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Abstract

In the history of mechanics, there have been two points of view for
studying mechanical systems: The Newtonian and the Cartesian.

According the Descartes point of view, the motion of mechanical
systems is described by the first-order differential equations in the NV
dimensional configuration space Q.

In this paper we develop the Cartesian approach for mechanical
systems with three degrees of freedom and with constraint which are
linear with respect to velocity. The obtained results we apply to dis-
cuss the integrability of the geodesic flows on the surface in the three
dimensional Euclidian space and to analyze the integrability of a heavy
rigid body in the Suslov and the Veselov cases .
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1 Introduction.

In ”Philosophiae Naturalis Principia Mathematica” (1687), Newton considers
that movements of celestial bodies can be described by differential equations
of the second order. To determine their trajectory, it is necessary to give
the initial position and velocity. To reduce the equations of motion to the
investigation of a dynamics system it is necessary to double the dimension
of the position space and to introduce the auxiliary phase space.

Descartes in 1644 proposed that the behavior of the celestial bodies be
studied from another point of view. These ideas were stated in ”Principia
Philosophiae” (1644) and in ”Discours de la métode” (1637). According to
Descarte the understanding of cosmology starts from acceptance of the initial
chaos, whose moving elements are ordered according to certain fixed laws and
form the Cosmo. He consider that the Universe is filled with a tenuous fluid
matter (ether), which is constantly in a vortex motion. This motion moves
the largest particle of matter of the vortex axis, and they subsequently form
planets. Then, according to what Descartes wrote in his ” Treatise on Light”,
”the material of the Heaven must be rotate the planets not only about the
Sun but also about their own centers...and this will hence form several small
Heavens rotating in the same direction as the great Heaven.”[2]. Thus the
equation of motion in the Descartes theory must be of the first order

x =v(z,t). (1.1)

Hence, to determine the trajectory from Descartes’s point of view it is nec-
essary to give only the initial position.

In the modern scientific literature the study of the Descarte ideas we can
find in the monographic of V.V. Kozlov [2] in which the author give the
following result.

Theorem 1.1 The manifold y = u(x,t), where u is a covector on Q is an
invariant manifold for the canonical Hamiltonian equations with the Hamil-
tonian H(x,y,t) if and only if field u satisfies the Lamb equation

Owu(z,t) + (rotu(z,t))v(x,t) = —gradh(z,t) (1.2)
where (rotu) = dyu — (Oyu) ia skew-symmetric n X n matriz,

U(Iv t) = 0yH(:L', y) |yZU(SL‘7t)’ h(l’, t) = H(:L’, Y, t)|y=u(x,t) (1'3)



From the physical standpoint, equations (L)), (L2)) and (3])describe the
motion of the collisionless medium: particles moving along different trajec-
tories do not interact.

In [2] affirm that ”solving dynamics problem is possible inside the con-
figuration space”. For this it is necessary to solve Lamb equations which
is a system of partial differential equations on Q, and then, using (L3]) to
calculate the vector field v from the solution of the Lamb equation to solve
(L.1).

In [3] we developed the Cartesian approach for mechanical system with
configuration space Q and with constraints linear with respects to velocity.
The aim of the present paper is to develop the results obtained for mechanical
system with three degrees of freedom in the particular case in which Q =
[E? is the three dimensional Euclidean space and Q = S0(3) is the special
orthogonal group of rotations of E3.

2 Cartesian vector field on three dimensional
Euclidean space

Let E? be the three dimensional Euclidian space with cartesian coordinates
€T = (zla 1'2,1'3).
We consider a particle with Lagrangian function

1.
L=5|%II* - U(a)

and constraints

(x,a) =0 (2.1)

where (, ) denotes the scalar product in E?, x = (&, 49, @3) and a(z) =
(ai(z),as(x), az(x)) is a smooth vector field in E3

It is well known that the equations of motions can be deduced from the
d’Alembert-Lagrange principle [9]

X = UX + ,ua(x),
{ (a,%) = 0, (2.2)

where p is the Lagrangian multiplier, Ux = (Us,, Us,, Us,), Uy, = 0, U.
In [3] we introduce the following definition
Definition 1



We say the smooth vector field v(x) = (v1(z), ve(x), v3(x)) is the Carte-
sian vector field for a constrained particle in E® with the constraints (2.1)

if
[v(z) x rotv(z)] = A(z)a(z). (2.3)

where [ x | denotes the vector product in E?,
rotv = (8x2’03 — 8w3’02, 8;531)1 — 8:“’03, 8w1’02 — am21)1).

and A is a function:
1

[|al[?

A= ([v(z) x rotv(z)],a(x)).

By a simple computation from (2.3) we can see that
(a(z), v(z)) =0,
{ (a(z). rotv(z)) — 0. (2:4)
Corollary 2.1 Let v the Cartesian vector field. Then the following relations
hold
& = (5//v(2)|]*)s + Az)a(z)
{ (i.a) = 0. (25)

The proof it is easy to obtain in view of the equality
. 1
% = (5IIV(@)I[*)e + [v(z) x rotv(z)]

which is deduced after derivation the differential equations generated by the
vector field v

x =v(z) (2.6)

The system (2.5) can be obtained from the Lagrangian equations with La-
grangian function

L.
L= 5% - v(o)]

where v is a Cartesian vector field.
Definition 2
The study of the behavior of the constrained particle in E® by using the

equations (22) or (2.8),(2.3) or (2.3) say the Classical, Cartesian and La-

grangian approach respectively.



We illustrate the above ideas in the following example
A non-holonomically constrained particle in R?.
Consider a particle with the kinetic energy 7' = 1||x||* and non-holonomic
constraints
i’l + d(l’g)LL’Q =0

This instructive academic example, in the particular case when a(z3) = 3
due to Rosenberg [8]. This example was also used to illustrate the theory in
Bates and Sniatycki [1].

The Descartes approach in this case produces the vector field v :

V = >\2(CAL(ZL’3>8$1 - 8x2) - >\38x3

and condition (2.4) for this case takes the form
1
(T’OtV, a(x)) =0 <= 58333((1 + CAL2))\§) + (d(l’g)&wl)\g - 8x2>\3>)\2 = 0.

We shall study the case when this relation holds in view of the equalities

A
Ny = —— Ay = by(as),
= Tray 0

for A an arbitrary constant and by an arbitrary function on xs.
The equations generated by the vector field v in this case can be written
as

F] = ———
1+ a?(xs3)
. A (2.7)
Ly = ———
1+ a?(x3)
2y = —bo(x3)

The all trajectories of these equations are easy to obtain.
The Lagrangian approach produces the following differential equations

(. Aa(x
3
i = b(5) O (— )
2 = 3) Vs \ =™ /————
VIt @ (xs)
\ T3 8x3§b ([L’g)



Corollary 2.2 All the trajectories of the equation of motion of the con-
strained Lagrangian system

1. ) . .
< Eg, L= §H:c||2 — Ulxs), {21 + a(x3)dy = 0} >

can be obtained from (2.7) with b(x3) = £+/h + U(xs).

In fact, the equations of motion obtained from the D’Alembert-Lagrange
Principle are

Lf‘l = U
i’g = d(l’g),u
i’g = 8x3U 1’3)
i’l + d(l’g)l’g =0
Therefore,
d R . da(z
%(552 —a(x3)iy) = — d(x33)$3361
hence,
. A
To =
1+ a2(zs)

where A is an arbitrary constant.
On the other hand from the equation

S.L"g = 8m3U(:c3)

we easily obtain @3 = F+/2(U(x3) + h), where h is an arbitrary constant.

Finally by considering the constraints we deduce the system of the first
order ordinary differential equations (2.7)). In this example the Descartes,
the lagrangian and Classical approach coincide .

Below we determine the Cartesian vector field for a particle on the surface
in |3,

First we introduce the ve ctor fields X, ,Y, Z which are characteristic
elements of the 1-form

Q = ay(x)dry + as(x)drs + az(x)dxs

X = agay — CLQ&Z
Y = alaz - a38w (28)
J = agﬁx — alay
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Clearly, the most general element of the given 1-form 2 is
vV = le + ’UJQY + U)3Z
hence

v(z) = [a(x) x w(2) (2.9)

where w(x) = (wy(x), wa(x), ws(x)) is an arbitrary smooth vector field
which we shall determine in such a way that ([2.4]) takes place.
By using the identity

rotla(z) x b(z)] = [a, b] + divb(x)a(z) — diva(x)b(x)

where [a, b] is the Lie bracket of the smooth vector field a and b, one can
prove the following assertion

Corollary 2.3 The condition (2.3),(2.9) can be written as follows
div([a(z) x [a(z) x w(z)]]) = ([a(x) X rota(z)], w(z)) (2.10)
Proposition 2.1 Let us suppose that the vector field a is such that
la(z) x rota(z)] = 0 (2.11)
then the Cartesian vector field exist i and only if
a(z) = fal2) (2.12)
for a certain smooth function f.

Proof
From (2:10), (2:11)) follows that

[a(z) x [a(z) x w(z)]]
is a solenoidal vector field, hence
[a(z) x [a(x) x w(z)]] = rotW (z)
for arbitrary vector field W, thus the following representation holds

B (a(x),w(:c))a . rotW(x)
= Ta@E AT

[la(2)][?



as a consequence
(a(z),rotW(x)) = 0. (2.13)

Clearly if (a(z),70tW(x)) # 0 then the Cartesian vector field does not
exist if (Z11]) holds. If we choose

a(r) = fx(z), W(z)=0Gx(f,®)

when &, G are an arbitrary smooth functions, then we obtain that (2.13)
holds identically and a consequence the vector w takes the form

Ul wie) vie x v(z) = L2 )
[ fx(2)[]? + v(2)[fx(7) x ®x], (z) TOIE (2.14)

Corollary 2.4 The Cartesian vector field for a particle in B3 which is con-
strained to move on the surface

0;G(f, @)

w(z) =

flx)=c,c#0 (2.15)
generated the following differential system
&= v(z)(||fz(@)|[*Pa(z) — (fz(z), Pz(r)) fa(z)) (2.16)

Corollary 2.5 The Lagrangian approach for a particle in E® which is con-
strained to move on the surface (2.13) produces the following differential
equations

0
b= (S @) Pl fale) % OaoIP) + A falr) (217
Corollary 2.6 If there exist a function G and ® such that
2 _ 2h(f)g _
Ilfz(z) x P(@)]|]" = ) - U(f,®)yg (2.18)
Then the equations (2.17) take the form
X = Xo(@)fx(x),  Ao(x) = hy(f) + Alz). (2.19)



If one introduce the matrix A(z) :

fSC1Z‘1 f:c1x2 fxlxg
A('I> = fSC11‘2 .f:chz fxzxg (220)
fmlw?) f(Ez:Eg f(EgZCS?

then one checks, that the equations (ZI7) may be written as

_ (A(@)v(z), v(z))
|| fx(@)][?

where v is the Cartesian vector field generated the differential equations
(210). The differential equations (2.19) determined the geodesic flows on
the surface (2.15) and admits the energy integral

[1[* = 2h(f).

fx(z),

If there is an additional first integral, functionally independent with the
energy integral , then the geodesic flow is integrable.

In order to study the integrability of the geodesic flow on the given surface
we introduce the following functions which we determine from (2.16])

F = (I b parr,
oo (Wl
_ (H@x]lllbx > x][]\2 . _
\ Fg— ( ||[X>< (I>XH| ) 5 if (fx, (PX) —0, q)x#li(l’)x.

In view of (2.18), it is easy to show that
F; =2n(f), j7j=1,2,3.

3 Integrability of the geodesic flow on the ho-
mogeneous surface.

We now consider the surface

fx)=c, c#0,
{ (%, fx(z)) = mf(x). (3.1)
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which we will call the homogeneous surface of degree m.
From the Euler formula follow that ¢ = 0 is the unique critical value of
f. hence for ¢ # 0 the function

9= lfx@)*>0

on the given homogeneous surface.
Taking (3.1) into account we deduce the relations

Al)x" = (m—1)fx(v), (3.2)
(x, 9x(x)) = 2(m —1)g(x) (3-3)

Below we use the following notation

F,, F,, F,
{F.G,H} =| Gy, Gg Gy
H, H,, H,

Clearly, if F, G, H are independent functions then {F,G, H} # 0.
The integrability of the geodesic flow on the homogeneous surface we shall
study in the following two cases

{f,g,7*} = 0, 3.4
{f.g.*} # 0 (3.5)
where r? = 2% + 23 + 23

We analyze the first case. We study only the particular subcase when the
homogeneous surface is such that

| fx(@)[I* = g(f,7). (3.6)
Hence, in view of (3.3) we give
mfOrg +rorg =2(m —1)g(f,r). (3.7)
We assume that the arbitrary function ® is such that

(I)X:X,

10



thus the differential equation generated by the Cartesian vector field and
second order differential equations of the geodesic flows under the indicated
condition take the form respectively

x =v(z)(gx —m ffx), (3.8)
reg
where
V2g(f7 T) (g(fv T)T2 - m2f2) (310)

Proposition 3.1 The geodesic flow on the homogeneous surface under the
assumption (3.8) is integrable

Proof
First we observe that there is the function v such that (3.10) holds , i.e.,

2h(f)g(f,r)
g(f,r)r2 —m2f2

hence exist the additional first integral F, which in this case takes the
form

F, = I fx(@) x &

m2f2

GH(f.r) =

< g(f.0)lllfx(@) x X|[* = 2m*f*h(f).

The particular class of the study homogeneous surface are the following.
If m =1 then (x,gx) = 0, in particular this relation holds if

A concrete example we obtain from the celestial mechanics [5]:
fl)=r+(b,x)=¢, c#0, (3.11)
where b = (b1, bo, b3) is a constant vector field. In this case we have

2f

g="L b -1
r

11



The first integral for this particular case are

{ [1X[|* = 2A(f),

B bl = Dl 12 = 278(5) 12

It is interesting to deduce the equations of motion of a particle constrained
to move in the surface ([B.II]) with the subsidiary condition that there is a
nonzero constant vector field ¢ = (¢q, ¢o, ¢3) :

(x,8) =0, (b,&)=0 = (fx(),& =0, (3.13)

from the Lagrangian approach.
By choosing the function ® as follows

P = (63 — 02)1'1 + (Cl — 63)1’2 + (CQ — 61)1’3

and introducing the new time o as

l’1+$2+1’3

do = ( .

+ by + by + by)dt

and letting the prime denote differentiation with respect to o, we have that
the equation generated by the Cartesian vector field can be written as

, 1 5
x = ||éH2[fX(I) X €] (3.14)
By considering that
rot]fx x & = <

we obtain that the Lagrangian approach generated the second order differ-
ential equations

" f(x)x
t ‘||é(u2)r3
Thus , if
f(x) = [le]f?
then we obtain the well known equations
x' = —T—’; (3.15)

12



These equations admit the following first integrals

([ 2 |b]]P-1
e =24 M2
ro el
I x & = _(§ +b) (3.16)
r
\ [x X x,} =c
These relations are easy to obtain from (B.IJ).
The equations (B.18), after the orthogonal transformation
b, x ¢ X b|,x c, X
é-:(b>7 UIW7 C:(u>7
|Ib]] €[] [[bl] €]l
take the form
(
" o 5
§ =~
V(& +n?)?
) . (3.17)
N = ———F=
(&2 +n?)?
| (=0.

These equations describe the behavior of the particle with Lagrangian func-

tion 1 ]
12 12
L= +n") - ——
2 e +n?)

constrained to move on the one curve of the family of conics

f(x) = e+ + bl = |19’

The differential equations generated by the Cartesian vector field in this co-
ordinates can be represented in Hamiltonian form with Hamiltonian function

f 0]
We now turn to the study the particular case of the homogeneous surface
with the condition g = g(f, ).

If

g=rm gLy gLy Ly

rm rm rm

13



then after the change

(&) — & r

we obtain
|| Fx(2)|]* =
Finally, if
2(m—1) f
g=/f"m <r_m)

then after the change

f=F"

we deduce the equation

IFx@IP = (%),

which show that this case is equivalent to the first case study above.
We have already studied the case in which {f, g,r*} = 0. Now we begin
to study the case in which the functions f, g, r? are independent. Hence

{f.9,7°} #0. (3.18)
Under this assumption we obtain that
Tj = th(f,g,T’2), J=123
thus we deduced that

{ = d(f,g,1%)

0,® 3.19
@X:8f®fx+8gq)gx+ ( )

X
r

Proposition 3.2 If there exists the functions ® and G such that

®=a(f,g,r%), G=G(f )
gv = Gy(f, ®) (3.20)
| f2l*||Px % fal|*v? = 2h(f)

then the geodesic flow on the homogeneous surface of degree m > 1 is inte-
grable.

14



Proof
We prove this assertion only for the case when

((I)X7 fx) =0, (3-21)

thus the surface ® = ¢; is orthogonal to the given homogeneous surface.
Under this assumption we obtain that the differential equations deduced
from the Cartesian and Lagrangian approach are respectively

x = v(x)Px ()
{XZM@NM@ (3.22)

where \g can be determined as follows

v x|
9

No(e) = 72, O 1122l 29) = () — D28 o)

After derivation the function

@l x )y
= (Mool )

along the solutions of (3.:22]) we obtain

dF:
5 = (@x, 0x (2 0x] ).

which is equal to zero in view of (3.20)), (3.21]) thus the function Fj is the first
integral of the geodesic flow.

Clearly, in order to assess the integrability of the geodesic flow in this
case we need first to check whether function v exists such that (3:20]) holds.

4 The geodesic flow on the quadrics and the
third-order surface

In order to illustrate the above ideas we consider the algebraic surface of
degree three:

flx) =z120253=0¢, c#0. (4.1)

15



This case was examined already by Riemann in his study of motion of a
homogeneous liquid ellipsoid. More exactly, Riemann examined the integra-
bility of the geodesic flow on (@.T]).

In [7] the author state the following problem.

”Is it true that the geodesic flow on a generic third-order algebraic surface
is not integrable?. In particular I do not know a rigorous proof of non-
integrability for the surface (4.1])”

By considering that in this case

g = (LL’1$L’2)2 + (1’1263)2 + (LL’3SL’2)2

thus the functions f,¢g and r? are independent. The dependence x; =
z;(f,g9,7%), 7 =1,2,3 we obtain as follows.
We introduce the cubic polynomial in z :

P() = 2 =% 4 gz = 2 = (s = ad)(z — a)(= — a3,

and by using Cardano’s formula we obtain the require dependence.
In order to construct the Cartesian approach in this case first we observe
that the surface

(I)(fﬂ?a g) =C
where
1, 2 L 5 2 L, 2
§= 5(371 —1r3), n= 5(373 —7), (= 5(552 — x3)

is orthogonal to surface ([L1). Thus the differential equations generated by
the cartesian vector field are

l"l = V(@f — CDU) T
l"g = l/(q)g — be) T (42)
i’3 = V((I)n — (I)C) T3

To determine the existence the solution of ([B.20) or, what is the same,

0xl? = 2) g5, ),

Gi(f, @)

is for us an open problem.
Now we study the subcase when the given surface is such that

1
f(x) = 5(611'% + ngg + ngg) (4.3)

16



First we state and solve the following problem.

Problem 1

Let X, Y, Z are the vector fields (2.8]), (Z12]).

We require to determine the function f in such a way that these vector
field formed a three dimensional Lie algebra.

The solution of this problem it is easy to obtain in view of the equality

T, = A(z) Yo, (4.4)
where A is the matrix given by the formula (2]) and
T, =col([Y,Z], [Z,X], [X,Y]), YTo=colX,Y, Z)
and by using the Bianchi representation
T3 = B(x) Ty, (4.5)

where T3 = col([U, V], [V,W], [W,U]), T4=col(U, V, W), where U, V, W
are the vector fields, B is the matrix:

0 a bg
0 bg —a

and a, by, by, bg are certain constants
From (44) and (4.50) after integration we obtain the class of functions
which generated the three dimensional Lie algebra.

f:b1172+b2y2+b322
f=biz*+a(y>—2%) +2byz
f=2byx+bs2?

4. f:by2+2b12.flf

W o=

We construct the Cartesian vector field for the first case.
In view of the relation

g = bix? + bixs + b33
we observe that f, g, r? are independent functions. The following equalities

it is easy to obtain:

17



( L2 = b2b3T2 — 2(b2 + bg)f +g
! (b1 — ba) (b1 — b3)

1’2 o b1b37”2 — 2(b1 + bg)f +g
? (b2 — b1) (b2 — b3)

J}% o b2b17”2 — 2(b2 + bl)f +g

(4.7)

(7 (s bo) (b3 — n)
Notice that
D(&,n,¢) = c,
where
ng xgl xlf”
§= x—gga n= x_({z7 (= x_gl

is an orthogonal surface to the given surface we obtain that the differential
equations generated by the Cartesian vector field in this case can be written

as
(

. v
T = —(<I><Cbs - (I)nnbz)
Ty

1%

Ty = x—z(q)nﬁbl — ©cLhs) (4.8)

. 1%
&1 = —(Pe&by — Pc(hy)
T3

\

Now we introduce the elliptic coordinates in R :

(o= QbR+ b)) (As +b17)
' (by ' — by )byt — b5t
s M+ A+ b )(As+ b3
Ly = -1 —Iy/3—1 —1 (4.9)
(bz_l_ b )(b2_1 —b37) B
o (A +b3 ) (Aa+b3 )( A3 +0357)

.1'3:

( (b3' — by )by — b1 h)

where \{, Ay, A3 are the roots of the cubic polynomial in w :

—wd + (22?2l — byt — byt — by w4+ (22 (bt b ) + a2(byt + by
+ad(br + by ") = by by = by by = by by w
‘l‘bl_lb;lbg_l(bll’% + bgl’% + bgl’g — 1) =0

18



In this coordinates we obtain
||$||2 = 911)& + 933)@ + 933}\;2),
where
( (A1 — A2) (A — Ag)
g = 1 1 -1
4(A = by ) (M = by )A —b3)
2= M) =)
A = b ) (A2 — by Ao — b3
e 5= X0 = Ay
[ 40 = 07 (s — 0 A — b5 )
The differential equations (4.8]) in elliptic coordinates can be transformed to
the form

(4.10)

(W =0

B 2u
© bybobs

(l (b2 = b3)P¢C + (b1 — b2)Pyn + (bs — b1)Pel) = Wi(Ar, A2)
2u 1 1 1

" bybobs by by by
u = )\1"‘)\24‘)\3, v = )\1)\2"‘)\1)\3"—)\2)\3, w = )\1)\2)\3,

v

\

and by putting
)‘3 = 07

after some calculations we deduce the planar system

\Ill()\h )\2>)\1 - \IIZ()\h )\2>)

AL = =
- Uy (A1, A2)Ae — Wa(Ag, A2))
2 A — Ay '

In order to deduce the differential equations for the geodesic flow by using
the Lagrangian approach first, it is necessary in the first place obtain the
solution of the equations (B.20).

The integrability of the geodesic flow on the quadric (m=2) by using the
classical approach, was proved by Jacobi and Chasles.

19
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5 The geometrical and physical meaning of
the Cartesian vector field

The purpose of this section is to determine the geometrical and physical
meaning of the Cartesian vector field constructed above.

Hertz’s principle of least curvature is a special case of Gauss’ principle,
restricted by the two conditions that there be no applied forces and that all
masses are identical. (Without loss of generality, the masses may be set equal
to one.) Under these conditions, Gauss’ minimized quantity can be written

The kinetic energy
1.
T = Sl

is also conserved under these conditions
Since the line element ds? in the 3N-dimensional space of the coordinates
is defined

2
ds? — oTde? e 5 _op

dt?
by considering the conservation of energy we obtain
ds?

a2

Dividing Z by 2T yields another minimal quantity

Since v/K is the local curvature of the trajectory in the 3N-dimensional space
of the coordinates, minimization of K is equivalent to finding the trajectory of
least curvature (a geodesic) that is consistent with the constraints. Hertz’s
principle is also a special case of Jacobi’s formulation of the least-action
principle. Curvature refers to a number of loosely related concepts in different
areas of geometry. In mathematics, a geodesic is a generalization of the
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notion of a straight line to curved spaces. Definition of geodesic depends on
the type of curved space. If the space carries a natural metric then geodesics
are defined to be (locally) the shortest path between points on the space.

Below we restricted to the case when the configuration space is the three
dimensional Euclidean space with Cartesian coordinates z = (x1, x2, x3).
The geodesic flow on the surface f(x) = ¢ is determined by the second- order
differential equations

&2 (A(z)%, %) |
== Ti = "1 1> == 17273
i e PE R

which, by considering the energy integral, can be written as follows

d*x? - (A(x)r, 7).
— Ti = Tz 1o :1a2>3
gt = e PETAgE
where P
X 2
= — =1.
=2

Clearly that
Vi - @ 7]
/|7
The Hertz’s Principle of Least Curvature and problem on the determi-
nation the principal directions on the surface lead us to state the following
problem.
Problem 2
Determine the
extremum(A(x)T, T)

(P10
(fX7 T) =0
Solution

Note that in this case the Lagrangian function is

under the conditions

L= (A(@)r,7) +o(fx,7) + 2(lI7|I* — 1)
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where o and z are the Lagrangian multiplier and computer

Ol 20, =128 (AW) + 2D 4o fk =0
J
OL
%—0@(.]0}(77—)_0
oL 2
T —oe P -1=0
T

where 71 = col(m, 72, 13) and [ is the diagonal matrix: I = diag(1, 1, 1),
from the first group of equations, we deduced the following equalities

() = —o(A(x) + 2I) 7" fx(2)) (5.1)
and
R.x=0 (5.2)
if
det (A(x) + =1I) # 0,
where x = col(7y, T2, 73, 0) and R, is the following family of matrixes
Joray + 2 Jorzs Joras Jay
RZ — f[E]ZEQ ffEQ"EQ _'_ z fZEQZES fZEQ

fe123 feazs Joses T2 Jas
Jor Jas Jes 0

In view of that the vector x is non-zero vector then from (5.2]) one can
deduce that

detR, =0 (5.3)

In order to establish the relation between the vector field with components

given by (5.I)) and Cartesian vector field (216) we introduce the family of
vector fields v, :

VvV, = ((A(:L’) + Z[)_lfxaa’v)> a’c = (aﬂcv 89627 8963) (54)

where z is a complex parameter. After some calculations one can prove
that v, admits the representations
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fxlxl + z fxlxg f:clxg fxl
fwlfBQ f-’E2-'E2 _'_ z fmzwg f:vg — Z2X1 + ZX2 _I_ X3
fﬂcwcs fmgxg fmgmg + z fgcg det (A + Z[)
Ory Ory Ors 0

(5.5)

which are equivalents equivalent to (5.4), where A f = 0y, 0y f+00puy [+ 0rgus f-
and X7, X5, X3 denote the vector fields:

Xy = (f2,0:)
Xy = (gxaa:c) - Af fxaa:c)a 9= ||f96||2 (56>
X3 = det A(SL’) Uz|z=0

We now introduce the function

-t - S

which in view of (5.5) may be written as
F(z) =det (A+ z2I)detR,

Corollary 5.1 If the function f is a homogeneous function of degree m then

Xy =g (@)K (z) (2, ), g =fall” (5.8)

where K is the Gaussian curvature of the homogeneous surface which one
can calculate as follows

_f{fmwfmzufﬂcs} 1fm7€1
1)g? ’

K(x) = (m — (5.9)
r1yg
Below we shall study only the case when the function f :
(df (X2))* — 4df (X5)df (X1) > 0 (5.10)

Clearly, under this assumption the function F' has two different real roots
which we shall denote by 2, 2o
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Corollary 5.2 Let vy, vy are the vector fields such that
V; = 'Uz|z:zj-> ] - 172

then the solution of the problem 2 are the vector fields :

7U) = : j=1,2

The proof it is easy to obtain.

Proposition 5.1 Let f(x) = ¢, ¢ # 0 be the homogeneous surface which

satisfies (2.10).
Then the most general vector field tangent to the given surface admits the
development

v(x) = [fo(z) X [fo(z) X (1(2) ga(z) + pa(x) 2)]]. (5.11)
where 1, po are arbitrary smooth functions.

Proof
One can check direct from the above that the most general vector field
tangent to the given homogeneous surface can be written as

v(z) = a1 (2)vW () + ay(z)v? ()

where ay, as are arbitrary smooth functions.
A brief calculation show that

v(z) = M (2) fx(2) + A7) gx(z) + As3(2) x (5.12)
where
M(x) = ai(x) (27 — Af 21) + aa(w) (25 — DS 22)
)\2(.3(7) = dl(l’) z1 + dg(l‘) Z9
A3(x) = g*(2) K (@ (v) + o))
aj(z) = ajdet (A(x) + 2z;1), j=1,2

One can see that the equation
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gA + (fx, gx) A2 +mfA3 =0 (5.13)

holds identically.
To complete the proof, we show the equivalence of (5I1]) and (BI2I),

(513). Indeed, using (5.13) we obtain that

A\ = _((fx, gx)>; +mf)\3)

Y

inserting into (B.12]) and introducing the notations
A3 Ao

pa () ;, Mz(l’):g

we get (5.1T)).
Proposition 5.2 The vector field (2.11) is Cartesian vector field if the fol-
lowing relation holds

{f797 T}(8TM1 - ag,u2 - %) =0 (514)

From the definition we obtain that the given vector field is Cartesian (see
definition 1) if the following equality takes place

(fx; (rot([fx(z) x [fx(z) x (n1(2) gx(z) + p2(x) x))]]) = 0 (5.15)

which is equivalent to (.14)).
From (5.14]) after straightforward calculations we can prove the following
assertion

Corollary 5.3 Let us suppose that (5.14) holds, then the vector field (5.13)
admits the representation

v(z) = K [fx % [fx x $x]] (5.16)
where x and ® functions such that
K(f, ®) if {f,g,7} #0;
K= g (5.17)
Ml?r+u2 lf{f,g,’f’}:(),
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and

(I)X(fug7,r) if {f,g,’f’} % 07
¢, = (5.18)

X if {f,g,7} =0;

By comparing (5.16), (5.17) with (2.I6) we obtain that the solution of
the problem 2 under the condition (5.17), (5.I8]) coincide with the Cartesian
vector field constructed in the section 3. In such a way we obtain the physical
and geometrical meaning of the constructed above Cartesian vector field.

Remark.

The physical and geometrical meaning of the Cartesian vector field for
the case when the given vector field a :

(a,rota) # 0 (5.19)

can be obtained analogously to the case study above by considering that
under condition (5.19) the equation deduced from the Lagrangian approach,
can be written as follows o

(A(z)x, x)

AP

where

(91(L1 %(81@ + 82&1) %((%ag + 83&1)
Alz) = | L(01a2 + Dar) 0Osras %(820,3 + Osa2)
5(81@3 —+ 83a1) %(82@3 -+ 83@2) 83&3

The problem 2 in this case we can state as follows
Problem 3
Determine the

extremum(A(x)T, T)

{ 7P =1=0
(a,7) =0

under the conditions
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6 Descartes approach for non-holonomic sys-
tem with three degree of freedom and one
constraints .

Our goal in this section is to extend the Cartesian approach developed above
for natural mechanical system with configuration space

Q, dmQ=3
in this space the metric (kinetic energy)

3

1 , 1
T=35 3 Guln)ii* = glji”

J,k=1

allows calculating the rot of the vector field v on Q. The invariant definition
of rotv we can find in [2]. If we assign a covector field p = (p1, pa, p3) with
components

pi =Y G(x)v*(x) (6.1)

to the vector field v = (v'(z), v¥(z), v*(x)), then the components of rotv we
can write explicitly

1 1 1
rotv(z) = (ﬁ(aﬂ% — O3p2), ﬁ(a?»pl — Oips3), —G(alpz — Oap1))
where G = det (Gy;(x)).
The vector field (Z9) for this mechanical system we shall represented as

follows
x = [a(x) x (A b(z) + Aac(2))] (6.2)

where a, b, ¢ are the independent smooth vector in Q, i.e.,

T=(a[bxc])#0 (6.3)

and \;, Ay are smooth function which we determine as a solution of the
equation
(a,rotfa x (A1 b+ Xc)]) =0 (6.4)
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The Lagrangian approach produces the following second-order differential
equations
dor or OL(|v|?
dtoik  Oxk  Ox*
We shall illustrate this case for the Chapliguin-Caratheodory sleigh and
for the heavy rigid body in the Suslov case.
The Chapliguin-Caratheodory sleigh
We shall now analyze one of the most classical nonholonomic systems :
Chapliguin-Carathodory’s sleigh [I5]. The idealized sleigh is a body that has
three points of contact with the plane. Two of them slide freely but the third,
A, behaves like a knife edge subjected to a constraining force R which does
not allow transversal velocity. More precisely, let yoz be an inertial frame
and £ An a frame moving with the sleigh. Take as generalized coordinates
the Descartes coordinates of the center of mass C' of the sleigh and the angle
x between the y and the £ axis. The reaction force R against the runners
is exerted laterally at the point of application A in such a way that the 7
component of the velocity is zero. Hence, one has the constrained system M
with the configuration space X = S! x R?, with the kinetic energy

+ Aag(z), k=1,2,3 (6.5)

I
=20+ + i

and with the constraint
€x + sinzy — cosxz = 0,

where m is the mass of the system and J. is the moment of inertia about a
vertical axis through C' and ¢ = |AC/|. Observe that the ”javelin” (or arrow
or Chapliguin’s skate) is a particular case of this mechanical system and can
be obtained when € = 0

To apply the Descartes approach for this system, first we determine the
vector b and a in such a way that the determinant T # 0. In this subcase,
we achieve this condition if

a= (e sinz, —cosz) b =(0,cosz, sinx), c=(1,0,0).

Under these restrictions we obtain that T = 1 and it is easy to show that
the vector field v takes the form:

v = A\3(0; + esinzdy + e cos x0,) — Aa(cos 20, — sinz0,).
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The Descartes approach produce the differential equations [16]

T = A3(x,y, z,€)
U = Xo(z,y,2,€) cosx — eAgsinz (6.6)
2= Xa(x,y, 2, €)sinz + €Az cosx

where Ay, A3 are solutions of the partial differential equations
sin x(J0, A3 + emdyA2) + cos £(JOyA3 — emO, ) — m(0z e — eA3) =0 (6.7)

where J = Jo + €2m.
Clearly,

IVII* = (Je + me)A(2,y, 2,€) + mAS(2,y, 2, €)
Hence, for the arrow (e = 0) we have

T = M3(x,y,20)
Y= )\2(I7 Y, %, 0) cosx
Z = Xo(z,y,2,0)sinzx
Jo(sin x0, A3 + cos x0yA3) — mOyzAa =0
Clearly, the equation (6.17) holds in particular if

em
Ay = ————08.\
Dhs Jo + 62m8 2
8Z>\3 == —mﬁy)\g
01,)\2 = 6)\3

After some calculations we can prove that the functions

Ao =cosaVi(y,z,€) +sinaVa(y, z,€) + a [ K(z,€)dx

Ag = %(casa Vo(y, z,a) —sina Vi (y, z, 6)) + K(z,¢),
emax
a=——
JC —|—€2m

are solutions of (6.7)), where K is an arbitrary function and Vj, V5 are
functions which satisfy the Cauchy-Riemann conditions:

{ ay‘/l(yaza 6) :azvé(?ﬁza 6)
az‘/l(yazv 6) = _ay%(yvzae)'
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Corollary 6.1 The all trajectories of the Chapliguin skate (¢ = 0) under
the action of the potential field of force with components (0, mg, 0) can be
obtained from the Descartes approach

Proof.
In fact, for the case when ¢ = 0 the classical approach for Chapliguin-
Carathodory’s sleigh gives the following equations of motion

=0
Yy =mg-+sinzu
Z = —COST

sinxy —coszz = 0
Hence,by derivation we obtain

4
dt sin x

) =gcosx

as a consequence,
T = COa C10 7& 0

gsinx

v =( + C4) cosx

+ C)sinz

or,
T =
y = (gt coszg + C1) cos xg

Z = (gtcoszo + Cy)sinxg

Clearly, the solutions of these equations coincide with the solutions of (6.6]), (6.7)
with the subsidiary conditions [16]

JoAs +mA; = mgy + h.

are particular cases of the equations obtained from the Descartes ap-
proach.

Corollary 6.2 The all trajectories of Chapliguin -Carathodory’s sleigh by
wnertia can be obtained from the Descartes approach
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Proof
Let us suppose that

)‘j:Aj(x>€)a ]:1a2

then the all trajectories of the equation (6.6]) can be obtained from the for-
mula

/ .
B (Aa(z, €) cosx — €Az sin x)dx
y=w+ ] As(z, €)
- (A2(x,y, z,€) sinz — €Az cos x)dx
cTA >\3(I7 6)
Fm o+ [T
L 0 >\3(I7 6)

On the other hand, for the Chapliguin- Caratheodory sleigh by inertia
from the classical approach we deduce the following equations

JoZ = €
my = sinxu
mzZ = — COS Tl

€ +sinxy —cosxz =0

Hence, after straightforward calculations we obtain the system

m
Jo + me?
y = Cy(sin(gex + C) cosx — qe cos(gex + C') sin x)
Z = Cy(sin(gex + C) sinx + ge cos(ge + C') cos x)

= qCycos(qex + C), ¢* =

m

Jo + me?’
which are particular case of the equations (6.6]) with

where ¢% =

Ao = Cpsin(ger + C), A3 = Coq cos(gex + C)
Evident that in this case

2|[v|[? = (Jo + me*) A5 (z, €) + mA3(z,€) = mC
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7 The rigid body around a fixed point in the
Suslov and Veselov cases.

In this section we study one classical problem of non-holonomic dynamics
formulated by Suslov [I12]. We consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints (a,w) = 0
where w is a body angular velocity and a is a constant vector. Suppose
the body rotates in an force field with potential U(+,72,73). Applying the
method of Lagrange multipliers we write the equations of motion in the form

[0 = [lox W]+ [y x ]+ pa

=[x (7.1)
(a,w)=0

Where
I = diag(I, 1, I3)

v=(yy =sinzsinz, v =sinzcosz, 3= cosz)

I, Iy, I3 are the inertial moment of the body.
If we assume that the vector a = (0,0, 1) [12], then

( ]1&)1 = ’)/3872(] - ’)/2873(]
[2@2 = ’71073(] — ’YgafﬂU
([1 — [2)(4}1(4}2 + ’}/ga»ﬂU — vlﬁwU + n = 0
Y1 = —Y3w2
F2 = Yaw1
. Y3 = Y1iw2 — Yow1

The above system always has two independent first integrals

Ky = 5(hwi + Lws) = U, 72, 73)
Ko =27+ +73

For the real motions K, = 1.

By the Jacobi’s theorem about the last multiplier, if there exits a third
independent first integral K3 which is functionally independent together with
K, and K3, then the Suslov problem is integrable by quadratures [12]

To determine the integrable cases of the Suslov problem seems interesting
the following result which we can prove after straightforward calculations.
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Proposition 7.1 Let us suppose that the potential function U in (7.3) is
determine as follows

1
= —— (i} + Lyu3) — h :
U 2]’1]2 ( 14 + 2/"62) (7 3)
where (i1, paare solutions of the partial differential equations
Oy Ous O Opte
— — + =0, 7.4
sl Oy O )= 03 n 03 (7.4)

then the equations (7.2), (7-3) admits the first integrals
Lwy = po,  Towy = —py (7-5)

The aim of this apartat is to propose the Descartes approach for heavy rigid
body in the Suslov case.
Let us suppose that Q = SO(3), with the Riemann metric

I3 I3 cos z 0
G=| Iicosz (I;sin?x + Icos?x)sin®z + I3cos?z (I, — Iy)sinz cos wsin 2
0 (I, — I) sin z cos w sin z I, cos’z + Iy sin®x

det G = I, 1,15 sin® 2,

In this case we have that the constraints are
w3 =0&x+coszy =0
Hence a = (1, cos z, 0). By choosing the vector b and ¢ as follow
b=(0,1,0), ¢=1(0,0,1)
we obtain that T = 1. Consequently
v = Ag(cos 20, — 0y) — N30,

The differential equations generated by v and condition (6.4) in this cases
take the form respectively

T = COS Z Mg,
y = _>\27 (76)
Z=—M\3
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(a,rotv) = 0 < 0,ps — Oyps + cos z0,p3 = 0 (7.7)

After the change 7, = sinzsinx, 7, =sinzcosz, <3 = cosz the sys-
tem (Z.6]) and condition (1) can be written as follow

M= If—}Q,uﬂs
Yo = If—ﬁzﬂﬂs (7.8)

Vs = 15 (L + Lpay)
Otz .
— Yoz + T) — cosxOypy — sinxdypy =0 (7.9)

po = —I1(cos A3 + sinz)\y),
p1 = Ir(—sinxAg + cos xAs)

We shall study only the case when

Hi = :uj(x7 Z)v j = 172
Hence, we obtain the equation (T.4]).

Corollary 7.1 The function py, ps :

oS (1,
1 = % +U1i(v5 +73,7)
§a!
85(71772) 2 2 (7'10)
po = 2T 4 (5 493, 72)
V2

satisfies the equation (7.4).

Corollary 7.2 Let uy, po are such that

_98(m;,72)

- ) .]:172
J a’}/j
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then the potential function (7.3) and first integrals (7.9) are respectively

( 1 oS oS
= (] M N\2 I N2 —h
U 2&5%51(871)'+ 257
Lw = —, 7.11
wi =g (7.11)
loywy = ——,
\ 2W2 7

The following particular cases produces the well known integrable cases [12]:
The Suslov, Kharlamova-Zabelina and Kozlov subcase.
The Suslov Subcase
If
S = Cl'}/l + 02’}/2, Cj = const, j = 1, 2

then
{ /~L1:Ch ,LL2:C2

U = const.

which correspond to the Suslov subcase.
The integration of the equations (Z.8)) in this case produces the following
solutions

( Cy C
W] = —, Wy = ——
1 [17 2 [2
CiI I2C? + 1207 I,C!
v = 11 sin 3 sin( it 2t+oz)+ 2C 005 )
VIRC? + I2C2 L1 VIRC? + I2C2
I /I2C? + 1202 I
Yo = Caly sin J sin ( i1 2t+a)— 1€ cos 5
VIRC? + I2C2 LI, VIRC? + I2C2
2C? + 1207
3 = sin 3 cos(( Mt + a)
\ 11[2

where C, Cy, «, 3, are the arbitrary real constants.
The Kharlamova-Zabelina Subcase
If

L CGL G
C2I, + C2L, ' C2IL + C2L,

2

h+ Ciy + Coya)?
11012 n 12022 (\/ 171 272)

where h, Cy, Cy, C are arbitrary constants, then
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CCyl,

o
\/h—FCl'Yl‘l‘CQ’}/Q‘l'm

SN No: 3 No:
CC1h

e o O o
K2 O+ 102 1M 272~ @Pr i otn

U=h+Cim+ Coy

As a consequence we deduce the Kharlamova-Zabelina subcase [6].
The solutions of the equation (7.2)), (7.§)) are

( C, CCy1,
Lw, = C C —
1w ﬁlcz T .C2 \/ h+ Ciy + Caye + C?L + C2hy

Cy ~ CcC 1
hun = (e VI O e )
U = il—i- 01’71 —+ 02’72
v = aj(T — C3)? + bj(1 = Cy) +dj =;(1,C1,Cs,C5,Cy), j=1,2
Y3 = /1 =2(1,C1,Ca,C3,Cy) —72(1,Cy, Cy, C3, Cy) = \/Py(1,C1, Ca, C3,Cy)

11[2 dr

t =1y +
L \/P4(T7 01702703704>
where
W - 1;C; b CLI,C,Cy o hI;C;
T4 Y G(hCE+ LG Y LG+ LCY

Py is a polynomial of four degree in 7.
Kozlov Subcase
If we suppose that I; = I and

§ = —2Carctan 33 + [ D7} +73)d(71 +73)
hu? + /1 —uu — C?
(D(w))* =

w2
where h and C' are arbitrary real constant, hence,
7C

= s +mD(E +

1 %J 2t (v +13)
71

M2 = iy +72D(71 +V2)

=—h+ 1 —i = =—h+n
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which correspond to the Kozlov subcase.
The equations (7.8) in this case take the form:

C cosz
:L' =
sin” z
Y= Ib (7.12)
51
5 ( M 7) (71 ‘l‘%)
sin z

which are easy to integrate.
The solutions of the equation of motions are:

( e
W1 = —|—’}/D’y + v
R B (3 +72)
Y2 9 9
w2 = — DO+
R R B <1d 2) y
REAE 34773
r=mxy+C N /
0 f(1_7§)2D(1_ Do \/1_73 P473,h C)
y:yO_Cf d’YS — 4o —
(1—7%2[7(1— 73) \/(1—73)134(73,}1,0)
t:t0+11[2fﬁ
4\"35 Ity
( Py(v3, h,C) = hyy — 293 — 2hys + 293+ h — C?

Corollary 7.3 Let jy, ps are the functions:

{ = Pi(s +93,7)
p2 = V(77 +13,72)

then the solutions of (7.8) are the following functions:
= T — T =1,2
/ Fi () 1112( ),
13 =/1=73(1) = 5(7)

dr
R S GEE T

where ) )
{ Fl(’}/l) = \Ill(72 + V35 71)|’y§+'y§:1—'y%

F2(’Y2) = \P2(7% + 7?%? 72)|'yf+'y§:1—-y§
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As a particular case we obtain the Tisserand Subcase.
Tisserand Subcase
The interesting solution of the equation (Z4]) are

{ = vVhi+a(F+32) + i+ fi(n) = U(E +43,m)
piy = \/ha + as(VZ +72) + 0272 + fo(72) = Ua(7? +2,72)

which produce the following potential function U :

U = L+ Lho+(Iiby 4+ Toaz) V2 +(Iiay+1oby )y +(1iar +Laas) v+ 11 f1 (1) + o fo (72)

where a;, bj, hj, 7 = 1,2 are arbitrary real constants and f;, j = 1,2 are
arbitrary functions.

The case when f;(v;) = a;7;, j = 1,2 was studied in [11], where «;, j =
1,2 are real constants.

The case when f; =0, j = 1,2 is well known as Tisserands case [12].

After integration the equation (7.8) in the Tisserand case we obtain the
following solutions

(L = \/hz + az(73 +77) + b3
Lws = —/hi + a1(7 +13) + b1y?

:\/m- Vg — byl Cy) =
Yo 2 sin(v/az o[y + Co) = vo(T)

73 = /1 —3(1) —3(7)
t= to + [1]2 f
\

1= (1) =3 (1)
Heavy rigid body in the Veselov case
In this example we study the problem of non-holonomic dynamics for-
mulated by Veselov in [I3] which in certain sense is opposite to the Suslov
problem. In this problem we consider the rotational motion of a rigid body
around a fixed point and subject to the non-holonomic constraints
(v,w)=y+coszz =0

Suppose the body rotates in an force field with potential U(v1,v2,73)-
Applying the method of Lagrange multipliers we write the equations of mo-
tion in the form

Iw:[waw]—l—[yxg—g]%—)«y
¥ =[xl
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where [ is a matrix such that I = diag(l4, 1o, I3).
The Descartes approach for this system produces the following equations:

T = Ay
Y = — COS 29
Z - >\3
and
Op3 op Op Ops
/T — - ) =0
ox 0z + cos 2 0z oy )
where

P1 = Ig SiIl2 Z)\g
p2 = (I3 — I, + (I, — I5) cos® ) cos zsin® z\y + (I; — Iy) cos z sin  sin 2\
p3 = (Iysin® x + I; cos? ) A3 + (I, — I;) sin x cos x sin z cos 2o

Finally it is interesting to observe that the construction the Descartes
approach for the Federov case [14], i.e.,

(w,7) =a

it is necessary in the above example make the change y — vy + at, a = const..
Hence we obtain that that the equations generated by the Descartes vector
field are

.jf == >\2
Y= —CcoszAs + a
Z= )3
and
Ops op Opo Ops
R R A R 1
ox 0z + cos 2( 0z oy ) =0 (7.13)
where

p1 = Igsin? 2\,
p2 = (I3 — I, + (I, — I5) cos? ) cos zsin? z\y + (I} — I) cos z sin z sin zA3+
a((I sin? x + I, cos? ) sin? z + I3 cos? 2)
p3 = (Iysin? 2 4 I; cos? x) A3 + (I — I1) sin & cos z sin 2 cos 2\,
(7.14)
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The equation (7.I13) can be represented as follow

sin?z(I3sin® z + cos? z(1; sin® z + I, cos? )0 \a(z, 2)+

(Iysin?z + I cos® 2) 0, \s(z, 2)+

cos xsin xsin z cos z(I1 — 1) (0 3(xw, 2) — OpAa(x, 2))+

sin z cos z(3(I; — o) sin® z cos® z + 31, — I3) sin® 2 + I} + o) A\o(, 2)

cos zsin x(—2 + cos? 2)(I; — Iy)A3(z, 2) + 2asin z cos? z(I sin® ¥ + I, cos? z) = 0.
(7.15)

Proposition 7.2 Let Ao, A3 are the solutions of the linear partial differential
equations (7.13) then the functions

w1 = Yodk — Nyshe — am
Wy = M5 — Y232 — Ao (7.16)

w3 = sin? 2\ — ays

are the first integral of the equations of the rigid body in the Veselov-Fedorov
case.

In particular if
Il = 127

then the solutions of the above equation are

A3 =sinz C(2)
VI3sin® z + cos? 2L sin? 2\ = aQ(z) + K (z)

where C(z) and K (x) are arbitrary functions and

a(2) / I/ (I3sin? z + cos? 21,)(2sin z — sin 52 + sin 3z)dz
2) =
(—1I3cos 4z + 413 cos 2z — 313 — I, + 15 cos 4z)

Hence, from (7.16) we obtain

( af)(z) + K(x
w1:72c(2)—7173 2() () 5 —am
VIzsin® z + cos? zIy sin® 2
al)(z) + K(z)
wy = —710(2) — 7273 o a2 (7.17)

V/I3sin? z 4 cos? 21, sin? 2
af)(z) + K(x)

\/[3 sin? z + cos? 21,

ws — a”s
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Thus, we easily deduce the relation

(I3sin® z + cos® z15) (w3 + ays)? = (aQ2(z) + K)*.

In particular if a = 0 and K (x) = C} = const then we obtain the well known
first integral in the Veselov case [4]
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