

Let us suppose that Q = SO(3), with the Riemann metric

G =





I3 I3 cos z 0
I3 cos z (I1 sin2 x + I2 cos2 x) sin2 z + I3 cos2 z (I1 − I2) sin x cos x sin z

0 (I1 − I2) sin x cos x sin z I1 cos2 x + I2 sin2 x





det G = I1I2I3 sin2 z,

In this case we have that the constraints are

ω3 = 0 ⇔ ẋ + cos zẏ = 0

Hence a = (1, cos z, 0). By choosing the vector b and c as follow

b = (0, 1, 0), c = (0, 0, 1)

we obtain that Υ = 1. Consequently

v = λ2(cos z ∂x − ∂y) − λ3∂z

The differential equations generated by v and condition (6.4) in this cases
take the form respectively







ẋ = cos z λ2,

ẏ = −λ2,

ż = −λ3

(7.6)
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(a, rotv) = 0 ⇔ ∂zp2 − ∂yp3 + cos z∂xp3 = 0 (7.7)

After the change γ1 = sin z sin x, γ2 = sin z cos x, γ3 = cos z the sys-
tem (7.6) and condition (7.7) can be written as follow























γ̇1 = I1
I1I2

µ1γ3

γ̇2 = I2
I1I2

µ2γ3

γ̇3 = −1
I1I2

(I1µ1γ1 + I2µ2γ2)

(7.8)

sin z(γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
) − γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
) − cos x∂yµ2 − sin x∂yµ1 = 0 (7.9)

where
{

µ2 = −I1(cos xλ3 + sin xλ2),
µ1 = I2(− sin xλ3 + cos xλ2)

We shall study only the case when

µj = µj(x, z), j = 1, 2

Hence, we obtain the equation (7.4).

Corollary 7.1 The function µ1, µ2 :











µ1 =
∂S(γ1, γ2)

∂γ1
+ Ψ1(γ

2
2 + γ2

3 , γ1)

µ2 =
∂S(γ1, γ2)

∂γ2

+ Ψ2(γ
2
1 + γ2

3 , γ2)
(7.10)

satisfies the equation (7.4).

Corollary 7.2 Let µ1, µ2 are such that

µj =
∂S(γ1, γ2)

∂γj

, j = 1, 2
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then the potential function (7.3) and first integrals (7.5) are respectively



























U =
1

2I1I2

(I1(
∂S

∂γ1

)2 + I2(
∂S

∂γ2

)2) − h

I1ω1 =
∂S

∂γ2
,

I2ω2 = − ∂S

∂γ1
,

(7.11)

The following particular cases produces the well known integrable cases [12]:
The Suslov, Kharlamova-Zabelina and Kozlov subcase.

The Suslov Subcase

If
S = C1γ1 + C2γ2, Cj = const, j = 1, 2

then
{

µ1 = C1, µ2 = C2

U = const.

which correspond to the Suslov subcase.
The integration of the equations (7.8) in this case produces the following

solutions


















































ω1 =
C2

I1

, ω2 = −C1

I2

γ1 =
C1I1

√

I2
1C

2
1 + I2

2C2
2

sin β sin(

√

I2
1C2

1 + I2
2C2

2

I1I2
t + α) +

I2C2 cos β
√

I2
1C

2
1 + I2

2C2
2

γ2 =
C2I2

√

I2
1C

2
1 + I2

2C2
2

sin β sin (

√

I2
1C

2
1 + I2

2C
2
2

I1I2
t + α) − I1C1 cos β

√

I2
1C

2
1 + I2

2C
2
2

γ3 = sin β cos((

√

I2
1C

2
1 + I2

2C
2
2

I1I2
t + α)

where C1, C2, α, β, are the arbitrary real constants.
The Kharlamova-Zabelina Subcase

If

S =
2

3
√

I1C
2
1 + I2C

2
2

(

√

h̃ + C1γ1 + C2γ2)
3+

CC2I2

C2
1I1 + C2

2I2

γ1−
CC1I1

C2
1I1 + C2

2I2

γ2

where h̃, C1, C2, C are arbitrary constants, then
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





















µ1 =
C1

√

I1C
2
1 + I2C

2
2

√

h̃ + C1γ1 + C2γ2 +
CC2I2

C2
1I1 + C2

2I2

µ2 = C2√
I1C2

1+I2C2
2

√

h̃ + C1γ1 + C2γ2 − CC1I1
C2

1 I1+C2
2 I2

U = h̃ + C1γ1 + C2γ2

As a consequence we deduce the Kharlamova-Zabelina subcase [6].
The solutions of the equation (7.2), (7.8) are



























































I1ω1 =
C1

√

I1C
2
1 + I2C

2
2

√

h̃ + C1γ1 + C2γ2 +
CC2I2

C2
1I1 + C2

2I2
,

I2ω2 = −(
C2

√

I1C
2
1 + I2C

2
2

√

h̃ + C1γ1 + C2γ2 −
CC1I1

C2
1I1 + C2

2I2
),

U = h̃ + C1γ1 + C2γ2

γj = aj(τ − C3)
2 + bj(τ − C4) + dj = γj(τ, C1, C2, C3, C4), j = 1, 2

γ3 =
√

1 − γ2
1(τ, C1, C2, C3, C4) − γ2

2(τ, C1, C2, C3, C4) ≡
√

P4(τ, C1, C2, C3, C4)

t = t0 +
I1I2

2

∫

dτ
√

P4(τ, C1, C2, C3, C4)

where

aj =
IjCj

4
, bj =

CI1I2C1C2

Cj(I1C
2
1 + I2C

2
2)

, dj = − h̃IjCj

I1C
2
1 + I2C

2
2

,

P4 is a polynomial of four degree in τ.

Kozlov Subcase

If we suppose that I1 = I2 and






S = −2C arctan γ1

γ2
+

∫

D(γ2
1 + γ2

2)d(γ2
1 + γ2

2)

(D(u))2 =
hu2 +

√
1 − uu − C2

u2

where h and C are arbitrary real constant, hence,






















µ1 = − γ2C

γ2
1 + γ2

2

+ γ1D(γ2
1 + γ2

2)

µ2 =
γ1C

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2)

U = −h +
√

1 − γ2
1 − γ2

2 = −h + γ3
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which correspond to the Kozlov subcase.
The equations (7.8) in this case take the form:























ẋ =
C cos z

sin2 z

ẏ =
−C

sin2 z

ż =
(γ2

1 + γ2
2)D(γ2

1 + γ2
2)

sin z

(7.12)

which are easy to integrate.
The solutions of the equation of motions are:







































































ω1 =
γ1C

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2)

ω2 =
γ2C

γ2
1 + γ2

2

− γ1D(γ2
1 + γ2

2)

x = x0 + C
∫ γ3dγ3

(1 − γ2
3)

2D(1 − γ2
3)

= x0 + C

∫

γ3dγ3
√

(1 − γ2
3)P4(γ3, h, C)

y = y0 − C
∫ dγ3

(1 − γ2
3)

2D(1 − γ2
3)

= y0 − C

∫

dγ3
√

(1 − γ2
3)P4(γ3, h, C)

t = t0 + I1I2

∫ dγ3
√

P4(γ3, h, C)
P4(γ3, h, C) ≡ hγ4

3 − 2γ3
3 − 2hγ2

3 + 2γ3 + h − C2

Corollary 7.3 Let µ1, µ2 are the functions:
{

µ1 = Ψ1(γ
2
2 + γ2

3 , γ1)
µ2 = Ψ2(γ

2
1 + γ2

3 , γ2)

then the solutions of (7.8) are the following functions:























∫ dγj

Fj(γj)
=

Ij

I1I2
(τ − τ0), j = 1, 2

γ3 =
√

1 − γ2
1(τ) − γ2

2(τ)

t = t0 +
∫ dτ

√

1 − γ2
1(τ) − γ2

2(τ)

where
{

F1(γ1) = Ψ1(γ
2
2 + γ2

3 , γ1)|γ2
2+γ2

3=1−γ2
1

F2(γ2) = Ψ2(γ
2
1 + γ2

3 , γ2)|γ2
1+γ2

3=1−γ2
2
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As a particular case we obtain the Tisserand Subcase.
Tisserand Subcase

The interesting solution of the equation (7.4) are
{

µ1 =
√

h1 + a1(γ2
3 + γ2

2) + b1γ
2
1 + f1(γ1) ≡ Ψ1(γ

2
2 + γ2

3 , γ1)

µ2 =
√

h2 + a2(γ
2
3 + γ2

1) + b2γ
2
2 + f2(γ2) ≡ Ψ2(γ

2
1 + γ2

3 , γ2)

which produce the following potential function U :

U = I1h1+I2h2+(I1b1+I2a2)γ
2
1+(I1a1+I2b2)γ

2
2+(I1a1+I2a2)γ

2
3+I1f1(γ1)+I2f2(γ2)

where aj , bj , hj , j = 1, 2 are arbitrary real constants and fj, j = 1, 2 are
arbitrary functions.

The case when fj(γj) = αjγj, j = 1, 2 was studied in [11], where αj , j =
1, 2 are real constants.

The case when fj = 0, j = 1, 2 is well known as Tisserands case [12].
After integration the equation (7.8) in the Tisserand case we obtain the

following solutions










































I1ω1 =
√

h2 + a2(γ2
3 + γ2

1) + b2γ
2
2

I2ω2 = −
√

h1 + a1(γ2
3 + γ2

2) + b1γ
2
1

γ1 =
√

h1+a1

a1−b1
sin(

√
a1 − b1I1τ + C1) = γ1(τ)

γ2 =
√

h2+a2

a2−b2
sin(

√
a2 − b2I2τ + C2) = γ2(τ)

γ3 =
√

1 − γ2
1(τ) − γ2

2(τ)
t = t0 + I1I2

∫

dτ√
1−γ2

1 (τ)−γ2
2 (τ)

Heavy rigid body in the Veselov case

In this example we study the problem of non-holonomic dynamics for-
mulated by Veselov in [13] which in certain sense is opposite to the Suslov
problem. In this problem we consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints

(γ, ω) ≡ ẏ + cos zẋ = 0

Suppose the body rotates in an force field with potential U(γ1, γ2, γ3).
Applying the method of Lagrange multipliers we write the equations of mo-
tion in the form







Iω̇ = [Iω × ω] + [γ × ∂U

∂γ
] + λγ

γ̇ = [γ × ω]
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where I is a matrix such that I = diag(I1, I2, I3).
The Descartes approach for this system produces the following equations:







ẋ = λ2

ẏ = − cos zλ2

ż = λ3

and

∂p3

∂x
− ∂p1

∂z
+ cos z(

∂p2

∂z
− ∂p3

∂y
) = 0

where






p1 = I3 sin2 zλ2

p2 = (I3 − I1 + (I1 − I2) cos2 x) cos z sin2 zλ2 + (I1 − I2) cos x sin x sin zλ3

p3 = (I2 sin2 x + I1 cos2 x)λ3 + (I2 − I1) sin x cos x sin z cos zλ2

Finally it is interesting to observe that the construction the Descartes
approach for the Federov case [14], i.e.,

(ω, γ) = a

it is necessary in the above example make the change y → y + at, a = const..

Hence we obtain that that the equations generated by the Descartes vector
field are







ẋ = λ2

ẏ = − cos zλ2 + a

ż = λ3

and

∂p3

∂x
− ∂p1

∂z
+ cos z(

∂p2

∂z
− ∂p3

∂y
)) = 0 (7.13)

where














p1 = I3 sin2 zλ2

p2 = (I3 − I1 + (I1 − I2) cos2 x) cos z sin2 zλ2 + (I1 − I2) cos x sin x sin zλ3+
a((I1 sin2 x + I2 cos2 x) sin2 z + I3 cos2 z)
p3 = (I2 sin2 x + I1 cos2 x)λ3 + (I2 − I1) sin x cos x sin z cos zλ2

(7.14)
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The equation (7.13) can be represented as follow






















sin2z(I3 sin2 z + cos2 z(I1 sin2 x + I2 cos2 x)∂zλ2(x, z)+
(I2 sin2 x + I1 cos2 x)∂xλ3(x, z)+
cos x sin x sin z cos z(I1 − I2)(∂zλ3(x, z) − ∂xλ2(x, z))+
sin z cos z(3(I1 − I2) sin2 z cos2 x + 3I1 − I3) sin2 z + I1 + I2)λ2(x, z)
cos x sin x(−2 + cos2 z)(I1 − I2)λ3(x, z) + 2a sin z cos2 z(I1 sin2 x + I2 cos2 x) = 0.

(7.15)

Proposition 7.2 Let λ2, λ3 are the solutions of the linear partial differential
equations (7.15) then the functions







ω1 = γ2
λ3

sin z
− γ1γ3λ2 − aγ1

ω2 = −γ1
λ3

sin z
− γ2γ3λ2 − aγ2

ω3 = sin2 zλ2 − aγ3

(7.16)

are the first integral of the equations of the rigid body in the Veselov-Fedorov
case.

In particular if
I1 = I2,

then the solutions of the above equation are
{

λ3 = sin z C(z)
√

I3 sin2 z + cos2 zI2 sin2 zλ = aΩ(z) + K(x)

where C(z) and K(x) are arbitrary functions and

Ω(z) ≡
∫

I2

√

(I3 sin2 z + cos2 zI2)(2 sin z − sin 5z + sin 3z)dz

(−I3 cos 4z + 4I3 cos 2z − 3I3 − I2 + I2 cos 4z)

Hence, from (7.16) we obtain



































ω1 = γ2C(z) − γ1γ3
aΩ(z) + K(x)

√

I3 sin2 z + cos2 zI2 sin2 z
− aγ1

ω2 = −γ1C(z) − γ2γ3
aΩ(z) + K(x)

√

I3 sin2 z + cos2 zI2 sin2 z
− aγ2

ω3 =
aΩ(z) + K(x)

√

I3 sin2 z + cos2 zI2

− aγ3

(7.17)
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Thus, we easily deduce the relation

(I3 sin2 z + cos2 zI2)(ω3 + aγ3)
2 = (aΩ(z) + K)2.

In particular if a = 0 and K(x) = C1 = const then we obtain the well known
first integral in the Veselov case [4]
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