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Abstract

We study properties of the space of irreducible germs of plane curves
(branches), seen as an ultrametric space. We provide various geometrical
methods to measure the distance between two branches and to compare
distances between branches, in terms of topological invariants of the sin-
gularity which comprises some of the branches. We show that, in spite
of being very close to the notion of intersection multiplicity between two
germs, this notion of distance behaves very differently. For instance, any
value in [0, 1] ∩Q is attained as the distance between a fixed branch and
some other branch, in contrast with the fact that the semigroup of the
fixed branch has gaps. We also present results that lead to interpret this
distance as a sort of geometric distance between the topological equiva-
lence or equisingularity classes of branches.

Introduction

The notion of local intersection multiplicity between two analytic germs of curve
C : f = 0 and D : g = 0 defined in a neighbourhood of the origin O of C2,

[C ·D]O = dimC

C{x, y}

(f, g)
,

admits a geometric interpretation after Noether’s intersection formula (see the
revised approach of [1] 3.3.1), which exhibits that [C · D]O accounts for the
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infinitely near points shared by both curves, namely:

[C ·D]O =
∑

p∈N (C)∩N (D)

mp(C)mp(D) ,

the summation running on the infinitely near points p lying both on C (denoted
by N (C)) and on D, mp(C) denoting the multiplicity at p of the strict transform
of the curve C on a surface where p is a proper point.

Consider the set C of irreducible analytic germs of curve in (C2, O), which
will also be called branches. We remark that all the notions and results of this
paper apply also in the case of formal germs of curves by simply substituting
the analytic ring C{x, y} by the formal ring CJx, yK. Hence, once a pair of local
coordinates x, y in (C2, O) is chosen, a branch is defined by a class of equations
determined by f ∈ C{x, y} modulo an invertible. We will refer to C as the space
of plane branches, since it will be endowed with a topology defined by a distance,

as it will be showed next. Set np(C) =
mp(C)
mO(C) , the normalized multiplicity of

C at the infinitely near point p. When applying Noether’s intersection formula
to a pair of distinct branches C,D ∈ C by considering normalized multiplicities
instead of multiplicities, we obtain

[C ·D]O
mO(C)mO(D)

=
∑

p∈N (C)∩N (D)

np(C)np(D) =
1

dC(C,D)
, (1)

and its inverse dC(C,D) is an ultrametric distance in the set of plane branches
C (of course, we set dC(C,C) = 0; see [5]). This notion is very close to the
notion of contact between two germs, which plays a fundamental role in the
theory of polar germs of plane curves (see [6] 2.4 or [2] 5.2 or [7] pg. 69). More
precisely, the geometrical methods to measure distances presented in this paper
have revealed to be key tools to solve deep problems on polars, which will be
the object of a forthcoming paper.

Having the definition of dC (namely, equation (1)) in mind, one might feel
tempted to conclude that the notion dC should not be very distant from that of
taking inverse of the intersection multiplicity, and hence one might hope that,
given a branch C, the set

∆C := {d ∈ [0, 1] ∩ Q : d = dC(C,D), D ∈ C}

should be like a sort of inverse of the positive values of the semigroup ΣC of
the branch C. But this is far from being true: we prove here that ∆C =
[0, 1] ∩ Q, whereas it is widely known that ΣC has gaps (values not attained as
intersection multiplicity of C and any germ) closely related to the singularity of
C (see [1] 5.8.7). Moreover, on one side ΣC is an equisingularity (or topological)
invariant which determines in turn the equisingularity class of C; on the other
side, a given value a ∈ ΣC may be attained by various branches having non-
connected equisingularity classes (see [1] §5.8). In contrast, we show in Theorem
2.7 and Corollary 2.8 that any value d ∈ ∆C attained by a branch D forces the
equisingularity class of D to be so “close” to that of C as the value d determines,
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where “close” has a geometric meaning: the Enriques diagram (which is a rooted
graph encoding the topological equivalence or equisingularity class of a plane
curve singularity) of both branches share the more vertices, the smaller d is. This
fact could be interpreted as saying that dC plays the role of a geometric distance
between the topological equivalence or equisingularity classes of branches.

The distance dC is also closely related to the notion of skewness of a valuation
of C{x, y} or CJx, yK appearing in the recent development of the valuative theory
of [4]. Namely, the valuation νC attached to a branch C is defined as νC(ψ) =
[C·(ψ=0)]O
mO(C) ; the valuation νC ∧ νD attached to a pair of branches C and D is

defined as (νC ∧νD)(ψ) = min{νC(ψ), νD(ψ)} for any ψ ∈ (x, y) irreducible; the

skewness of a valuation ν is defined as α(ν) = supψ∈(x,y)
ν(ψ)
mO(ψ) . Then it holds

α(νC ∧ νD) = 1
dC(C,D) (see Lemma 3.56 of [4]). Observe that in our context the

definition of skewness of the valuation attached to a pair of branches can be
translated to

α(νC ∧ νD) = sup
ψ∈(x,y) irreducible

(

min

{

1

dC(C, (ψ = 0))
,

1

dC(D, (ψ = 0))

})

,

and hence this relation can be read as a sort of ultrametric inequality.
The aim of this paper is to obtain a deeper and geometrical insight of this

distance dC . Namely, in Section 1 we give some preliminaries and recall some
facts about the theory of infinitely near points, specially how they are combina-
torially represented by Enriques diagrams and their use to classify singularities
from the topological (or equisingular) point of view. In Section 2 we give tools
to compute the distance between any two branches in a geometric way, and we
state the main result of this section, which asserts that there are branches D
at any prescribed distance d ∈ [0, 1]∩Q of a given branch C. We also establish
the relationship between the equisingularity classes of C and D and the rational
number d. Finally in Section 3 we use the results developed in the preceding
section to determine the relative position of three branches, classifying if the
triangle (formed by the three branches) is isosceles or equilateral by a novel
and straightforward method, just by inspection of their Enriques diagram and
without further calculations.

1 Preliminaries

Here we review some basic notions and facts about singularity theory, specially
those concerned with the topological equivalence of singularities of plane curves
or equisingularity. The reader is referred to [1] chapter 3 for their proofs and
an extensive exposition.

The distance dC defined in equation (1) on the space of plane branches C is
ultrametric, which means that for any three branches C1, C2, C3 ∈ C holds the
ultrametric inequality

dC(C1, C2) 6 max{dC(C1, C3), dC(C3, C2)}
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instead of the usual (and weaker) triangular inequality dC(C1, C2) 6 dC(C1, C3)+
dC(C3, C2) (see [5]).

Among the various consequences of this inequality, we will use the following
one: if dC(C1, C2) 6= dC(C1, C3), then dC(C2, C3) = max{dC(C1, C2), dC(C1, C3)}
(which means that in a ultrametric space there are only equilateral and isosceles
triangles).

Now let us switch to some theory of singularities of plane curves.
Let NO denote the set of infinitely near points to O, which is constructed by

successive blowing-ups. More precisely, if π : S̃ → S denotes the blowing-up of
O, the points in the exceptional divisor EO = π−1(O) are the points in the first
infinitesimal neighbourhood of O, and for every i > 1 we define the points in the
i-th infinitesimal neighbourhood of O to be the points in the first neighbourhood
of some point in the (i−1)-th neighbourhood of O. Now NO is just the union of
all the infinitesimal neighbourhoods of O. This set is equipped with a natural
order: p 6 q if and only if q ∈ Np (read “p precedes q”).

For any p ∈ NO, let πp : Sp → S be the minimal composition of blowing-ups
such that p appears as a proper point in a surface Sp. The germ at p of the
exceptional divisor π−1

p (O) consists of either one smooth curve or two smooth
non-tangent branches. In the first case we say p is a free point, and in the second
case we call p a satellite point. We say that a satellite point q is satellite of p
(or p-satellite) if and only if p is the maximal free point preceding q.

If ξ is any germ of curve at O defined by an equation f = 0, we denote by
ξ̄p its total transform at p, which is defined as the germ of curve (at p) given by
the equation π∗

p(f) = f ◦ πp. By subtracting from ξ̄p the components contained

in the exceptional divisor we obtain ξ̃p, the strict transform of ξ at p. The
multiplicity of ξ at the point O is defined as the order of vanishing of f . The
multiplicity of ξ at a point p ∈ NO is defined as mp(ξ) = mp(ξ̃p), the multiplicity
of the corresponding strict transform. We also define the normalized multiplicity

of ξ at p as the quotient np(ξ) =
mp(ξ)
mO(ξ) , and bp(ξ) = nq(ξ), where q is the point

immediately before p (by the order 6). By convention, set bO(ξ) = 1 for any
curve ξ. If mp(ξ) > 0 we say that p belongs to or lies on ξ, and also that ξ goes
through p. Denote NO(ξ) = N (ξ) = {p ∈ NO | mp(ξ) > 0} which will be called
the set of (infinitely near) points on ξ.

Let p, q ∈ NO. We say that q is proximate to p, denoted q → p, if and only if
q belongs (as an ordinary or infinitely near point) to the exceptional divisor Ep
obtained by blowing up p. Note that free points are proximate to just one point
(the one which precedes it), while satellite points are proximate to two points.

A finite subset K ⊆ NO is a cluster if any point preceding p ∈ K also belongs
to K. Any cluster can be represented by means of an Enriques diagram, which
is a rooted tree whose vertices are identified with the points in K (the root
corresponds to the origin O) and there is an edge between p and q if and only
if p lies on the first neighbourhood of q or vice-versa. Moreover, the edges are
drawn according to the following rules:

• If q is free, proximate to p, the edge joining p and q is curved and if p 6= O,
it is tangent to the edge ending at p.
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• If p and q (q in the first neighbourhood of p) have been represented, the rest
of points proximate to p in successive neighbourhoods of q are represented
on a straight half-line starting at q and orthogonal to the edge ending at q.
In this paper (and for the sake of clarity of the results stated in Section 3)
we follow the extra convention that the first of these lines after each free
point will be represented downwards and the next ones will be represented
alternatively rightwards and downwards.

A point p ∈ N (ξ) is a singular point of ξ if and only if the total transform
ξ̄p has non-normal crossings. Observe that the singular points of ξ are precisely
the multiple points and the simple points at which the strict transform of ξ
is tangent to the exceptional divisor. The set S(ξ) consisting of the singular
points and the minimal nonsingular points (by the order 6) of ξ is a cluster of
N (ξ), and an Enriques diagram of S(ξ) (or any cluster of N (ξ) containing it)
will be called an Enriques diagram of the curve ξ. Two curves ξ and ζ are called
equisingular if there exists a bijection φ : S(ξ) → S(ζ) such that both φ and
its inverse preserve natural order and proximity of infinitely near points. The
importance of Enriques diagram is that they characterize the equisingularity (or
topological equivalence) classes of plane curves.

With these definitions, the intersection multiplicity of two curves ξ and ζ
can be computed by means of the

Theorem 1.1 (Noether’s intersection formula).

[ξ · ζ]O =
∑

p∈N (ξ)∩N (ζ)

mp(ξ)mp(ζ)

in the sense that one side is finite if and only if the other side is, and in this
case they are equal.

Recall that the multiplicities mp(ξ) of a curve ξ are subjected to the

Proposition 1.2 (Proximity equalities).

mp(ξ) =
∑

q→p

mq(ξ).

Now consider the case of an irreducible curve C. The set N (C) is to-
tally ordered by 6, and we also consider the set F(C) = FO(C) = {O =
p0(C), p1(C), p2(C), . . .} ⊆ N (C) of free points of C, which is also totally or-
dered by 6. In this case denote nk(C) = npk(C)(C) and bk(C) = bpk(C)(C).

The following property can be easily checked:

Lemma 1.3. pk+1(C) is proximate to pk(C) if and only if bk(C) = nk(C).

2 On the distance between branches

In this section we develop some results concerning the computation of the dis-
tance between two branches C and D in C. Then, we obtain the main re-
sult, which asserts that there are branches D ∈ C at any prescribed distance
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d ∈ [0, 1] ∩ Q of a given branch C. We show moreover that the distance d
determines to some extent the equisingularity class of D in terms of the equi-
singularity class of C.

As it was said at the beginning, the geometric way we use to compute the
distance between two branches C and D follows from Noether’s intersection
formula (Theorem 1.1), and it is given by

1

dC(C,D)
=

∑

p∈N (C)∩N (D)

np(C)np(D). (2)

Our first aim is to obtain a formula involving only the common free points of C
and D, and to achieve it we need to develop some preliminary results.

We begin by considering sequences of consecutive satellite points on a branch
C. Let p ∈ F(C) be a free point different from O and proximate to p′ ∈ N (C)
(note that p′ need not be free), and let also m0 = mp′(C) and m1 = mp(C)
be the multiplicities of C at these points. Let a1, . . . , ar and m2, . . . ,mr be
defined by Euclid’s division algorithm as m0 = a1m1 + m2, m1 = a2m2 +
m3, . . . , mr−1 = armr. By Theorems 3.5.8 and 5.5.1 of [1], the sequence of
points on C after p′ begins with

p1,1 = p < . . . < p1,a1
< p2,1 < . . . < p2,a2

< . . . < pr,1 < . . . < pr,ar

where each point has multiplicity mpi,j
(C) = mi, every point but p = p1,1 is

satellite, and the point on C after pr,ar
is free. We denote this set by N p(C).

Moreover, the points pi,1, . . . , pi,ai
, pi+1,1 are proximate to pi−1,ai−1

, setting
p′ = p0,0, a0 = 0, and pr,ar

= pr+1,1 by convention. Notice that the p-satellite
points themselves and the multiplicities of C at them are determined just by

the multiplicities of C at p′ and p, and in fact by the quotient
mp′ (C)

mp(C) =
bp(C)
np(C) .

We will refer to this fact as the distribution of satellite points.

Remark 2.1. Keep the above notations. The distribution of satellite points can
be alternatively obtained from the expansion in continued fraction of the quotient
mp′(C)

mp(C) =
bp(C)
np(C) . In fact,

mp′(C)

mp(C)
= [a1, a2, . . . , ar] = a1 +

1

a2 +
1

. . . +
1

ar

.

The distribution of the p-satellite points is then shown in the Enriques diagram
of C by r sides of stairs with lengths a1 (counting p), a2, . . . , ar after p′ (see
Figure 1).

So it seems feasible to simplify expression (2), replacing the contribution of
the set of p-satellite points of C by some expression depending only of bp(C)
and np(C). The main tool to do this is next
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a1

a2

ar

p

p′

O

}}
}

Figure 1: The distribution of satellite points in the Enriques diagram. In this
picture, p-satellite points are represented by white-filled circles.

Lemma 2.2. Let 0 < m1 6 m0 be two natural numbers. Let m0 = a1m1 +
m2,m1 = a2m2 + m3, . . . ,mr−1 = armr be the divisions performed by Euclid’s
algorithm. Then m1m0 = a1m

2
1 + a2m

2
2 + · · · + arm

2
r.

Proof. We argue by induction on r. If r = 1, thenm0 = a1m1, som0m1 = a1m
2
1.

In the general case, we apply the induction hypothesis on m1 and m2: m1m2 =
a2m

2
2+· · ·+arm2

r. So m0m1 = (a1m1+m2)m1 = a1m
2
1+a2m

2
2+· · ·+arm2

r.

As an immediate consequence we obtain

Corollary 2.3. If C ∈ C and p ∈ N (C) is a free point different from O then
∑

q∈Np(C)

nq(C)2 = np(C)bp(C).

Proof. Let p′ be the immediate predecessor of p (so that bp(C) = mp′(C)/mO(C))
and define m0 = mp′(C) and m1 = mp(C). Then, using the preceding notations
and Lemma 2.2 we obtain, as desired,

∑

q∈Np(C)

nq(C)2 =
1

mO(C)2

r
∑

i=1

ai
∑

j=1

mpi,j
(C)2 =

1

mO(C)2

r
∑

i=1

aim
2
i

=
1

mO(C)2
m0m1 =

1

mO(C)2
mp′(C)mp(C) = bp(C)np(C).

Lemma 2.4. Let C,D be two branches, and suppose that p is the last free point
in N (C) ∩ N (D). Then nq(C) = nq(D) for any q < p, or, in other words,
bq(C) = bq(D) for any q 6 p.
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Proof. Suppose that q < p is the first common free point for which nq(C) 6=
nq(D). In this case, nq′(C) = nq′(D) for all free or satellite points q′ with
O 6 q′ < q, since, by the distribution of satellite points, the multiplicities at
the satellite points are determined by the multiplicities at the preceding free
point and the point to which it is proximate. Therefore, bq(C) = bq(D), so
nq(C)
bq(C) 6= nq(D)

bq(D) . Hence, invoking the distribution of satellite points again, the

branchesC andD split either at q or at a q-satellite point. This is a contradiction
with the definition of p.

Now we are ready to prove the next proposition, which plays a key role in
our main result.

Proposition 2.5. Let C,D be two branches. Then

1

dC(C,D)
=

∑

bk(C) min{nk(C), nk(D)},

where the summation runs over all points pk ∈ F(C) ∩ F(D).

Remark 2.6. Notice that, according to Lemma 2.4, for every point pk ∈ F(C)∩
F(D) we have the equality bk(C) = bk(D), and for every such point but perhaps
the last one we also have nk(C) = nk(D). Thus, the statement of Proposition
2.5 may be simplified as

1

dC(C,D)
=

N−1
∑

k=0

bk(C)nk(C) + bN(C) min{nN (C), nN (D)},

where F(C) ∩ F(D) = {p0 = O, p1, . . . , pN}.

Proof of Proposition 2.5. Let p0 = O, p1, . . . , pN be the common free points of
C and D. Then, by 2.6 we have nk(C) = nk(D) for k < N , and interchang-
ing C and D if necessary, we may assume that nN (C) 6 nN(D). With this
assumptions, we have to prove that

1

dC(C,D)
=

N
∑

k=0

bk(C)nk(C).

First of all, using Lemma 2.4 the summands in expression (2) can be grouped
as

∑

q∈Np0(C)

nq(C)2 + · · · +
∑

q∈N
pN−1(C)

nq(C)2 +
∑

q∈NpN (C)∩NpN (D)

nq(C)nq(D).

By Corollary 2.3, for k < N the partial sum
∑

q∈Npk (C) nq(C)2 equals bk(C)nk(C),
so we have proved that

1

dC(C,D)
=

N−1
∑

k=0

bk(C)nk(C) +
∑

q∈NpN (C)∩NpN (D)

nq(C)nq(D)
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and it only remains to show that the last summand equals bN (C)nN (C).
If nN (C) = nN (D), then N pN (C) = N pN (D) and nq(C) = nq(D) for all

q ∈ N (C) ∩ N (D), and the desired result follows applying Corollary 2.3 as for
the other sums. If nN (C) < nN (D), consider a branch E through pN whose
point in its first neighbourhood is free and does not belong to D (nor to C, since
nN (C) < nN (D) 6 bN(D) = bN(C) implies that the immediate successor of p
on C is satellite). Applying Lemma 2.4 and what we have already proved, and
taking into account that N pN (C)∩N pN (E) = N pN (D)∩N pN (E) = {pN} and
that nN(E) = bN(C) = bN (D), we obtain

dC(C,E)−1 =

N−1
∑

k=0

bk(C)nk(C) + bN (C)nN (C) =

N
∑

k=0

bk(C)nk(C) <

<

N−1
∑

k=0

bk(C)nk(C) + bN (C)nN (D) = dC(D,E)−1.

Hence, dC(C,E) > dC(D,E); since dC is an ultrametric distance, we derive
dC(C,D) = dC(C,E), and we are done.

Now we can prove the main result of this section.

Theorem 2.7. Let C be any branch and take d ∈ Q ∩ [0, 1]. Then there exists
a branch D ∈ C for which dC(C,D) = d.

Furthermore, if d > 0, any such D shares with C exactly the first N + 1
points in F(C), where

N−1
∑

k=0

bk(C)nk(C) < d−1
6

N
∑

k=0

bk(C)nk(C).

Proof. If d = 0 the result is obvious, by taking D = C, so we can assume
d > 0. The series

∑

k>0 bk(C)nk(C) does not converge because dC(C,C) = 0,
and its partial sums form a strictly increasing sequence (since every summand
is positive). So there exists N ∈ N for which

N−1
∑

k=0

bk(C)nk(C) <
1

d
6

N
∑

k=0

bk(C)nk(C). (3)

If we have equality, by Proposition 2.5 and Lemma 2.4 it is enough to take
any branch D going through pN with normalized multiplicity nN (D) = nN (C),
but not through pN+1. Notice that this kind of curves exist in virtue of Theorem
4.2.2 of [1].

Suppose now that the second inequality is strict, and define α ∈ Q as

α =
d−1 −

∑N−1
k=0 bk(C)nk(C)

bN (C)
.
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It is obvious that α < nN (C) (because of the second inequality in (3)), and again
by Proposition 2.5 and Lemma 2.4, it is enough to take any branch D going
through pN with normalized multiplicity nN(D) = α < nN (C) (without any
assumption on the next free point on D), whose existence is again guaranteed
by Theorem 4.2.2 of [1].

On the other hand, let D be a branch such that dC(C,D) = d > 0. Then,
by Remark 2.6 and by the definition of N , C and D must share the first N + 1
points of F(C).

Corollary 2.8. Let C ∈ C and d ∈ Q ∩ [0, 1] and compute N and α such that

N−1
∑

k=0

bk(C)nk(C) < d−1
6

N
∑

k=0

bk(C)nk(C), α =
d−1 −

∑N−1
k=0 bk(C)nk(C)

bN(C)
.

If D ∈ C satisfies dC(C,D) = d and D has only p-satellite points for p ∈ F(C),
then the equisingularity class of C + D is completely determined by C and d if
and only if either α > 0, or pN+1(C) is proximate to pN (C).

Proof. First, let us assume that α = 0. By the previous Theorem, C and D
share exactly N + 1 free points, and, since α = 0,

dC(C,D)−1 =

N
∑

k=0

bk(C)nk(C) =

N−1
∑

k=0

bk(C)nk(C)+bN(C) min{nN(C), nN (D)}

in virtue of Remark 2.6.
Therefore, nN (C) 6 nN(D). If pN+1(C) is proximate to pN (C), then

nN (C) = bN(C) = bN (D) > nN(D) (by Lemma 2.4). Then, the point in
the first neighbourhood of pN (D) on D is free, and nonsingular (since D has
no p-satellite points for p 6∈ F(C)). The Enriques diagram of C + D is thus
determined, therefore also its equisingularity class.

On the other hand, if pN+1(C) is not proximate to pN (C), nN(C) < bN (C) =
bN(D). Therefore, any curve D going through pN (C) with normalized multi-
plicity nN (D) ∈ (nN (C), bN (D)] ∩ Q satisfies dC(C,D) = d. But in virtue
of Remark 2.1, if two curves have different values of nN (D), they belong to
different equisingularity classes.

Now assume that α > 0. In this case, by Theorem 2.7, C and D share
exactly N + 1 free points. By Remark 2.6,

dC(C,D)−1 =
N−1
∑

k=0

bk(C)nk(C) + bN(C) min{nN(C), nN (D)},

so α = min{nN(C), nN (D)}. On the other hand, by the definition of N , α <
nN (C). Therefore, α = nN (D) < nN (C) 6 bN (C) = bN (D). By Remark 2.1,
the pN(D)-satellite points of D are determined by nN(D) = α and bN (D) =
bN(C). Since D has no p-satellite points for p 6∈ F(C), this determines its
Enriques diagram.
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Example 2.9. Let us compute the distance between the branches C : y11−x29 =
0 and D : y12 − x31 = 0 (see Figure 2). When the two branches have the same
normalized multiplicity at a point pi, we refer to it as ni = ni(C) = ni(D) (the
same for bi = bi(C) = bi(D)). Then, the branches share three free points and
n0 = n1 = b0 = b1 = b2 = 1, n2(C) = 7/11 and n2(D) = 7/12. Therefore,
their distance is dC(C,D) = 12/31. Notice that in this case dC(C,D) is exactly
the inverse of the minimum of the first characteristic exponents of C and of
D. This occurs because C and D split up at the first stairs of satellite points.
Otherwise the computation of dC(C,D) becomes more involved.

O

D

C

1/dC(C,D) = 1 · 1 + 1 · 1 + 7/12 · 1

b0 = 1
n0 = 1

b1 = 1
n1 = 1

b2 = 1
n2(C) = 7/11, n2(D) = 7/12

Figure 2: Computation of the distance between the two branches C and D
appearing in Example 2.9, together with the Enriques diagram of C +D. Free
points are drawn in black-filled circles, whereas satellite points are drawn in
white-filled circles.

3 Triangles in the ultrametric space of plane

branches

In this section the relative position of three branches is compared by using
the ultrametric inequality. In spaces which are equipped with an ultrametric
distance, the triangles can only be isosceles or equilateral. Thus, given three
branches there are only two possibilities: either they form an equilateral triangle,
or two of them are nearer one from each other and equidistant from the third
one. Next we state the two results that solve this question:

Theorem 3.1. Let C1, C2, C3 be three different branches. Assume that there is
a free point shared by C1 and C2 but not by C3. Then, the three branches form
an isosceles triangle, where C1C2 is the shortest side.

Theorem 3.2. Let C1, C2, C3 be three branches sharing the same free points,
and let pN be the last common free point. Assume that nN (C1) > nN (C2) >
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nN (C3). Then, the three curves form an equilateral triangle if and only if
nN (C2) = nN (C3). Otherwise they form an isosceles triangle with C1C2 as
the shortest side.

Notice that the hypothesis of these two theorems cover every possibility, so
they completely solve the classification problem of triangles. Let us discuss first
the result of Theorem 3.2.

Proof of Theorem 3.2. First of all, denote bk = bk(Ci) for k 6 N and nk =
nk(Ci) for k < N (which do not depend on i by Lemma 2.4). In virtue of
Proposition 2.5 and the hypotheses on the nN (Ci), the distances between the
curves may be written

dC(C1, C2)−1 =

N−1
∑

k=0

bknk + bNnN (C2)

and

dC(C1, C3)−1 = dC(C2, C3)−1 =

N−1
∑

k=0

bknk + bNnN(C3).

The result follows by considering the cases nN (C2) > nN(C3) and nN (C2) =
nN (C3).

Figure 3 illustrates several cases of triangles occurring when the three branches
share the same free points.

OO

OO

C1
C1

C1

C1

C2C2

C2C2

C3C3

C3C3

nN (C1) > nN(C2) > nN (C3):
An isosceles triangle.

nN (C1) = nN(C2) > nN (C3):
An isosceles triangle.

nN (C1) > nN(C2) = nN (C3):
An equilateral triangle.

nN (C1) = nN(C2) = nN (C3):
An equilateral triangle.

Figure 3: Different kinds of triangles formed by curves sharing the same free
points.
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Remark 3.3. Notice that, given C2 and C3 with nN (C2) > nN(C3), the tri-
angle formed by C2, C3 and any other curve C1 is either isosceles or equilateral
regardless C1 as long as C1, C2 and C3 share the same free points and nN (C1)
is in the interval [nN (C2), bN (C2)]. For example, in Figure 4 triangles C1C2C3

and C′
1C2C3 are equilateral.

O

C1

C′
1

C2

C3

pN

Figure 4: C1C2C3 and C′
1C2C3 are equilateral triangles.

Proof of Theorem 3.1. Let pN be the last free point shared by the three branches.
Let pN+1 be the first free point after pN lying on both C1 and C2. Notice that
by Lemma 2.4 nN(C1) = nN(C2) since there is a free point shared by C1 and
C2 after pN .

First, assume that nN (C3) 6 nN(C1) = nN(C2). In this case, and in virtue
of Proposition 2.5, we obtain the desired result

1

dC(C1, C2)
>

N
∑

k=0

bknk(C1) >

N
∑

k=0

bknk(C3) =
1

dC(C1, C3)
=

1

dC(C2, C3)
.

Notice that the first inequality is strict because C1 and C2 share more free
points.

Now assume nN (C3) > nN (C1) = nN (C2) and take an auxiliary branch D
forming an equilateral triangle with C1 and C3 and an isosceles one with C1

and C2: let D be a branch going through pN with nN (D) = nN (C1) and not
going through pN+1 (which exists in virtue of Theorem 4.2.2 of [1]). Then C3, D
and C1 share the same free points, and we are under the hypothesis of Theorem
3.2. As nN(C3) > nN (D) = nN (C1) by assumption, the three curves form an
equilateral triangle. Therefore:

dC(C1, D) = dC(C1, C3) = dC(C3, D). (4)

On the other hand, in virtue of Proposition 2.5,

1

dC(C1, D)
=

N
∑

k=0

bknk(C1) <
1

dC(C1, C2)
.
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Notice that the inequality is strict because C1 and C2 share more free points
than the points {p0, . . . , pN} in the sum. Therefore, dC(C1, D) > dC(C1, C2).
Combining this with (4), we obtain the statement of Theorem 3.1 also in this
case.

To conclude the classification of triangles, we give a method for the com-
parison between distances of three branches just by observing the Enriques
diagrams, and without making any further calculations.

We can distinguish easily free points from satellite ones in the Enriques
diagram of any curve. Thus, from an Enriques diagram of C1 +C2 +C3 it is also
straightforward to find which free points are shared by two or three branches.
Therefore, it is easy to decide whether to use Theorem 3.2 or Theorem 3.1 by
direct observation of the diagram involved. In the case of this latter Theorem,
the Enriques diagram also shows which branches share more free points. Thus,
we can know which two branches form the shortest side of the triangle.

If we are dealing with a case where the three branches share the same free
points, we only need to compare the normalized multiplicities of the branches
at their last free shared point. Let C1, C2 be two branches splitting up at a
satellite point q, and let p = pN be their last common free point. Denote by
qi the point of Ci in the first neighbourhood of q and ni = np(Ci) = nN(Ci).
Let us draw the Enriques diagram of the curve C1 + C2 (see Figure 5). The
segment between p and the satellite point in the first neighbourhood of p should
be vertical following the convention of Section 1. Then, either q1 is a free point,
or q1 is on the right of q, or q1 is under q (idem for q2). Then

Proposition 3.4. Keeping notation as above:

1. If qi is on the right side of q, then nN(Ci) > nN(Cj), with j ∈ {1, 2}, j 6= i.

2. If qi is under q, then nN (Ci) < nN (Cj), with j ∈ {1, 2}, j 6= i.

3. If q1 and q2 are both free, then nN (C1) = nN(C2).

Proof. First of all, notice that the different statements of the Proposition are
compatible, namely it is impossible that q1 and q2 are both on the right of q,
because in this case q1 = q2 contradicting the definition of q (idem if q1 and q2
are both under q). On the other side, if q1 is on the right of q and q2 is under
it, then first and second statements say that nN (C1) > nN (C2).

Assume that we have the expansions in continued fractions

bN(C1)

nN (C1)
= [a1, a2, . . . , ak, ak+1, . . . , ar],

bN(C2)

nN (C2)
= [a1, a2, . . . , ak, bk+1, . . . , bs] ,

with ar, bs > 1. Suppose that either k = r, or k = s, or ak+1 6= bk+1. Notice that
the condition nN (C1) > nN(C2) is equivalent to [a1, a2, . . . , ak, ak+1, . . . , ar] <
[a1, a2, . . . , ak, bk+1, . . . , bs].

On the other side, the condition of q1 being on the right side of q is equivalent
to either k being even and k = s < r (which happens if and only if q is the last
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O

O

p

p

C2

C2

C1

C1

q

q

q1

q1

q2

q2

Example A: q1 is free and q2 is under q.

Example B: q1 is on the right of q and q2 is under q.

Figure 5: Two examples of branches C1 and C2 splitting up at a satellite point
q.

p-satellite point on C2), or k being even and ak+1 < bk+1, or k being odd and
ak+1 > bk+1.

Similarly, the condition of q1 being under q is equivalent to either k being
odd and k = s < r (which again happens if and only if q is the last p-satellite
point on C2), or k being even and ak+1 > bk+1, or k being odd and ak+1 < bk+1.

Lastly, the condition of q1 and q2 being free is equivalent to r = s = k.
The proof is completed in virtue of the forthcoming elementary Lemma 3.5

about comparison between continued fractions.

Lemma 3.5 ([3], §12). Consider the expansions in continued fractions

x = [a1, a2, . . . , ak, ak+1, . . . , ar], y = [a1, a2, . . . , ak, bk+1, . . . , bs],

with ar > 1 and bs > 1.

• If r > k, s > k and ak+1 > bk+1, then x > y if k is even, and x < y
otherwise.

• If r > k and s = k, then x > y if k is even, and x < y otherwise.

• If r = s = k, then x = y.
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OO

OO

C1C1

C1C1

C2C2

C2C2

n1 > n2n1 > n2

n1 > n2 n1 = n2

Figure 6: Illustration of the different ways of splitting up at a satellite point.
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