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Optimum Power Allocation and Bit Loading for
BICM Systems

David Matas and Meritxell Lamarca

Abstract—This paper introduces a joint bit loading and power
allocation algorithm for systems combining bit-interleaved coded
modulation (BICM) with multicarrier transmission. The pro-
posed algorithm maximizes the mutual information, so it can
be regarded as a generalization of mercury/waterfilling policy
that incorporates bit loading.

The followed approach relies on irregular modulation and
power to cast the problem in the framework of convex opti-
mization. This allows to derive the optimum solution without
resorting to greedy algorithms, embedding the bit loading in the
definition of an equivalent constellation such that the complexity
increase with respect to mercury/waterfilling is negligible.

While irregular modulation plays a key role in algorithm
definition, it is proved that only a few subcarriers employ it
and it is shown that a practical low complexity algorithm can
be obtained with minimal losses that does not use irregular
modulation.

Index Terms—Power allocation, bit loading, adaptive modu-
lation, bit-interleaved coded modulation (BICM), channel state
information (CSI), mutual information, OFDM.

I. INTRODUCTION

THE combination of bit-interleaved coded modulation
(BICM) [1] with orthogonal frequency division multi-

plexing (OFDM) [2] provides a low-complexity nearly-optimal
performance approach to the broadband transmission in mul-
tipath scenarios. On the one hand, the paradigm of channel
code and modulation separation by means of a bit interleaver
introduced by BICM has been proved a versatile approach
to spectrally efficient transmission in fading channels. BICM
allows a large flexibility in constellation selection and channel
coding design at the expense of minor performance losses.
On the other hand, the use of OFDM allows to get rid of
intersymbol interference converting the frequency selective
channel into a set of parallel non-interfering channels thanks
to the use of multicarrier transmission. The good performance
vs. complexity trade-off provided by BICM-OFDM has moti-
vated a broad interest in this transmission scheme, as well
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as its introduction in many standards (e.g. IEEE802.11a/g,
IEEE802.16).

This paper deals with transmission schemes for BICM-
OFDM systems subject to slow-fading. In low-mobility sce-
narios the channel state can be accurately tracked by both
the transmitter and the receiver and the performance can be
improved adapting the signaling to the instantaneous channel
spectral shape. In the BICM-OFDM scheme, nearly optimal
performance can be achieved by bit loading and power allo-
cation, i.e. assigning a different constellation (number of bits)
and different power to each subcarrier and each channel access
according to the channel frequency response.

Probably the most well-known criterion for power allocation
is the maximization of the channel capacity under an average
power constraint. The solution for the additive white Gaussian
noise (AWGN) channel is known as waterfilling [3, Sec
10.4]. Unfortunately, this solution assumes a continuous and
Gaussian modulation so it is not optimum for practical systems
using discrete constellations, since the bit rate assignments
are constrained to be integer. In this case, if the bit loading
has been previously determined, the power allocation that
maximizes the mutual information is provided by the mer-
cury/waterfilling policy (MWF) [4].

Taking into account that state of the art channel codes
can achieve performance very close to the Shannon limit,
the mutual information provides a good criterion for system
design without taking into account the specific channel code
employed. However, since MWF only optimizes the power
allocation, a bit loading algorithm is also required. Unfortu-
nately, mutual information cannot be employed as the opti-
mization criterion for bit loading design when typical constel-
lations (e.g. m-QAM, m-PSK) and optimum transceivers are
considered, since for a fixed SNR the largest constellation al-
ways provides the largest mutual information. In other words,
the mutual information is maximized employing the largest
constellation available at any SNR. Therefore, other methods
have been proposed in the literature that introduce practical
constraints related to the bit error rate (BER) performance,
either for the uncoded or coded case [5]–[10]. However,
this situation may change if we take account of the mutual
information loss introduced by suboptimum transceivers. In
the case of BICM, the magnitude of this loss depends on
the constellation, its labeling and the SNR. As it is well
known, for QAM constellations with Gray labeling the MI
of small constellations surpasses that one of larger ones at
low SNR’s (see [1, Fig. 6]). Hence, when BICM schemes
are considered, mutual information provides a meaningful
criterion for joint optimization of bit loading and power
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allocation that can be applied to design transceivers with
nearly optimal performance.

In this paper we propose a bit loading and power allo-
cation algorithm for BICM-OFDM systems that maximizes
the mutual information under an average power constraint.
We rely on irregular modulation to formulate the problem
in the framework of a convex optimization and to derive a
low complexity algorithm that does not require the use of
iterative numerical procedures nor greedy algorithms. The
proposed algorithm does not provide significant gains in terms
of spectral efficiency increase, but rather provides a new tool
for joint bit loading and power allocation that maximizes
the mutual information while it maintains the computational
complexity of mercury/waterfilling.

Although the algorithm is proposed for a BICM-OFDM
transmission, it could be employed in any other scenario where
parallel subchannels arise (e.g. multiple antenna transmission
where the MIMO channel is diagonalized through the use
of linear pre/post-filtering based on its singular value de-
composition) and where the transmission scheme results in
mutual information vs. SNR curves that overlap for different
configurations (e.g. APSK constellations).

The rest of the paper is organized as follows. In section
II we describe the system model employed in section III to
formulate the bit loading and power allocation policy. The
solution is divided in two steps, both expressed as a convex
optimization problem, solved and analyzed in sections IV and
V respectively. Concluding remarks are provided in section
VI.

II. IRREGULAR MODULATION AND POWER APPROACH

In this section we describe the system set-up in which the
proposed bit loading and power allocation policy will be em-
ployed. It consists on the application of irregular modulation
and power allocation to a BICM scheme in an scenario with
multiple parallel subchannels 1.

Irregular modulation was first proposed by Schreckenbach
and Bauch [11]. It combines symbols belonging to different
constellations within the same transmission block, despite the
channel state remaining constant. This transmission scheme is
described by the amount of time in which bits are mapped
to each one of the constellations. While the application of
conventional adaptive coding and modulation to the Gaussian
channel results in a step-wise throughput vs. SNR curve, the
use of irregular modulation provides a smooth curve without
the need for a fine code rate granularity [11]. This idea has
been extended to irregular modulation with irregular power
[12], [13] for the design of practical bit loading schemes
that optimize the performance taking into account the channel
coding stage. This is also the approach employed in this paper.

Figure 1 depicts the system block diagram, including the
coding, interleaving, mapping and power allocation stages.
Following a BICM scheme, the coded bits are bit-interleaved
and delivered to the modulation and power allocation stages.
Consider 𝑄 parallel subchannels (subcarriers in the case of

1In the sequel we denote the OFDM subcarriers as subchannels to empha-
size that the proposed algorithm could also be applied to any system model
that could be described by parallel channels.

OFDM) with coefficients {𝐻1, ..., 𝐻𝑄}. Denote by 𝑝𝑞(𝑛) the
power allocated to and by 𝑥𝑞(𝑛) the unit-power symbol trans-
mitted through the 𝑞-th subchannel in the 𝑛-th channel access.
The symbol belongs to one of the 𝑁 available constellations,
{𝒞1, ..., 𝒞𝑁}, with {𝑚1, ⋅ ⋅ ⋅ ,𝑚𝑁} bits per symbol respec-
tively and possibly different labeling 2. Then, the received
signal is

𝑦𝑞(𝑛) = 𝐻𝑞

√
𝑝𝑞(𝑛)𝑥𝑞(𝑛) + 𝑤𝑞(𝑛) 𝑞 = 1, ..., 𝑄 (1)

where 𝑤𝑞(𝑛) is the additive complex white Gaussian noise
term of zero mean and variance 𝜎2, independent among sub-
channels. At the receiver, the suboptimum detector computes
the bit log-likelihood ratios (LLR’s) of the transmitted bits
according to the procedure described in the Appendix B, de-
interleaves and delivers them to the decoder.

According to the irregular modulation and power scheme,
we allow the transmission of symbols belonging to different
constellations with different allocated power within the same
subchannel, and we let this configuration to be different for
each subchannel. If more than one constellation is used within
a subchannel, the order in which the bits are mapped to
them is predefined and, therefore, known at both transmitter
and receiver. Let 𝛼𝑖𝑞 be the fraction of symbols transmitted
through the 𝑞-th subchannel that belong to constellation 𝒞𝑖,
and let 𝑝𝑖𝑞 be the power allocated to each one of them.
According to their definition, these parameters must fulfill:

𝛼𝑖𝑞 ≥ 0, 𝑝𝑖𝑞 ≥ 0 𝑎𝑛𝑑
𝑁∑
𝑖=1

𝛼𝑖𝑞 ≤ 1 (2)

for 𝑞 = 1, ..., 𝑄 and 𝑖 = 1, ..., 𝑁 . If 𝛼𝑖𝑞 = 0, then constellation
𝒞𝑖 is not employed in the 𝑞-th channel. If

∑𝑁
𝑖=1 𝛼𝑖𝑞 = 0 then

the 𝑞-th subchannel is not used and if 0 <
∑𝑁

𝑖=1 𝛼𝑖𝑞 < 1 then
it is used during a fraction of the channel accesses. Note that
this formulation can be mathematically seen as a continuous
relaxation of the usual bit allocation, in which 𝛼𝑖𝑞 ∈ {0, 1}
(i.e., only one constellation can be used per subchannel).

III. PROBLEM FORMULATION

The objective of this paper is the derivation and analysis of
a bit loading and power allocation algorithm that maximizes
the mutual information for the system set-up defined in section
II.

Using the parameters previously defined, the power allo-
cated to and the MI of the 𝑞-th subchannel are obtained
as the weighted averages of the individual values for each
constellation,

𝑃𝑞 =
𝑁∑
𝑖=1

𝛼𝑖𝑞𝑝𝑖𝑞 (3)

𝐼𝑞 =

𝑁∑
𝑖=1

𝛼𝑖𝑞𝐼𝑖(𝑝𝑖𝑞𝛾𝑞) (4)

where 𝛾𝑞 = ∣𝐻𝑞∣2/𝜎2 is a measure of the subchannel reli-
ability (the SNR with unit transmitted power) and 𝐼𝑖(𝜇) =

2Note that BICM performance in terms of MI is sensitive to constellation
labeling.
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Fig. 1. Block diagram of the BICM scheme.

𝐼𝑖 (𝑥;𝐿𝐿𝑅(𝑏1), ..., 𝐿𝐿𝑅(𝑏𝑚𝑖)) is the MI between the trans-
mitted symbols and the corresponding bit LLR’s at the demod-
ulator output for the 𝑖-th constellation when it is employed in
an AWGN channel with SNR 𝜇.

Finally, the total MI averaged over all subchannels is

𝐼 =
1

𝑄

𝑄∑
𝑞=1

𝐼𝑞 (5)

and the average constellation size is

𝜂 =
1

𝑄

∑
𝑖

∑
𝑞

𝛼𝑖𝑞𝑚𝑖 (6)

The optimum bit loading and power allocation is defined
as the one that maximizes the MI in (5) with respect to 𝛼𝑖𝑞

and 𝑝𝑖𝑞 subject to the constraints in (2) and the average power
constraint, that is,

max
{𝑝𝑖𝑞},{𝛼𝑖𝑞}

1

𝑄

𝑄∑
𝑞=1

𝑁∑
𝑖=1

𝛼𝑖𝑞𝐼𝑖 (𝑝𝑖𝑞𝛾𝑞) (7a)

𝑠.𝑡. 𝛼𝑖𝑞 ≥ 0 , 𝑝𝑖𝑞 ≥ 0 , 𝑖 = 1, ..., 𝑁
𝑞 = 1, ..., 𝑄

(7b)

𝑁∑
𝑖=1

𝛼𝑖𝑞 ≤ 1 𝑞 = 1, ..., 𝑄 (7c)

1

𝑄

𝑄∑
𝑞=1

𝑁∑
𝑖=1

𝛼𝑖𝑞𝑝𝑖𝑞 ≤ 𝑃𝑇 (7d)

where 𝑃𝑇 is the maximum available power at the transmitter.
Introducing the average power allocated per subchannel

defined in (3) into these equations, one can observe that the
joint optimization of the parameters for all subchannels can
be formulated as a two step optimization.

The first step is the optimization of the power allocation
and bit loading for a single AWGN channel. Let us consider
a generic AWGN channel with reliability 𝛾 and allocated
power 𝑃 . In this case, we drop the subindex 𝑞 indicating the
subchannel and, therefore, we denote the parameters as 𝛼𝑖

and 𝑝𝑖 instead of 𝛼𝑖𝑞 and 𝑝𝑖𝑞 . If we introduce the normalized
power parameters 𝑝′𝑖 = 𝑝𝑖/𝑃 , then the first optimization can
be expressed as a function of the SNR 𝜇 = 𝑃𝛾 as

𝐼𝑜(𝜇) = max
{𝑝′

𝑖},{𝛼𝑖}

𝑁∑
𝑖=1

𝛼𝑖𝐼𝑖 (𝑝
′
𝑖𝜇) (8a)

𝑠.𝑡.
∑𝑁

𝑖=1 𝛼𝑖𝑝
′
𝑖 = 1 (8b)

together with the inequality constraints (7b) and (7c).
The second step consists in the following problem of power

allocation over parallel subchannels:

max
{𝑃𝑞}

1

𝑄

𝑄∑
𝑞=1

𝐼𝑜(𝛾𝑞𝑃𝑞) (9a)

𝑠.𝑡. 1
𝑄

∑𝑄
𝑞=1 𝑃𝑞 ≤ 𝑃𝑇 (9b)

Hence, in the second step no bit loading must be done. As
we explain in more detail in section V, this power allocation
is solved by mercury/waterfilling policy considering a single
irregular modulation resulting from the first step.

These two steps are analyzed in the following two sections.
The single AWGN case is studied in section IV (first step).
Afterwards, section V generalizes the design for multiple
parallel channels (second step).

IV. SINGLE AWGN CHANNEL

This section presents the solution to the single channel
optimization expressed in equation (8), corresponding to the
first step of the global optimization. The problem in equation
(8) is not convex in terms of (𝛼𝑖, 𝑝

′
𝑖). However, as the MI

functions are concave, introducing the change of variables
𝑠𝑖 = 𝑝′𝑖𝛼𝑖 it can be expressed it as the following convex
optimization problem:

𝐼𝑜(𝜇) = max
{𝑠𝑖},{𝛼𝑖}

𝑁∑
𝑖=1

𝛼𝑖𝐼𝑖(
𝑠𝑖
𝛼𝑖
𝜇) (10a)

𝑠.𝑡. 𝛼𝑖 ≥ 0 , 𝑠𝑖 ≥ 0 , 𝑖 = 1, ..., 𝑁 (10b)

𝑁∑
𝑖=1

𝑠𝑖 = 1 (10c)

𝑁∑
𝑖=1

𝛼𝑖 ≤ 1 (10d)

A. Solution

The optimization problem in (10) can be regarded as a
multiple objective optimization based on a weighted sum of
the set of objective functions, where the weights are not
constant parameters but also variables to be optimized. For
our specific setting, in which each one of these functions (the
mutual information of each constellation) depends on only
one of the variables (the power allocated to it), the solution is
their envelope or convex hull, determined by the tangency line
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among all the individual functions. Next we provide the final
expression of the solution, while its derivation can be found
in Appendix A.

Let us first introduce some definitions:

∙ Derivative of the mutual information with respect to SNR
for constellation 𝒞𝑖:

𝐷𝑖(𝜇) =
𝑑𝐼𝑖(𝜇)

𝑑𝜇
(11)

∙ Legendre transform [14] of the mutual information:

𝐿𝑖(𝑥) = 𝐶𝑖

(
𝐷−1

𝑖 (𝑥)
)

(12)

where 𝐶𝑖(𝜇) is the gap between the MI and its first order
Taylor approximation at the origin (𝜇 = 0):

𝐶𝑖(𝜇) = 𝐼𝑖(𝜇) − 𝜌𝐷𝑖(𝜇) (13)

In order to find a closed expression for this solution let us
define a partition of the domain of the Legendre transforms
of the MI functions into the following regions:

ℛ𝑖 = {𝑥 : 𝐿𝑖(𝑥) ≥ 𝐿𝑗(𝑥) ∀𝑗 ∕= 𝑖} (14)

If one of these regions is empty, then the corresponding
constellation is never used and we assume it to be removed
from the set of possible ones. This condition is equivalent to
the MI of the corresponding constellation being smaller than
the MI provided by other constellations at all SNR’s. Let us
assume that the constellations of this set are indexed according
to the order of appearance of these regions for a decreasing
𝑥, i.e.

𝑥𝑖 ∈ ℛ𝑖 𝑎𝑛𝑑 𝑥𝑖+1 ∈ ℛ𝑖+1 ⇒ 𝑥𝑖 ≥ 𝑥𝑖+1

Besides, let us define 𝜈𝑖 as the boundary points between pairs
of contiguous regions, i.e.

𝜈𝑖 = 𝑥 : 𝑥 ∈ ℛ𝑖 𝑎𝑛𝑑 𝑥 ∈ ℛ𝑖+1

𝑓𝑜𝑟 𝑖 = 1, ..., 𝑁 − 1

or, in other terms, as the points in which the Legendre trans-
forms of the MI of the corresponding constellations intersect

𝐿𝑖(𝜈𝑖) = 𝐿𝑖+1(𝜈𝑖) 𝑓𝑜𝑟 𝑖 = 1, ..., 𝑁 − 1 (15)

Since there are𝑁 constellations whose region ℛ𝑖 is not empty,
there are 𝑁 − 1 boundary points.

Figure 2 depicts function 𝐿𝑖(𝑥) for different constellations.
The regions defined in equation (14) and the intersections in
(15) are also indicated. In geometric terms, when two Legen-
dre transforms intersect the tangent to the corresponding MI
functions coincide. These points determine the range of SNR’s
in which the corresponding constellations are combined, which
are bounded by the following thresholds

𝜇−𝑖 = 𝐷−1
𝑖 (𝜈𝑖−1) 𝑓𝑜𝑟 𝑖 = 2, ..., 𝑁

𝜇+𝑖 = 𝐷−1
𝑖 (𝜈𝑖) 𝑓𝑜𝑟 𝑖 = 1, ..., 𝑁 − 1

(16)

together with 𝜇+0 = 0, 𝜇−1 = 0, 𝜇+𝑁 = ∞ and 𝜇−𝑁+1 = ∞.
As derived in Appendix A, the solution of the optimization

problem (10) can be expressed in terms of these thresholds as
a function of the SNR as follows:
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Fig. 2. Legendre transform of the mutual information for different con-
stellations for the BICM scheme described in Appendix B. The subindexes
are assigned in the following order: 1:QPSK, 2:16-QAM, 3;64-QAM, 4:256-
QAM. The regions defined in equation (14) are depicted, as well as the
boundary points 𝜈𝑖 defined in (15).

∙ The fraction of use of each constellation is defined piece-
wise by linear sections:

𝛼𝑖(𝜇) =

⎧⎨
⎩

0 𝑖𝑓 0 ≤ 𝜇 ≤ 𝜇+𝑖−1

𝑘𝑖(𝜇− 𝜇+𝑖−1) 𝑖𝑓 𝜇+𝑖−1 < 𝜇 < 𝜇
−
𝑖

1 𝑖𝑓 𝜇−𝑖 ≤ 𝜇 ≤ 𝜇+𝑖
𝑘𝑖+1(𝜇

−
𝑖+1 − 𝜇) 𝑖𝑓 𝜇+𝑖 < 𝜇 < 𝜇

−
𝑖+1

0 𝑖𝑓 𝜇−𝑖+1 ≤ 𝜇 <∞
𝑖 = 1, ..., 𝑁

(17)
with

𝑘𝑗 =
1

𝜇−
𝑗 −𝜇+

𝑗−1

𝑗 = 1, ..., 𝑁 + 1

∙ The normalized power allocated to each constellation is

𝑝′𝑖(𝜇) =

⎧⎨
⎩

0 𝑖𝑓 0 ≤ 𝜇 ≤ 𝜇+𝑖−1
𝜇−
𝑖

𝜇 𝑖𝑓 𝜇+𝑖−1 < 𝜇 < 𝜇
−
𝑖

1 𝑖𝑓 𝜇−𝑖 ≤ 𝜇 ≤ 𝜇+𝑖
𝜇+
𝑖

𝜇 𝑖𝑓 𝜇+𝑖 < 𝜇 < 𝜇
−
𝑖+1

0 𝑖𝑓 𝜇−𝑖+1 ≤ 𝜇 <∞

𝑖 = 1, ..., 𝑁

(18)

Figures 3(a) and 3(b) depict these functions. Combining
equations (17) and (18) we can easily find the expression of
the optimum mutual information as a piece-wise function:

𝐼𝑜(𝜇) =⎧⎨
⎩
𝐼𝑖−1(𝜇

+
𝑖−1)+

𝐼𝑖(𝜇
−
𝑖 )−𝐼𝑖−1(𝜇

+
𝑖−1)

𝜇−
𝑖 −𝜇+

𝑖−1

(𝜇− 𝜇+𝑖−1) , 𝜇
+
𝑖−1< 𝜇< 𝜇

−
𝑖

𝐼𝑖(𝜇) , 𝜇−𝑖 ≤𝜇 ≤ 𝜇+𝑖
𝑖 = 1, ..., 𝑁

(19)
for 𝑖 = 1, ..., 𝑁 and where we have defined 𝐼0(𝜇) = 0 ∀𝜇.
Notice that the mutual information is linear with SNR in the
SNR values where two constellations are combined. For a
generic AWGN channel with reliability 𝛾 and with maximum
transmitted power 𝑃 , the solution is found applying the
previous equations for an SNR 𝜇 = 𝛾𝑃 .
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(a) 𝛼𝑖

(b) 𝑝′𝑖

Fig. 3. Graphical representation of the solution for the 𝑖-th constellation:
fraction of use (a) and allocated powers (b).

B. Analytical and graphical interpretation

The resulting irregular modulation and power allocation
expressed in equations (17) and (18) can be seen as an equiv-
alent constellation. Given a set of available constellations,
this equivalent constellation is obtained as the SNR-dependent
constellation selection that provides the maximum MI for
each SNR and is characterized by the SNR vs. MI curve in
equation (19). In this section we illustrate the use of irregular
modulation and power for MI maximization in the AWGN
channel showing its application to a BICM scheme with unit
available power and QPSK, 16QAM, 64QAM and 256QAM
with Gray labeling as possible constellations.

Figure 4 represents the resulting optimum MI vs. the
SNR compared to the ones of the individual constellations.
As evidenced in the zoomed region, in the SNR intervals
where two constellations are combined, the optimum mutual
information curve as a function of the SNR is linear (and
then, the first derivative is constant) and it coincides with the
common tangent to the MI curves of these two constellations.
This property determines the gain achieved with the irregular
modulation: it corresponds to the gap between the MI curves
of the constellations and their tangent. While this gain might
be considered to be small, the fact that the optimum MI is
concave with respect to the SNR is of paramount importance
to derive a bit loading and power allocation algorithm for
multiple parallel channels.

The solution in terms of parameters 𝛼𝑖 and 𝑝′𝑖 for each
constellation has the shape depicted in Figs. 3(a) and 3(b)
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Fig. 4. Optimum mutual information (𝐼𝑜(𝜇)) for the AWGN channel
example. The individual MI curves are also shown.

respectively. In the intervals where an irregular modulation is
employed, the 𝛼𝑖 of the two constellations that are combined
have opposite behaviors, one decreasing and the other one
increasing, with a constant slope of the same absolute value.
The normalized power 𝑝′𝑖 is inversely proportional to the SNR
for both, so the mutual information per constellation symbol
remains constant and equal to the value in which the tangent
line intersects with the MI curves.

Finally, Fig. 5 presents the mutual information per bit (i.e.,
𝐼𝑜/𝜂) that would be obtained in the proposed example. This
mutual information dictates the rate of the binary channel code
that would be incorporated in the BICM scheme. As can be
observed, the MI per bit keeps within the range [0.5, 0.83] in
the SNR interval of 0 to 20 dB, indicating that it would be
easy to design capacity-approaching binary codes operating
at these rates. Note that if bit loading was not applied and
the largest constellation was always used the rate of required
binary channel code would be very small at low SNR’s and,
hence, very difficult to design.

In Fig. 5, it can also be appreciated the piecewise behavior
of the solution: the MI per bit coincides with the one of every
constellation in a in certain region, corresponding to the SNR
values in which only that constellation is employed. To make
this clear, the average size of the resulting optimum constella-
tion (defined in equation (6),with 𝑄 = 1) has been plotted also
in the same figure. The regions in which the solution selects
a single constellation are characterized by a constant value of
the constellation size, whereas an irregular combination of two
constellations in associated to the constellation size transitions.

V. MULTIPLE PARALLEL CHANNELS

A. Solution

The second optimization step, expressed in equation (9), can
be regarded as a power allocation problem over 𝑄 parallel
subchannels, all of them using the same equivalent constel-
lation that provides a mutual information 𝐼𝑜(𝜇). Although
mercury/waterfilling (MWF) was originally formulated for
linear modulations and lossless transceivers, it can be easily
shown that it can be applied also to allocate power in other
transmission schemes in parallel subchannels as long as the
mutual information is concave with the SNR and we replace
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the mean square error in the formulation in [4] by the MI
derivative with respect to the SNR. As the MI for each
constellation 𝐼𝑖 is concave with the SNR, the single channel
optimum 𝐼𝑜 presented in the previous section is also concave.
Therefore, defining the derivative of this function as

𝐷𝑜(𝜇) =
𝑑𝐼𝑜(𝜇)

𝑑𝜇
(20)

the solution to (9) is provided by the MWF expression:

𝑃𝑞 =

{
1
𝛾𝑞
𝐷−1

𝑜

(
𝛿
𝛾𝑞

)
𝑖𝑓 𝛿 ≤ 𝛾𝑞 ⋅𝐷𝑜(0)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(21)

where the waterlevel 𝛿 is selected in order to fulfill the power
constraint.

B. Analytical and graphical interpretation

The procedure to allocate power and its graphical interpre-
tation presented in [4] apply here, since the optimum solution
is given by mercury/waterfilling. However, it is interesting to
note which are the implications of the particular shape of the
single channel optimized MI.

Following the procedure described in [4], the waterlevel 𝛿
can be found depicting the scaled derivative function of the
mutual information for each subchannel as a function of the
allocated power, and looking for the waterlevel 𝛿 such that the
corresponding abscissas satisfy the average power constraint.
Figure 6 illustrates this procedure for a toy example with 𝑄 =
4, 𝑃𝑇 = 1 and the same constellation parameters employed in
the example in section IV-B (which resulted in the equivalent
constellation whose MI vs. SNR plot is depicted in Fig. 4).
We consider the gains 𝐻2 of the four parallel subchannels
equal to 1

24 [12, 6, 5, 1] and an SNR of 13dB (i.e. 𝛾1 = 9.98,
𝛾2 = 4.99, 𝛾3 = 4.16 and 𝛾4 = 0.83). Figure 6 depicts the
scaled function 𝐷𝑜(𝜇) (derivative of the MI plot in Fig. 4)
for each subchannel. As shown in the figure, the waterlevel is
𝛿 = 0.965 and the optimum power values are 𝑃1 = 1.43, 𝑃2 =
1.138, 𝑃3 = 1.1438 and 𝑃4 = 0.29. Hence, from equations
(17) and (18), the optimum bit loading variables are (𝛼31 =
𝛼22 = 𝛼23 = 𝛼14 = 1), (𝑝′31 = 𝑝′22 = 𝑝′23 = 𝑝′14 = 1), being
null the remaining ones.
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Fig. 6. Weighted derivatives chart representing the MWF solution.

As seen in Fig. 6, and described in section IV-B, the
derivative of the single channel optimum MI, 𝐷𝑜(𝜇), is
constant in the range of SNR’s where two constellations are
combined. Hence, the inverse of the derivative is not well
defined in these sections. If the optimum 𝛿 corresponds to a
flat section of 𝛾𝑞𝐷𝑜 for only one of the subchannels, then the
ambiguity in the power value for that subchannel can be solved
from the knowledge of the power for the other subchannels
and the application of the average power constraint. However,
if the 𝛾𝑞 values are such that the optimum 𝛿 coincides with
a flat section for several subchannels, then the optimization
problem has multiple solutions, all of them providing the same
optimum mutual information value. In that case, an additional
criterion should be introduced to select one of the solutions.

Let us consider the transmission using BICM through 32
parallel subchannels with gains depicted in Fig. 7 employing
the same set of constellations as the AWGN channel example
(QPSK, 16QAM, 64QAM and 256QAM with Gray labeling).
Figure 8 depicts the optimum MI vs. SNR provided by the bit
loading and power allocation algorithm proposed in this paper
for this scenario and compares it with the capacity obtained
by classic waterfilling. Note that the difference between them
is due to the limitation in the constellation size and the lack of
shaping gain. For completeness, the mean constellation size is
also depicted.

It is important to remark that, as the maximum number of
boundary points of the regions ℛ𝑖 (equation 14) is 𝑁 − 1,
at most 𝑁 − 1 subchannels can use irregular modulation
irrespective of how large is the number of subchannels 𝑄.
Taking into account that usually 𝑄 ≫ 𝑁 , we can anticipate
that the introduction of irregular modulation will not provide
a significant MI gain in practical cases. Figure 8 depicts also
the MI obtained by the simplified version of the proposed
algorithm obtained after rounding 𝛼𝑖𝑞 coefficients to {0, 1} to
get rid of irregular modulation. As it can be seen, losses due
to the rounding operation are negligible (the optimum and
suboptimum curves overlap completely). However, irregular
modulation is an essential point of the proposed method, since
it guarantees the convexity of function 𝐼𝑜 required by the
mercury/waterfilling criterion and, therefore, it allows to derive
an optimum bit loading and power allocation algorithm. In
spite of this fact, this remark suggests that, once the optimum
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solution has been derived with the algorithm proposed in this
paper, the implementation complexity can be reduced at the
expense of minor losses by getting rid of irregular modulation
and rounding the 𝛼𝑖𝑞 parameters to integers {0, 1}, so only
one constellation is employed per subchannel.

Figure 7 also illustrates the scarce use of irregular mod-
ulation. It shows the optimum bit loading and power allo-
cation per subchannel (𝑃𝑞, equation 3) for an SNR of 8dB
(𝛾 = 8𝑑𝐵, 𝑃𝑇 = 1) in the same scenario with 32 subchannels
employed before. It depicts also the MWF power allocations
in the case of using QPSK or 64QAM for all subchannels
of the BICM scheme. For the available constellation set, this
channel realization and this SNR, the optimum algorithm does
not employ irregular modulation in any of the 32 subchannels
(all 𝛼𝑖𝑞 parameters are either 0 or 1), so Fig. 7 depicts
the only constellation that is employed in every subchannel.
Furthermore, note that subchannel nr. 28 is allocated no power
and constellation 256QAM is not employed. This procedure
avoids the need to implement an irregular modulation scheme
while the performance is kept nearly optimal in terms of
mutual information.

It is worth mentioning that the proposed algorithm has not
been found to have any special repercussion to the PAPR
of the transmitted OFDM signal due to the inclusion of an
irregular modulation scheme. Besides, considering a more
realistic scenario in which the channel state information (CSI)
is not perfect, it has been verified that the sensitivity of the
adaptive design to this uncertainty is similar to that one of the
waterfilling power allocation.

C. Algorithm Complexity

The complexity of the proposed algorithm is equiva-
lent to the one of mercury/waterfilling power allocation.
The algorithm implementation requires two steps: First, the
the power allocated per subchannel is evaluated with mer-
cury/waterfilling assuming that the equivalent constellation
with mutual information given by equation (19) is employed.
Second, the bit loading is obtained from a look-up table that
stores the functions in equations (17) and (18).

The first stage, mercury/waterfilling, can be solved with
superlinear convergence with algorithms such as the secant
method [4, Appendix F], with the number of iterations de-
pending on the desired tolerance and not the number of
subchannels. In order to obtain the power allocation as defined
in equation (21), the evaluation of the waterlevel (𝛿) as the root
of the following function is required:

𝑓(𝛿) =

𝑄∑
𝑞=1
𝛾𝑞>𝛿

1

𝛾𝑞
𝐷−1

𝑜

(
𝛿

𝛾𝑞

)
−𝑄 (22)

This function has linear complexity with respect to the number
of subchannels 𝑄. It requires a maximum of 𝑄 + 1 sum-
mations, 2𝑄 divisions and 𝑄 quantization operations (of the
argument of 𝐷−1

𝑜 , used to evaluate that function using a
look-up table with no need of interpolation). Therefore, the
maximum final cost is approximately 4𝑛𝑄 operations, where
𝑛 is the number of iterations of the secant method.
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The second stage, bit loading, has negligible complexity
in the proposed algorithm. Note that the cost of bit loading
algorithms in the literature can be significant, since iterative
and greedy algorithms have non-linear complexity with respect
to the number of subchannels. Simplified algorithms that take
into account the quantization and make this dependence linear
have been proposed, being Levin-Campello one of them [8].

VI. CONCLUSIONS

In this paper we propose an optimal bit loading and power
allocation algorithm that maximizes the mutual information
with a power constraint for parallel subchannels. This al-
gorithm can be employed for performance optimization in
BICM-OFDM systems with channel state information at the
transmitter. As opposed to other bit loading algorithms in the
literature, the proposed approach employs the constellation-
constrained mutual information function rather than approx-
imations of the throughput and does not result in a greedy
algorithm.

The optimization can be decomposed in two steps. The first
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step consists of the design of an irregular modulation and
power allocation for an AWGN channel and has a closed-
form solution. The second step must be computed for each
channel realization and it requires the application of the
mercury/waterfilling power allocation over the set of parallel
subchannels employing in all of them the equivalent constel-
lation obtained in the first step. Assuming that the optimum
mutual information resulting of the first step is tabulated,
the complexity of our design is equivalent to the complexity
of mercury/waterfilling, corresponding to the search of the
optimum waterlevel. Hence, the additional computational load
due to the incorporation of the bit loading is negligible.

The proposed approach relies on the application of irregular
modulation and power allocation to obtain a convex problem
formulation. However, in practical scenarios, the number of
subchannels that employ symbols from more than one con-
stellation is very small. Hence, nearly optimal performance
can be obtained rounding the 𝛼𝑖𝑞 parameters (fraction of use)
to either 0 or 1. This way, an algorithm for conventional bit
loading and power allocation is obtained with nearly optimal
performance and low complexity.

VII. APPENDIX A
COMPUTATION OF THE AWGN CHANNEL OPTIMIZATION

SOLUTION OF SECTION IV

In this section we derive the solution to equations (10)
provided in equations (17) and (18). First, let us note that,
due to the definition of the 𝑠𝑖 parameters introduced to cast
the problem in the convex optimization framework, the points
where 𝛼𝑖 = 0 are excluded from the possible solutions
domain. However, this is not a restriction because for 𝛼𝑖 → 0
(which means that the 𝑖-th constellation is not used) the corre-
sponding term does not contribute to the mutual information:

lim
𝛼𝑖→0

𝛼𝑖𝐼𝑖(
𝑠𝑖
𝛼𝑖
𝜇) = 0

since the mutual information is positive and upper bounded
by 𝑚𝑖. Also, by definition, when the constellation is not used
no power is allocated to it and vice versa, that is:

𝛼𝑖 = 0 ⇔ 𝑝𝑖 = 0

From the optimization problem (10), we define the Lagrangian
function

𝐽 = −
𝑁∑
𝑖=1

𝛼𝑖𝐼𝑖

(
𝑠𝑖
𝛼𝑖
𝜇

)
−
∑
𝑖

𝜆𝑖𝛼𝑖

+𝜆0

(∑
𝑖

𝛼𝑖 − 1

)
−
∑
𝑖

𝜏𝑖𝑠𝑖 + 𝜏0

(∑
𝑖

𝑠𝑖 − 1

) (23)

where the parameters {𝜆𝑖} and {𝜏𝑖} are the Lagrange multi-
pliers.

Since the optimization problem is convex, it has a unique
solution which is given by the KKT conditions [15]. In our
case these are:

𝜆𝑖𝛼𝑖 = 0, 𝜆𝑖 ≥ 0 ∀𝑖 (24a)

𝜏𝑖𝑠𝑖 = 0, 𝜏𝑖 ≥ 0 ∀𝑖 (24b)

𝜆0(
∑

𝑖 𝛼𝑖 − 1) = 0, 𝜆0 ≥ 0 (24c)

∂𝐽
∂𝑠𝑖

= −𝜇𝐷𝑖

(
𝑠𝑖
𝛼𝑖
𝜇
)
− 𝜏𝑖 + 𝜏0 = 0, ∀𝑖 (24d)

∂𝐽
∂𝛼𝑖

= −𝐶𝑖

(
𝑠𝑖
𝛼𝑖
𝜇
)
− 𝜆𝑖 + 𝜆0 = 0, ∀𝑖 (24e)

and also the initial constraints

𝛼𝑖 ≥ 0 , 𝑠𝑖 ≥ 0 , 𝑖 = 1, ..., 𝑁 (25a)

𝑁∑
𝑖=1

𝑠𝑖 = 1 (25b)

𝑁∑
𝑖=1

𝛼𝑖 ≤ 1 (25c)

The optimization problem can be solved by finding the
solution to this set of equalities and inequalities. To obtain a
closed expression, we manipulate these equations as follows.
From equation (24d),

𝜏𝑖 = 𝜏0 − 𝜇𝐷𝑖

(
𝑠𝑖
𝛼𝑖
𝜇

)

Then, introducing it on (24b),

𝜏0 = 𝜇𝐷𝑖

(
𝑠𝑖
𝛼𝑖
𝜇
)

𝑜𝑟 𝑠𝑖 = 0 (26)

and also,

𝜏0 ≥ 𝜇𝐷𝑖

(
𝑠𝑖
𝛼𝑖
𝜇

)

Doing the same for the gradient with respect 𝛼𝑖, from equation
(24e),

𝜆𝑖 = 𝜆0 − 𝐶𝑖

(
𝑠𝑖
𝛼𝑖
𝜇

)

and then, on (24a),

𝜆0 = 𝐶𝑖

(
𝑠𝑖
𝛼𝑖
𝜇
)

𝑜𝑟 𝛼𝑖 = 0 (27)

and also

𝜆0 ≥ 𝐶𝑖

(
𝑠𝑖
𝛼𝑖
𝜇

)
(28)

Introducing (27) in (24c),

𝐶𝑖

(
𝑠𝑖
𝛼𝑖
𝜇
)
= 0 𝑜𝑟

∑
𝑖 𝛼𝑖 = 1 (29)

The first condition is only possible if all the quotients 𝑠𝑖
𝛼𝑖

are
0, that is, the power allocated to all constellations is zero and,
coherently, no symbols are transmitted, which is not a valid
solution. Therefore, the second condition is always fulfilled:
the sum of 𝛼’s is 1, what means that all the channel accesses
are used to transmit a symbol.

Going back to equality (26) for 𝑠𝑖 ∕= 0, and introducing the
equality in expression (27) for 𝛼𝑖 ∕= 0, we obtain

𝜆0 = 𝐿𝑖

(
𝜏0
𝜇

)
𝑜𝑟 𝛼𝑖 = 0, 𝑠𝑖 = 0 (30)
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This establishes a set of equalities between the two Lagrange
multipliers 𝜆0 and 𝜏0 that must be fulfilled for each constel-
lation (𝑖 = 1, ..., 𝑁 ) that is employed (non-null parameters 𝛼𝑖

and 𝑠𝑖). Moreover, doing the same for inequality (28)

𝜆0 ≥ 𝐿𝑖

(
𝜏0
𝜇

)
and, therefore,

𝜆0 = 𝑚𝑎𝑥𝑖 𝐿𝑖

(
𝜏0
𝜇

)
𝑜𝑟 𝛼𝑖 = 0, 𝑠𝑖 = 0 (31)

This equation leads to the definition of the regions

ℛ𝑖 = {𝑥 : 𝐿𝑖(𝑥) ≥ 𝐿𝑗(𝑥) ∀𝑗 ∕= 𝑖} (32)

which where introduced in section IV (equation 14). The
interior points of these regions correspond to pairs of values 𝜆0
and 𝜏0 where a unique constellation fulfills equation (31) for
non-null allocated parameters. As seen in Fig. 2, the boundary
points of these regions are the intersections between two of
these curves, defined as 𝜈𝑖 in equation (15). This means that
two constellations fulfill simultaneously equation (31) with
non-null allocated parameters. Thus, we define two sets of
possible hypothesis that determine the final solution:

1) 𝜏0
𝜇 ∈ ℛ𝑖,

𝜏0
𝜇 ∕= 𝜈𝑖−1, 𝜈𝑖 𝑖 = 1, ..., 𝑁 : Only one

constellation is used, when the corresponding Legendre
transform is maximum. Then the solution is trivial:
𝛼𝑗 = 𝛿𝑖𝑗 and 𝑠𝑗 = 𝛿𝑖𝑗

3 Then, from equation (26),
𝜏0
𝜇

= 𝐷𝑖 (𝜇) (33)

and the condition for this hypothesis to be valid turns
to: 𝐷𝑖 (𝜇) ∈ ℛ𝑖, 𝐷𝑖 (𝜇) ∕= 𝜈𝑖−1, 𝜈𝑖

2) 𝜏0
𝜇 = 𝜈𝑖 𝑖 = 1, ..., 𝑁 − 1 : Two constellations are

combined, when their Legendre transforms intersect.
Then the parameters 𝑠𝑖, 𝑠𝑖+1, 𝛼𝑖 and 𝛼𝑖+1 are not null
and found from the constraints on their sum and equa-
tions (26). Rewriting them for this specific hypothesis,
the following set of equations is obtained:

𝛼𝑖+1 + 𝛼𝑖 = 1 (34a)

𝑠𝑖+1 + 𝑠𝑖 = 1 (34b)

𝑠𝑖 =
𝛼𝑖

𝜇
𝐷−1

𝑖 (𝜈𝑖) (34c)

𝑠𝑖+1 =
𝛼𝑖+1

𝜇
𝐷−1

𝑖+1 (𝜈𝑖) (34d)

With straightforward manipulations, we can express the solu-
tion in terms of 𝜇 and 𝜈𝑖. For example, from the second set
of hypothesis, we can isolate 𝛼𝑖:

𝛼𝑖 =
𝐷−1

𝑖+1 (𝜈𝑖)− 𝜇
𝐷−1

𝑖+1 (𝜈𝑖)−𝐷−1
𝑖 (𝜈𝑖)

(35)

and then obtain the remaining parameters from it.
Notice that we have reduced the dependence on the La-

grange multiplier 𝜏0 and the SNR 𝜇 to only the dependence
on the latter. Therefore, the value of 𝜇 determines which one of
the previous hypothesis is valid, i.e. with parameters fulfilling

3𝛿𝑖𝑗 stands for the usual Kronecker delta, i.e. 𝛿𝑖𝑗 ={
1 𝑖𝑓 𝑗 = 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

constraints (25). Indeed, we can introduce these constraints in
the equations of the second hypothesis (equation 35) in order
to find the thresholds that determine which is the valid one:

∙ First, 𝛼𝑖 > 0 and then,

𝜇 < 𝐷−1
𝑖+1 (𝜈𝑖) (36)

∙ Second 𝛼𝑖 < 1 and then,

𝜇 > 𝐷−1
𝑖 (𝜈𝑖) (37)

which are the thresholds defined in equation (16) at section
IV.

The final expression of the solution in equations (17) and
(18) is constructed in a piecewise manner, where each piece
corresponds to one of the regions of SNR values where one
of the 2𝑁 − 1 hypothesis is valid.

VIII. APPENDIX B
LOW COMPLEXITY BICM DEMAPPER METRICS

This appendix presents the bit metric computation for the
low complexity BICM demapper considered in the simula-
tions.

Let (𝑏𝑞1(𝑛), ..., 𝑏𝑞𝑚(𝑛)) denote the bits associated to the
symbol 𝑥𝑞(𝑛) in equation (1). The bit log-likelihood ratios
(LLR) that are delivered to the decoder are defined as

𝐿𝐿𝑅{𝑏𝑞𝑗(𝑛)} = 𝑙𝑜𝑔
𝑃𝑟 (𝑏𝑞𝑗(𝑛) = 1∣𝑦𝑞(𝑛))
𝑃𝑟 (𝑏𝑞𝑗(𝑛) = 0∣𝑦𝑞(𝑛)) (38)

Omitting the temporal index 𝑛, this ratios are obtained as:

𝐿𝐿𝑅{𝑏𝑞𝑗} = log
∑

𝑥𝑞 :𝑏𝑞𝑗=1

exp− 1

𝜎2
∣𝑦𝑞 −𝐻𝑞

√
𝑝𝑞𝑥𝑞 ∣2

− log
∑

𝑥𝑞 :𝑏𝑞𝑗=0

exp− 1

𝜎2
∣𝑦𝑞 −𝐻𝑞

√
𝑝𝑞𝑥𝑞 ∣2 (39)

Applying the max-log approximation 𝑙𝑜𝑔
∑

𝑖 exp 𝑧𝑖 ≈ max𝑖 𝑧𝑖
as in [16], the LLR’s are finally simplified as:

𝐿𝐿𝑅{𝑏𝑞𝑗} ≈ max
𝑥𝑞:𝑏𝑞𝑗=1

− 1

𝜎2
∣𝑦𝑞 −𝐻𝑞

√
𝑝𝑞𝑥𝑞∣2

− max
𝑥𝑞:𝑏𝑞𝑗=0

− 1

𝜎2
∣𝑦𝑞 −𝐻𝑞

√
𝑝𝑞𝑥𝑞∣2 (40)
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