
The PracTEX Journal, 2010, No. 1
Article revision 2010/05/22

Tools for creating LATEX-integrated graphics
and animations under GNU/Linux
Francesc Suñol

Email francesc@fa.upc.edu
Website http://dfa.upc.es/personals/francesc/
Address Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract This paper describes how to easily create graphics and animations that
can be included in LATEX documents. This article discusses three kinds
of figures: plots, schematics, and pictures. The tools presented here can
quickly generate plots, and are based on simple gnuplot and bash scripts
that display the final result on the screen. Ipe is an excellent program
to deal with complex figures and schematics, and the animate package is
used to make a series of figures change over time to simulate a movie. All
the programs used in this article are free software.

1 Introduction

It’s quite common to see documents with figures that do not preserve a consistent
style. Graphics that contain words or symbols must match the text in the journal
or document in order to give a pleasant appearance. TEX was not originally
designed for graphical work, but fortunately today we have many tools that can
generate high quality figures. These generated figures can be integrated into
our documents in a style consistent with the surrounding text. To give a few
examples, PSTricks, PGF/TikZ, and METAPOSTare extraordinary tools that do
this job well. Unfortunately, if one needs to plot a large number of points, these
tools can run out of memory. In a similar way, if one needs to draw a complex
figure with these tools, the task can become difficult. Other approaches are based
on the removal of figure labels (nicely described by J. Levine [1]), directly hacking
the ps or eps files, and rewriting the labels with the help of LATEX packages like
psfrag or overpic. I think these methods may be appropriate in some cases, but
often this process can be slow and tedious.

Copyright © 2008 F. Suñol.
Permission is granted to distribute verbatim or modified

copies of this document provided this notice remains intact.

mailto:francesc@fa.upc.edu?subject=Re:%20PracTeX%20Journal%20article%20
http://dfa.upc.es/personals/francesc/

In this article, the method proposed to automate this process is based on
the use of simple bash scripts. All the tools described here are free software,
and have been tested under Debian GNU/Linux. They should work in other
Linux distributions as well. If you are using Windows or Mac you can try similar
methods, but I think they may be more difficult to set up.

When writing scientific papers, one has to deal with at least three types of
figures: plots, schematics, and pictures. Sometimes it is useful to make these
figures appear to change over time (animations), for example in slideshows, or
simply for teaching purposes. In the next sections I will present the tools I have
developed for creating these static and dynamic plots, sketches, and pictures.

2 Static figures

In this section I explain step-by-step how to generate graphics files that do not
change over time. I reserve the name “dynamic graphics” for those that simulate
videos, that is, movies or animations, and these will be described in Section 3.

The objective of the current section is to create figures both in eps and pdf
formats (in order to run latex or pdflatex) that can be included in documents
using the graphicx package in the usual way: including the line

\usepackage{graphicx}

in the preamble, and

\begin{figure}[!h]
\centering
\includegraphics[options]{your-figure}
\caption{A caption.}
\label{your-label}
\end{figure}

in the document.

2.1 Plots

The best way I have found to quickly create plots is using gnuplot. Gnuplot is a
very powerful program that is versatile and portable, and allows you to visualize

2

mathematical functions or data. I am not going to give a detailed description
of how to use this program; if you are interested in the commands and screen
terminals available please see the gnuplot manual by T. Williams et. al. [2].

One problem that often occurs is that after spending some time customizing
your plot, when you see it on the screen the conversion to LATEX (using latex or
pslatex terminals) gives results that can be disappointing: the plot legends do
not have the correct spacing, the font sizes are not appropriate, and labels are
often put in the wrong place or even outside the plot. How do you deal with
these problems?

I think the easiest solution is to have a file with some gnuplot commands in
it, and then run a bash script in the command prompt that displays the resulting
final plot on the screen. With this method you can modify the gnuplot file, run
the script, and see the modifications in the plot instantaneously. If the result is
not as desired, just correct the gnuplot file and rerun the script.

At its most basic level, the script should do the following:

1. gnuplot file.gp (redirecting the output to pslatex terminal).

2. latex file.tex (compilation of the source)

3. dvips file.dvi (conversion to eps)

4. epstool file.eps (creation of the bounding box)

5. epstopdf file.eps (conversion to pdf, so you can run pdflatex)

6. rm auxiliary-files (to remove auxiliary files except the original gnuplot file
and the recently created file.eps and file.pdf)

7. xpdf file.pdf (to display the result in the screen)

I wrote a small bash script1 (gp2epspdf.bash) that performs this task. You
can download this script from the site where this article appears, or from my
website. The script requires latex, dvips, gnuplot, epstool, epstopdf and xpdf.
Assuming that you have a working LATEX installation, you’ll have latex, dvips,
and probably epstopdf and xpdf. If you don’t have these programs, you can
install them in Debian (or any other Debian-based distribution) just by typing

apt-get install gnuplot epstool epstopdf xpdf

1. I called the script gp2epspdf, because it converts a gnuplot file (I usually add the extension gp
to gnuplot files), to both an eps file and a pdf file.

3

http://dfa.upc.es/personals/francesc/files/gp2epspdf.zip
http://dfa.upc.es/personals/francesc/files/gp2epspdf.zip

at the command prompt.
Let’s look at an example. Using the text editor of your choice create a file

(with name plot.gp, for example2) containing the following text:
plot.gp

set size 0.75,0.65
set key 6.3,27 Left reverse samplen 1 spacing 1.2
set border 31 lw 0.5
set xlabel ’t (s)’
set ylabel ’y (m)’
set xrange [-2:6]
set yrange [-10:30]
plot -x**2+20 w p ps 1.3 pt 1 title ’$y(t)=-2tˆ2+20$’

Once the file is created (and it has read permissions), just type

./gp2epspdf.bash plot.gp

in the bash prompt, and instantaneously a new window will open with Figure 1
in it. Quick and easy!

In order to see all the line styles and point types available, create a file with
the word test in it (let’s call this file all.gp),

all.gp

test

and then type

./gp2epspdf.bash all.gp

A new window will appear with the available options. In addition to these op-
tions, in gnuplot version 4.2 or later you can define your own line colors with the
linecolor option.

If you find you are using this gp2epspdf script often, you can create an alias
in your .bashrc file. The script is very simple, and you can easily modify it to fit
your needs.

2. The name and the extension of the file are not relevant.

4

y(t) = −2t2 + 20

t (s)

y
(m

)

6543210-1-2

30

25

20

15

10

5

0

-5

-10

Figure 1: Example of a static plot.

2.2 Sketches

The creation of schematics or sketches usually involves two main approaches: on
one hand you have the option to write the figure drawing commands using META-
POST, PSTricks, PGF/TikZ or others. On the other hand, you can have a visual
idea of how the sketch should look, and draw it directly to paper. Personally, I
am the kind of person who prefers the second option for complex figures, and I
prefer to use the program Ipe in this case.

Ipe [3] is an easy-to-use drawing editor with a friendly graphical user interface.
It contains a variety of basic geometry primitives like lines, splines, polygons,
circles. . . and has snapping and grouping options, scaling and rotating features,
and many more advantages. The figures can be saved in pdf, eps, or xml formats,
and text entry is done by using LATEX source code, which makes it easy to enter
mathematical expressions. Another important point is that Ipe can accept so-
called Ipelets, which are user-created plugins that extend the functionality of the
program. O. Cheong [4] and J. Hlaveck [5] wrote intuitive manuals for learning
and using Ipe.

An example of a sketch created by Ipe is shown in Figure 2.

5

1

2

3
4 5

9

9

6
7

8

10

11

2
12

1314

Electric connections.
Liquid tubes.

Gas tubes.
Gas and liquid tubes.

Figure 2: Example of a figure created with Ipe.

2.3 Pictures

Pictures are commonly used in documents. The one point I want to make here
is that there are several tools in GNU/Linux to edit pictures. The most popular
program is The Gimp, which has a wide range of capabilities. Another image
editing software that fits my purposes perfectly is Imagemagick [6]. Imagemagick
is a collection of programs to edit images, convert between file formats (more than
one hundred formats supported), and similar functions. It is typically run from
the command line. For example, if you have a bmp image and you need a pdf, just
type

convert file.bmp file.pdf

To include labels (or whatever you want) in the pictures, you can import the
figure to Ipe, place your labels, and save the file. Once again. . . Quick and easy!

An example of a picture containing labels is shown in Figure 3.

6

vexit =
4(Ql + Qg)

πd2

A bubble

Figure 3: Example of a picture with some labels in it.

3 Dynamic figures: animations

Here I describe how to generate animations in LATEX (plots, sketches, and movies)
using the animate package [7]. It’s important to note that these animations cur-
rently only work with Acrobat Reader 6 or later, and javascript should be enabled.
All of the figures created in this section can be included in documents using the
animate package by including the line

\usepackage{animate}

in the preamble, and

\begin{figure}[!h]
\centering
\animategraphics[options]{fps}{basename}{first}{last}
\caption{A caption.}
\label{your-label}
\end{figure}

in the document. The final pdf can be viewed in Adobe Reader on all supported
platforms.

7

3.1 Plots

In order to make a plot animation, I created a bash script (plot-animation.bash3)
that uses a procedure similar to the one shown in Section 2.1, inside a while loop.
Mainly, it does the following:

1. while i ≤ N, plot function +∆i (using the same procedure as the script
gp2epspdf.bash, but without displaying each individual plot in the screen).

2. pdftk created-files.pdf cat output animation.pdf (Merge all the resulting pdf files
into one single file with pdftk).

3. rm auxiliary-files (Remove all the created pdf files except the one created by
pdftk).

4. xpdf animation.pdf (Display the final result in the screen).

If you don’t have pdftk, in Debian you can install it by typing

apt-get install pdftk

This script will create a single pdf with as many pages as the number of frames,
and doesn’t need an input gnuplot file; you have to edit the script in order to
define what are you planning to plot. Of course, you can do the same with the
script gp2epspdf.bash, if you don’t want to have a gnuplot input file. This script
is very simple, and once more you can easily modify its contents in order to fit
your needs, or just to improve it.

To create the animation, type the following line in the command prompt:

./plot-animation.bash

An example of an animation created with this script is presented in Figure 4.
If you need to decrease the size of the animation, you can separate the moving

parts (data points and/or functions) from the non-moving parts (axis, labels, tics,
grid, . . .) and use the timeline option of the animate package.

3. The script plot-animation.bash is available along with this article or from my website.

8

http://dfa.upc.es/personals/francesc/files/plot-animation.zip

Figure 4: Example of a moving plot (only works with Acrobat Reader 6 or later,
and javascript should be enabled!).

3.2 Sketches

Often it’s useful to see a series of sketches that appear to change over time. Once
again, Ipe can help us to do this job. The animation shown in Figure 5 has been
created using Ipe as follows:

– In the first page, I draw all the lines and labels that do not change their
position in time.

– In the next page, I draw the pendulum in its first position.

– In the next page, I draw the pendulum in its second position: rotated a little
bit with respect to the first position.

– . . .

– In the following pages I draw the ball, the spring and the moving labels.

As you can see, this process is completely manual. It works for simple animations,
but not for large ones. Currently I am searching for some kind of automation, but
until now I haven’t found any better way to do this. Fortunately, Ipe is easy to
use and it’s not difficult to create large animations.

9

Figure 5: Example of a time-evolving sketch (only works with Acrobat Reader 6
or later, and javascript should be enabled!).

3.3 Movies

Including a movie in a pdf file can be done in several ways (e.g. using the movie15
or the easymovie packages), but I prefer to use the animate package for two
reasons:

1. The movie is embedded in the pdf file, so everything is contained in a single
file.

2. Adobe Reader plays the animation, without calling any external programs.
This is important to make your document truly portable across platforms.

First of all we need to split all the images of the movie file. In the case where
we have an avi movie, and we want the frames in jpg format, this can be done
by typing the command

mplayer movie.avi -vo jpeg

Normal cameras usually have a recording speed of around 30 frames per second,
so if you have a movie of one minute duration, this command will create approx-
imately 1800 images. Let’s rename the images as basename1.jpg, basename2.jpg,
. . . and basename1800.jpg. Now, to merge the images in the new animation, in-
clude the following lines in your document

\begin{figure}[!h]
\centering
\animategraphics[options]{15}{basename}{1}{1800}
\caption{A movie caption.}
\label{movie-label}
\end{figure}

10

and the work is done. In the preceding example I set the fps to 15. The reason
for this is that 15 frames per second is the average speed that the human eye
can register images, and it’s not necessary to force our computer to do more
work than needed. The example presented would create a two-minute duration
animation, since we are playing at 15 fps. If we want a one-minute animation,
we can play at 30 fps. A better solution is to skip all the odd-numbered frames
which significantly reduces the size of the resulting pdf.

An example of a movie, generated with the steps explained above (using 17
frames inside a loop, playing at 14 fps), is presented in Figure 6.

Figure 6: Example of a movie (only works with Acrobat Reader 6 or later, and
javascript should be enabled!).

4 Summary

We have learned about some useful tools for generating graphics and animations
in GNU/Linux. Three types of graphics have been discussed: plots, sketches, and
pictures, both static and changing over time.

The LATEX user community is continually growing, and along with this growth
the facilities and useful packages to make high quality graphics are increasing as
well. As a result, you now have to decide which of the many available tools are
the best for your purposes — it’s your choice.

11

References

[1] Jenny Levine. Label replacement in graphics. The PracTEX Journal 2005-1.
http://tug.org/pracjoun/2005-1/levine

[2] Thomas Williams et. al. Gnuplot. An interactive plotting program (2007).
http://www.gnuplot.info/docs/gnuplot.pdf

[3] Ipe home page.
http://tclab.kaist.ac.kr/ipe/

[4] Otfried Cheong. The Ipe manual (2007).
http://www.cosy.sbg.ac.at/~held/teaching/wiss_arbeiten/Ipe/Ipe_
manual.pdf

[5] Jan Hlavacek. Ipe — a graphics editor for LATEX. The PracTEX Journal 2006-2.
http://www.tug.org/pracjourn/2006-2/hlavacek/

[6] Imagemagick home page.
http://www.imagemagick.org

[7] Alexander Grahn. The animate package (2008).
www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.
pdf

12

http://tug.org/pracjoun/2005-1/levine
http://www.gnuplot.info/docs/gnuplot.pdf
http://tclab.kaist.ac.kr/ipe/
http://www.cosy.sbg.ac.at/~held/teaching/wiss_arbeiten/Ipe/Ipe_manual.pdf
http://www.cosy.sbg.ac.at/~held/teaching/wiss_arbeiten/Ipe/Ipe_manual.pdf
http://www.tug.org/pracjourn/2006-2/hlavacek/
http://www.imagemagick.org
www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf
www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf

	Introduction
	Static figures
	Plots
	Sketches
	Pictures

	Dynamic figures: animations
	Plots
	Sketches
	Movies

	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	anm2:

