Improvement and validation of retrieved FORMOSAT-3/COSMIC electron densities using Jicamarca DPS

> A. Aragón-Angel, Y.-A. Liou, C.-C. Lee, M. Hernández-Pajares, J.M. Juan, J. Sanz, B.W. Reinisch

Outline

1. RO: Classical Abel transform applied to L1 phase excess

- 2. Clock calibration
- 3. Improved Abel transform
- 4. Results
- 5. Topside estimation
- 6. Future work
- 7. Conclusions

Electron density from RO data

Basic observable:

- Linear combination of dual frequencies LI
 L1&L2 same participation
- Bending angle of L1 Clock calibratic

The GPS receiver on the LEO observes the change in the delay of the signal path between the GPS and the LEO satellite This change in the delay includes the effect of the atmosphere which delays and bends the

gAG	Classical Abel transform applied				
AGE	to L1 excess phase				
Resear	The basic measurement is the phase path: $L= \int n ds$ GPS				
ch g roup	From it, the excess phase is $\Delta L = L - \vec{r}_{LEO} - \vec{r}_{GPS} $ defined :				
of Astronomy and	The change rate of the excess phase, called excess Doppler, is what is going to become our input observable: $\Delta D = \frac{d(\Delta L)}{dt}$				
GEomatics	The projection of satellite orbital motion along signal ray-path produces a Doppler shift at both the transmitter and the receiver. The fundamental observable is the signal Doppler shift, which is different than expected from only velocities due to the satellite and receiver clock drifts and the atmospheric bending of the signal (ionosphere and				

- LEO clock errors removed
- Use solved-for GPS clocks
- Advantage: Minimizes double difference

Bending angle: Calibration of excess phase delay

Alternative approach for a two-frequency receiver: been used to remove the clock drift.

$$\Delta \alpha_i \propto \Delta f_i \propto \frac{d(\Delta L_i)}{dt} - \frac{dT}{dt} \longrightarrow \Delta f_i \propto \frac{d}{dt} (\Delta L_i - T)$$

$$0 = \frac{f_1^2 \cdot \Delta f_1 - f_2^2 \cdot \Delta f_2}{f_1^2 - f_2^2} = \frac{d}{dt} \left(\Delta L_C - T \right)$$
$$\frac{d}{dt} \left(\Delta L_C \right) = \frac{dT}{dt}$$

Classical Abel transform applied to bending angles Signal Doppler from LEO to GPS shift $arphi_{i-1}^{LEO}$ φ_{i-1}^{GPS} $arphi_{j-'}^{LEO}$ φ_i φ_{i-2}^{GPS} lust the φ_i given occultation p_i **GPS** data are $\alpha_i = \sum_{j=1}^{i-1} \alpha_j^{LEO} + \sum_{j=1}^{i-1} \alpha_j^{GPS} - \tan \varphi_i \cdot \frac{(n_i - n_{i-1})}{n_{i-1}}$ processed. $\alpha_{i}^{receiver} = -\tan \varphi_{i}^{receiver} \cdot \frac{(n_{j} - n_{j-1})}{(n_{j} - n_{j-1})}$ The classical spherical symmetry hypothesis can be Unt the waster of the as: $N_e(LT, LAT, H) = \Phi(H)$ solved is Ne \succ Recursive solution starting from the outer ray. $\geq \prod_i$ corresponds to the bending angle of the ray with impact parameter *pi*.

Improved Abel transform Problem: Electron density is equal for points at the same height but a RO footprint ~ 3000km

Analysis of F-3/C derived Ne profiles at the dip equator Jan - Dec 2007

Experiment @ Jicamarca

Experiment @ Jicamarca

gAG AGE

Research group of Astronomy and GEomatics

Experiment

Scenario: - Time span: Jan 2007 until Dec 2007 - Jicamarca DPS location (+/- 3 degrees)

gAG E AGE Research group of Astronomy and GEomatics

LT effect on NmF2: Night

Even distribution of the differences btw the electron density profiles derived from F3-C data and Jicamarca DPS measurements during nighttime (LT)

LT effect on NmF2

Some interesting profiles at Jicamarca

Some interesting profiles at Jicamarca

Some interesting profiles at Jicamarca

- No upper ionospheric contribution considered
 - Climatological model
 - Extrapolation scheme

Experiment: One year data for 2007 of colocated DPS measurements at Jicamarca vs. FORMOSAT-3/COSMIC RO derived profiles of

gAG	Upper ionosphere estimation								
AGE		No upper ionospheric contribution considered							
Resear		 Climatological model: NeQuick √ Extrapolation scheme 							
ch		Jain a the	constability patura	of the electron					
group of Astronomy and GEomatics	No up	per Ne	Improved Abel inversion	Classical Abel inversion					
		Nr. comp.	Bias +/- σ [Rel. RMS %]	Bias +/- σ [Rel. RMS %]					
	Day	102	-0.2 +/- 0.4 [6.3]	-0.1 +/- 0.4 [6.4]					
	D&D	22	0.1 + - 0.5 [9.2]	-0.1 +/- 0.5 [9.7]					
	Night	15	0.0 + / - 0.4 [8.8]	-0.1 +/- 0.6 [13.3]					
	Global	139	-0.1 +/- 0.4 [6.9]	-0.1 +/- 0.5 [7.4]					
	NeQ	uick	Improved Abel inversion	Classical Abel inversion					
		Nr. comp.	Bias +/- σ [Rel. RMS %]	Bias +/- σ [Rel. RMS %]					
	Day	93	-0.1 +/- 0.4 [6.0]	0.0 + - 0.5 [6.5]					
	D&D	20	0.0 + - 0.5 [8.4]	-0.1 +/- 0.6 [11.4]					
	Night	18	0.0 +/- 0.4 [9.7]	0.0 + / - 0.6 [13.0]					
	Global	131	0.0 + - 0.4 [6.7]	0.0 + - 0.5 [7.8]					

gAG E	U	pper i	onosphere es	stimation				
AGE	A No upper ionospheric contribution considered √							
Res	> (Climatological model: NeQuick						
earch (Extrapolation scheme: Exponential decay							
group of Astronomy and GEoma	No up	per Ne Nr. comp.	Improved Abel inversion Bias +/- σ [Rel. RMS %]	Classical Abel inversion Bias +/- σ [Rel. RMS %]				
	Day D&D Night Global	102 22 15 139	-0.2 +/- 0.4 [6.3] 0.1 +/- 0.5 [9.2] 0.0 +/- 0.4 [8.8] -0.1 +/- 0.4 [6.9]	-0.1 +/- 0.4 [6.4] -0.1 +/- 0.5 [9.7] -0.1 +/- 0.6 [13.3] -0.1 +/- 0.5 [7.4]				
	Extrap	Nr. comp.	Improved Abel inversion Bias +/- σ [Rel. RMS %]	Classical Abel inversion Bias +/- σ [Rel. RMS %]				
tics	Day D&D Night Global	83 12 14 109	-0.2 +/- 0.4 [6.0] 0.1 +/- 0.5 [9.1] 0.2 +/- 0.3 [8.1] -0.1 +/- 0.4 [6.6]	-0.1 +/- 0.4 [6.2] -0.1 +/- 0.5 [9.4] 0.0 +/- 0.6 [13.5] -0.1 +/- 0.5 [7.5]				

- No upper ionospheric contribution considered
- Climatological model: NeQuick
- \succ Extrapolation scheme: Exponential decay $\sqrt{}$

When using the Improved Abel Transform to retrieve electron densities from RO events, the value of the integral of the shape function along the RO path should theoretically be 1 (in practice, a value close to 1)

Surprisingly, for the first processed FORMOSAT-3/COSMIC data belonging to the first two weeks of 2007, with more than 17.000 solved and accepted occultations, these integral values

27

Distribution of the values of the shape function integral taking into account the different LEO spacecrafts.

The shape function integral value gives a comparison btw VTEC GPS derived and VTEC RO derived. RO are mainly sensitive to IONO,

Conclusions

The results from this work show:

Alternative way to calibrate clocks by means of the ionospheric-free combination of carrier phases avoiding double differencing strategies (valid for ionospheric heights).

Analysis of an Implementation of Separability technique for the retrieval of electron densities from L1 excess phase at a very ionospheric variable location (mitigating the effect of co-location). The Improved Abel transform provides more accurate determination of foF2.

Several strategies to account for the upper ionospheric content have been explored.

 \succ It has been shown that Radio Occultations are basically sensitive to the ionosphere rather than the plasmasphere. Hence, the electron content accounts for the iononospheric contribution.

Thank you Gràcies!

