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Abstract. Consider a set of n pairwise disjoint axis-parallel rectangles in the plane.
We call this set the source rectangles S. The aim is to move S to a set of (pairwise
disjoint) target rectangles T . A move consists in a horizontal or vertical translation of
one rectangle, such that it does not collide with any other rectangle during the move.
We study how many moves are needed to transform S into T . We obtain bounds
on the number of needed moves for labeled and for unlabeled rectangles, and for
rectangles of different and of equal dimensions.
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1 Introduction

Consider a set of n pairwise disjoint axis-parallel rectangles in the plane. We
call this set the source rectangles S. The aim is to move the source rectangles to
a set of (pairwise disjoint) target rectangles T . A move consists in a horizontal
or vertical translation of one rectangle, such that it does not collide with any
other rectangle during the move. We say that two rectangles collide if their
intersection is non-empty. We study how many moves are needed to transform
S into T . This problem can be seen in the context of motion planning.

In a related work, Abellanas et al. [1] studied the number of moves needed
to translate coins. There a move consists of translating a coin along a fixed
(not necessarily axis-parallel) direction. Another model for reconfiguration of
disks, studied by Bereg, Dumitrescu and Pach [4], considers disk slides, where
the center of a disk moves along an arbitrary continuous curve. Bereg and
Dumitrescu [3] investigated the number of moves needed to reconfigure disks
in the lifting model, where a disk is lifted from the plane and placed back in
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the plane at another location. Recent results on translating and sliding coins,
and convex bodies in general, are due to Dumitrescu and Jiang [6]. They also
show that in the translation model (not restricted to axis-parallel directions)
of unlabeled axis-parallel unit squares 2n− 1 moves are always sufficient and⌊

3n
2

⌋
moves are sometimes necessary to transform S into T . Related works on

motion planning are also reconfigurations of modular metamorphic systems in
a rectangular model [7] and reconfigurations of modular cube-style robots [2].

We study reconfigurations of rectangles with axis-parallel movements for
three settings: In Section 2 we consider labeled rectangles of different dimen-
sions. Here each source rectangle has its uniquely assigned target rectangle. In
Section 3 we study labeled rectangles of equal dimensions. And finally in Sec-
tion 4 we consider unlabeled rectangles. There, all rectangles are translates of
a given rectangle and we are free to assign the source rectangles to the target
rectangles. The following Table 1 summarizes the obtained bounds. A main
tool in our proofs are known results on separability of convex bodies [9,10].
In the figures, source rectangles S are drawn in white, and target rectangles
T in gray.

necessary moves sufficient moves
labeled rectangles of different dimensions 3n− 1 4n− n

8log2 n

labeled rectangles of equal dimensions 3n− 1 31n
8

unlabeled rectangles 2n+ 1 17n
6

Table 1. The number of moves that are sometimes necessary (left) and the number
of moves that are always sufficient (right) to reconfigure a set of n rectangles.

2 Moving labeled rectangles of different dimensions

In this section each source rectangle has its unique target rectangle. The source
rectangles might have different dimensions.

Theorem 1. If the n rectangles of S are separated from the n rectangles of T
by an axis-parallel line, then 3n−1 moves are always sufficient and sometimes
necessary to rearrange S as T .

Proof. Without loss of generality, assume that S and T are separated by a
vertical line and S lies to the left of this line. In a first step move each rect-
angle of S upwards in such a way that each pair of rectangles is separated
by a horizontal line and all rectangles lie above the target. We remark that
Guibas and Yao [8] showed that for every set of pairwise disjoint rectangles
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Fig. 1. 3n−1 moves are sufficient if S and T are separated by a vertical or horizontal
line.

and for every fixed direction, there exists an order for the rectangles which
allows to translate them, one at a time, in that direction. Then we can choose
any rectangle, translate it horizontally and let it ‘drop’ to its target position.
We ‘fill up’ the target from the bottom right to the top left. More formally,
the insertion order is given by repeated application of the following rule:
Choose the rightmost rectangle among all rectangles p of T for which the rect-
angle defined by the lower left corner of p and the point ‘(∞,−∞)’ is empty.
Then delete this rectangle from the target list.
In the example of Figure 1 the insertion order is {4, 7, 3, 2, 1, 6, 5}. The inser-
tion order guarantees that no two rectangles collide. This sequence uses 3n
moves in total to transform S into T . It remains to show that there is one
rectangle which only requires two moves. Actually, it is sufficient to only move
upwards n− 1 rectangles in a first step. One can verify that moving this last
rectangle directly to its target position does not produce a conflict with the
given insertion order.
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A collection of rectangles that requires 3n− 1 moves is shown in Figure 2.
Each pair of source rectangles is separated by a vertical line but not by a
horizontal line. The rectangles are labeled 1, . . . , n from left to right. The
target destinations are obtained from S by mirroring S along the separating
line and then translating each rectangle slightly in vertical direction. Thus,
for each rectangle we need at least two moves to place it in its final position.
Assume there are two source rectangles i and j, i < j, such that each of
them only needs two moves in an optimal sequence of moves. For rectangle
i there are two possible ways to reach its target destination, that is, first do
the horizontal move or do the vertical move. In either case rectangle j is an
obstacle, because there is no horizontal line which separates i and j - neither
in the source nor in the target. This implies that the rectangles i and j collide.
Hence, for all but one rectangle three moves are needed. ⊓⊔

Fig. 2. A collection of rectangles that requires 3n − 1 moves to reach the target
destination.

To bound the number of moves in the general case we use ’separable sets’ [5,9,11].

Definition 1. A set of pairwise disjoint rectangles in the plane is separable
if the plane can be subdivided by a straight-line and if then each of the two
obtained open half-planes can be subdivided recursively by straight-lines (or
straight-line segments with endpoints on previously drawn straight-lines), such
that each of the obtained regions contains exactly one rectangle in its open
interior.

J. Urrutia conjectured that each set of n pairwise disjoint axis-parallel
rectangles has a subset of Ω(n) separable rectangles (ACCOTA 1996, see [9]).
We will use the following slightly weaker result of J. Pach and G. Tardos:

Theorem 2. [9] Any set of n pairwise disjoint axis-parallel rectangles in the
plane has a subset of n

2 log2(n) separable rectangles.
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For the separation only axis-parallel lines are used. Furthermore, the sep-
aration can be obtained by first using only horizontal lines and then adding
vertical segments within stripes defined by two consecutive horizontal lines.
We will use this special separation.

Theorem 3. There always is a sequence of at most 4n − n
8log2n moves to

rearrange any set S of n pairwise disjoint, labeled source rectangles as any
target set T .

Proof. Figures 3 and 4 also illustrate the following proof. Consider a maximal
separable subset B of rectangles of S. Draw all the horizontal lines which
separate rectangles of B. This gives a partition of the rectangles of B into
horizontal stripes. In Figure 3 these stripes are labeled A to D. Within each
stripe the rectangles of B are separated by vertical segments. We show that

Fig. 3. Transforming S into T using at most 4n− n
8log2 n moves. Case 1.

S can be transformed into T by performing 3 moves for |B|
4 elements of B

and 4 moves for the remaining rectangles. For each rectangle b of B its target
either lies in the same stripe - we also assign the target of b to this stripe if it
intersects one of the boundary lines of the stripe - or entirely above or entirely
below the stripe. Let X denote the rectangles b of B whose target lies in the
same stripe as b. Let Y denote the rectangles b of B whose target does not lie
in the same stripe as b. One of X or Y contains at least half of the elements
of B. We distinguish these two cases.
Case 1) |Y | ≥ |B|

2 .
Assume that at least half of the rectangles of Y have their target in a stripe
below (the case that at least half of the rectangles of Y have their target
in a stripe above being symmetric). Call this set of rectangles Z. In a first
step, move all rectangles of S far to the right, such that any two rectangles are
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separated by a vertical line, and further move each rectangle not in Z upwards,
such that all these rectangles lie high above the target. Every rectangle not in
Z is moved upwards immediately after the move to the right. The rectangles
of Z are not moved upwards. The move to the right for the rectangles of Z is
done in such a way that each rectangle of Z can be moved downwards and to
the left again without intersecting rectangles of Z. Also, the rectangles of Z
lie to the right of all other rectangles after the first step. Figure 3 depicts the
situation. The rectangles of Z are drawn in bold. In a second step, fill up the
target from the bottom left to the top right. This is done by using an insertion
order for the target rectangles similar to the proof of Theorem 1, and moving
the source rectangles in this order first downwards and then to the left.
Case 2) |X| > |B|

2 .
Figure 4 shows this case. Assume that for at least half of the rectangles of

Fig. 4. Transforming S into T using at most 4n− n
8log2 n moves. Case 2.

X the target does not intersect the upper bound of the stripe containing the
source rectangle (the case of intersections with the lower bounds of the stripes
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being symmetric). Let Z denote this set of rectangles. In a first step, move all
rectangles of Z far upwards and all other rectangles first far to the right and
then upwards. This can be done in such a way that each pair of the rectangles
not in Z is separated by a vertical line and by a horizontal line after this first
step. The first move for each rectangle of Z is far upwards, in such a way that
Z lies far above the other rectangles, the rectangles stay within their stripe
(in the order A-D in Figure 4), and within each stripe each pair of rectangles
is separated by a horizontal line. Further, within each stripe, the rectangles
are ordered (vertically) according to the insertion rule for the second step.
More precisely, if a rectangle i will be dropped before a rectangle j (i, j ∈ Z)
then i lies below j after the upward moves of Z. This guarantees that no two
rectangles of a same stripe of Z collide. In a second step, fill up the target
rectangles, according to an insertion order similar to Theorem 1. Each source
rectangle is first translated horizontally and then moved downwards to its
target. Note that there are no collisions when elements of Z are dropped to
their target positions because the elements of Z are worked off stripe after
stripe.
In both cases |Z| ≥ |B|

4 ≥ n
8 log2 n . ⊓⊔

3 Moving labeled rectangles of equal dimensions

Now we consider the case that all rectangles have the same dimensions. This
case allows an improvement of Theorem 2. A similar statement to the following
lemma can be found in [10].

Lemma 1. Any set of n pairwise disjoint axis-parallel rectangles, all of them
of equal dimensions, in the plane has a subset of at least n

2 separable rectangles.

Proof. We can assume that each rectangle has base length 1 and that for no
rectangle the x-coordinate of the left boundary is i, i ∈ Z. Consider the set L
of vertical lines at distance 2i from the origin, for i ∈ N. Observe that each
rectangle is hit by at most one line of L and any two rectangles which are
entirely inside the stripe defined by two consecutive lines of L can be separated
by a horizontal line. If at least n

2 rectangles are hit by lines of L, then these
rectangles can be separated by a set of vertical lines at distance 2i−1 from the
origin, for i ∈ N, and within each of the resulting stripes the rectangles can
be separated by horizontal segments. If at most n

2 rectangles are hit by lines
of L, then the remaining rectangles can be separated by L and within each of
the resulting stripes the rectangles can be separated by horizontal segments.
⊓⊔

Now the reasoning of the proof of Theorem 3 implies

Theorem 4. There always is a sequence of at most 31n
8 moves to rearrange

any set S of n pairwise disjoint, labeled source rectangles of equal dimensions
as any target set T .
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4 Moving unlabeled rectangles

A lower bound of 2n moves to move n unlabeled source rectangles S to their
target destinations T is obvious, if the centers of all rectangles of S and T
have different coordinates. There exist examples of n rectangles that require
at least 2n+ 1 moves, see Figure 5.

Fig. 5. At least 2n+ 1 moves are needed to reconfigure S as T .

Theorem 5. If the n unlabeled rectangles of S are separated from the n rect-
angles of T by an axis-parallel line, then 2n moves are always sufficient and
sometimes necessary to rearrange S as T .

Proof. We can assume that S and T are separated by a vertical line and that
S lies to the left of that line. We define a removing order for S and an insertion
order for T . Then we fill up the target destinations by the order of T and we
move rectangles from S to T by the order of S. The order for S is given
by repeated application of the following rule: Choose the rightmost rectangle
among all rectangles p of S for which the rectangle defined by the lower left
corner of p and the point ‘(∞,∞)’ does not intersect other rectangles of the
source list. Then delete this rectangle from the source list.
The inverse order for T is given by repeated application of the following
rule: Choose the leftmost rectangle among all rectangles p of T for which the
rectangle defined by the lower right corner of p and the point ‘(−∞,∞)’ does
not intersect other rectangles of the target list. Then delete this rectangle from
the target list. ⊓⊔
An example for the order of moves is shown in Figure 6. For each move, the
two gray regions indicated in Figure 6 are empty, which allows to move the
rectangle of S to T without collisions in two moves.
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Fig. 6. 2n moves are sufficient to rearrange unlabeled rectangles if S and T are
separated by an axis-parallel line.

Applying Theorem 5 twice, we obtain the following corollary:

Corollary 1. Given two vertical (or horizontal) lines L1 and L2, such that S
(respectively T ) lies inside the stripe defined by L1 and L2, and T ( respectively
S) lies outside the stripe, then 2n moves are sufficient to rearrange the n
rectangles of S as T .

Theorem 5 immediately implies that 3n moves are always sufficient to
rearrange S as T , because with a first sequence of n moves we can separate S
from T by an axis-parallel line. In order to improve this bound we need the
following lemmas.

Lemma 2. If each pair of the n rectangles of T , or of S respectively, can be
separated by a vertical line, then 2n moves are always sufficient and sometimes
necessary to rearrange S as T .

Clearly, the statement also holds for horizontal instead of vertical lines.
We omit the proof of this lemma due to lack of space.

Lemma 3. If there exists an axis-parallel line that stabs c ·n rectangles of the
n rectangles of S, or of T respectively, for 0 < c < 1, then 3n − c · n moves
are sufficient to transform S into T .
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Proof. Assume that a vertical line L stabs c · n source rectangles of S. Let nr

denote the number of source rectangles to the right of L, and let nl denote
the number of source rectangles to the left of L. In a first step move all nr

rectangles of S on the right of L far to the right, such that a vertical line
separates them from T , and such that each pair of these nr rectangles is
separated by a vertical line. In the same way, move all nl rectangles of S on
the left of L far to the left, such that a vertical line separates them from T
and such that each pair of these nl rectangles is separated by a vertical line.
This needs n − c · n moves. Now, assign the nr rightmost rectangles of T to
the nr source rectangles on the right. Assign the nl leftmost rectangles of T
to the nl source rectangles on the left. Assign the remaining c · n rectangles
of T to the c · n source rectangles that are stabbed by L. Any two of these
c · n source rectangles are separated by a horizontal line. Using Lemma 2,
these source rectangles can be moved to their assigned target rectangles using
2c ·n moves. Then, we can move the nr source rectangles on the right to there
assigned targets, using an insertion order for the target as in Theorem 5. Since
each pair of these source rectangles is separated vertically, we move them to
the target in the order given by x-coordinates. For each rectangle we first
perform the vertical move and then the horizontal move. This sequence uses
2nr moves. Analogously, 2nl moves are used to move the source rectangles on
the left to their assigned target rectangles. Altogether, 3n − c · n moves are
used. ⊓⊔

Lemma 4. If there does not exist an axis-parallel line that stabs c·n rectangles
of S, or of T respectively, for 0 < c < 1

4 , then 5n
2 + 2c · n moves are sufficient

to transform S into T .

Fig. 7. At most 5n
2 + 2c ·n moves are needed if no axis-parallel line stabs more than

c · n rectangles of S or T .

Proof. Sweep a vertical line L from right to left until it leaves n
2 rectangles of

S or of T in its open right half-plane. Assume, it leaves n
2 rectangles of T on



Moving rectangles 345

its right. The other case follows by first finding a sequence of moves from T
to S and then considering this sequence in reversed order. The line L crosses
at most c ·n rectangles of S and at most c ·n rectangles of T . We denote these
two sets with SL and TL, respectively. The source and target rectangles on
the right (respectively left) of L are denoted with Sr and Tr (respectively
Sl and Tl). We will use two moves for at least n

2 − |SL| − |TL| rectangles of
Sl and three moves for the remaining rectangles. In a first step we will move
all rectangles of Sr and SL far upwards or far to the right; which of them are
moved upwards will be specified below. Every rectangle of Sr can be moved
upwards as well as to the right (at its turn). A rectangle of SL can only be
moved to the right if a rectangle of Sl blocks its upward move. In the worst
case we will have to move all SL rectangles to the right. These moves will be
such that each pair of rectangles moved upwards is separated by a horizontal
line and each pair of rectangles moved to the right is separated by a vertical
line. Then we will move |TL| rectangles of Sl far to the left, such that again
these rectangles are separated by vertical lines. There will be |Sl| − |TL| yet
unmoved rectangles of Sl. We distinguish two cases depending on whether
|Sl| − |TL| ≥ n

2 − |SL| or not (here appears |SL| since this gives the worst
case).
Case 1) |Sl| − |TL| ≥ n

2 − |SL|.
In the first step, all rectangles of Sr are moved upwards, the rectangles of
SL are moved to the right. Then, all but n

2 − |SL| rectangles of Sl are moved
to the left. This uses |Sr| + |SL| + |TL| + (|Sl| − |TL| − (n

2 − |SL|)) moves.
Now, we fill up the target rectangles of Tr with the yet unmoved rectangles
of Sl and with the rectangles of SL from the right, using Corollary 1. This
needs 2|Tr| = n moves. It remains to fill up the target rectangles of Tl and
TL. We use rectangles of Sl from the left to fill up the rectangles of TL and
the remaining rectangles to fill up Tl. This can be done, because each target
rectangle can be moved to the left, and all but |TL| rectangles can be moved
upwards. (Rectangles of TL might not be moved upwards because this could
give a collision with a rectangle already placed at Tr.) Therefore we can assign
the target rectangles accordingly to the source rectangles from Sl on the left
and to the source rectangles from Sr from above. We fill up Tl ∪ TL using the
insertion order given in Theorem 5. Whenever we need to move a rectangle of
Sl from the left to the target, we choose the rightmost available one and first
translate it vertically, then horizontally. For moves from Sr above to Tl, we
first do the horizontal move and then the vertical move. This guarantees that
no collisions occur. It thus takes 2(TL+Tl) = n final moves. Summing up, this
gives |Sr|+ |SL|+ |TL| + (|Sl|−|TL|−(n

2 −|SL|))+2n = 5n
2 + |SL| < 5n

2 +2c ·n
moves.
Case 2) |Sl| − |TL| < n

2 − |SL|.
Here, in a first step, n

2−|SL|−(|Sl|−|TL|) rectangles of Sr and all rectangles of
SL are moved to the right, the remaining rectangles of Sr are moved upwards.
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Then, |TL| rectangles of Sl are moved to the left. This uses altogether |Sr|+
|SL|+TL| moves. Now, we fill up Tr with the rectangles on the right and
with the unmoved rectangles from Sl, using Corollary 1. This uses 2|Tr| = n
moves. The remaining n moves to fill up Tl and TL are as in Case 1. In total,
|Sr|+ |SL|+TL|+ n+ n ≤ 5n

2 + |SL|+ |TL| ≤ 5n
2 + 2c · n moves are used. ⊓⊔

Theorem 6. There always is a sequence of at most 17n
6 moves to rearrange

any set S of n pairwise disjoint, unlabeled source rectangles as any target
set T .

Proof. If there exists an axis-parallel line that stabs at least n
6 rectangles of

S, or of T , then Lemma 3 gives the claimed bound. Otherwise, Lemma 4 can
be applied with c = 1

6 . ⊓⊔
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