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Continuous symmetry and

shape measures

by Guillem Perarnau-Llobet,1 Julian Pfeifle2 and Jordi Saludes2

1.1 Introduction

A problem in computational chemistry posed during GEMT 2009 at UPC was
to find the optimal affine transformation between two point sets X, Y ⊂ R

3 of
n points each that minimizes a certain similarity measure. Given a bijection
π : X → Y , the optimal affine transform sending π(Y ) to X can be computed
efficiently by analytic means [3]. The crucial bottleneck encountered in pre-
vious work lies with the combinatorial complexity of having to enumerate all
n! permutations of these point sets to find the best affine transform.

In this paper, we present an algorithm that approximately matches X and
Y using affine transformations, and returns the best correspondence between
the transformed sets. From this, the best global affine transform can then
be computed analytically.

Our strategy is to first translate X and Y so that their respective barycen-
ters lie at the origin, and then scale each set so that the variation of the set
of distances to the origin is the same. The only remaining ingredient is to
find a rotation R ∈ SO(3) that makes R(X) and Y agree “as far as possible”.

1.1.1 Error measures

We will take the sum of squared distances of matching points. Another viable
option would be Hausdorff distance [1].
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1.2 The Cayley chart of SO(3)

The Lie group SO(3) of orthogonal 3 × 3 matrices with determinant 1 has
many different charts. The most important for us is that given by the Cayley

transform

C : so(3) −→ SO(3)rM

A 7−→ (I − A)(I + A)−1.

It establishes a bijection between skew-symmetric matrices

A = sk(x, y, z) =





0 x −y
−x 0 z
y −z 0



 ∈ so(3)

with x, y, z ∈ R and the set SO(3)rM , where M denotes the set of rotation
matrices that have −1 as an eigenvalue. Specifically, it takes A to

C
(

sk(x, y, z)
)

=
1

∆





1 + x2 − y2 − z2 2x y − 2 z 2 (y + x z)
2 (x y + z) 1− x2 + y2 − z2 −2x+ 2 y z
−2 y + 2x z 2 (x+ y z) 1− x2 − y2 + z2



 ,

where ∆ = 1 + x2 + y2 + z2.
The inverse map is given by the same expression,

C−1(Q) = (I −Q)(I +Q)−1 for Q ∈ SO(3)rM .

We need to find the set of rotation matrices that map a point with spher-
ical coordinates (θ1, ϕ1) in the 2-dimensional sphere S2 to the point with
spherical coordinates (θ2, ϕ2). Elementary calculations yield the following
result:

Proposition 1.2.1. The inverse image under the composite map C ◦ sk of

the set of rotations that send u = (θ1, ϕ1) to v = (θ2, ϕ2) is the affine line ℓ
in (R3, (x, y, z)) given by

x =
cos(ϕ2)− cos(ϕ1) + y (cos(θ2) sin(ϕ2) + cos(θ1) sin(ϕ1))

sin(ϕ2) sin(θ2) + sin(ϕ1) sin(θ1)
,

z =
y (cos(ϕ2) + cos(ϕ1))− cos(θ2) sin(ϕ2) + cos(θ1) sin(ϕ1)

sin(ϕ2) sin(θ2) + sin(ϕ1) sin(θ1)
.

If u = (u1, u2, u3) and v = (v1, v2, v3) are the Cartesian coordinates of u,
respectively v, then a point p on ℓ and a direction vector a for ℓ are given by

p =

(−u3 + v3
u2 + v2

, 0,
u1 − v1
u2 + v2

)

, a = (u1 + v1, u2 + v2, u3 + v3).
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1.2.1 Computing rotations

We will try to match a given triangle in the reference point set to every
suitable triangle in the problem set using a rotation. From the above, it
is clear that finding the optimal rotation that achieves this corresponds to
intersecting the three lines qi + tivi for i = 1, 2, 3 in the Cayley parametriza-
tion space. If the triangles in question are congruent, these three lines will
meet at a single point, so the problem is overdetermined; if the triangles are
not congruent, however, the three lines will not intersect at all. We therefore
choose to solve the problem of minimizing the sum of squared distances

D =
3
∑

i,j

‖qi − qj + tivi − tjvj‖2.

By computing the gradient of D with respect to the unknowns ti, we obtain
the equivalent system of linear equations

∑

j 6=i

(qj − qi) · vi = 2ti‖vi‖2 −
∑

j 6=i

tjvi · vj for i = 1, 2, 3,

which expressed in matrix form reads as follows:





2‖v1‖2 −v1 · v2 −v1 · v3
−v2 · v1 2‖v2‖2 −v2 · v3
−v3 · v1 −v3 · v2 2‖v3‖2









t1
t2
t3



 =





∑

j 6=1(qj − q1) · v1
∑

j 6=2(qj − q2) · v2
∑

j 6=3(qj − q3) · v3



 .

As a candidate for the optimal rotation, we take the one corresponding to the
barycenter of the solution points: 1

3

∑3
i=1 qi + tivi. Alternatively, we could

consider the minimization problem

D′ =
3
∑

i=1

‖qi + tivi − p‖2

with unknowns ti ∈ R and p ∈ R
3.

1.3 Approximate affine point matching

1.3.1 Overview of the algorithm

The input data are two ordered sets X = (x1, . . . , xn), Y = (y1, . . . , yn) ⊂ R
3

of n points each. We want to compute a permutation π ∈ Sn such that



30 Continuous symmetry and shape measures

the ordered set Yπ = (yπ(1), . . . , yπ(n)) approximately minimizes the shape

measure S(X, Y ) = minπ∈Sn
Sπ(X, Y ), where

Sπ(X, Y ) = min
f affine

n
∑

i=1

‖xi − f(yπ(i))‖2

n
∑

i=1

‖xi − β‖2
.

Here β = 1
n

∑n

i=1 xi is the barycenter of X, and we take the minimum over
all affine transformations of Rn. We find a permutation that approximates
Sπ(X, Y ) using only a finite number of such transformations.

The first steps are to translate the barycenters of X and Y to the origin,
and to scale both sets so that the variances of their distances to the origin
equal some fixed value. We retain the names X and Y for these translated
and scaled sets. After this, we need to optimize over all rotations.

To any rotation R ∈ SO(3) we associate the map π = π(R) : {1, . . . , n} →
{1, . . . , n} that assigns to each point xi ∈ X the point y′π(i) ∈ Y ′ = R(Y )
closest to it in the Euclidean norm. In favorable cases, for example when
Y is an affine image of a slight perturbation of X, this map π is actually a
permutation of {1, . . . , n}. The optimal affine transform that maps X to Yπ

can then be found by analytical means.
Denote the set of triangles formed by points in X and Y by TX and TY ,

respectively. To find a good set of candidate rotations, we first choose a
certain (relatively small) subset T ′

X ⊂ TX of the triangles in X. For each
such triangle TX ∈ T ′

X , we iterate over all triangles TY ∈ TY , and for each
pair (TX , TY ) we find the rotation R ∈ SO(3) that most closely maps TX

onto TY using the methods in the preceding section. We then apply R to the
entire set X, find the corresponding optimal permutation π(R), and calculate
the associated shape measure Sπ(R)(X, Y ). Finally, we return the permuta-
tion corresponding to the best rotation among all those seen throughout the
process.

1.3.2 Implementation details

Choosing T ′

In general, the centered and scaled sets X and Y will not lie on a sphere.
Thus, two points xi ∈ X and yj ∈ Y will generally have different norms. If
this is true, it makes little sense to try to rotate xi into yj. Reciprocally, if
X and Y are almost affine images of each other, it stands to reason that the
distribution of the norms of their elements will be similar.
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Algorithm 1 Pseudocode of the matching algorithm

1: procedure Matching(X, Y )
2: X: the reference points
3: Y : the problem points
4: Set X := scale(center(X))
5: Set Y := scale(center(Y ))
6: global_error := 0
7: x1 := closest_to_origin(X)
8: x2 := furthest_to_origin(X)
9: for all triangles TX = {x1, x2, x} ∈ TX do

10: for all examinable triangles TY = {y1, y2, y3}, where yi ∈ Y do
11: R := optimal_rotation(TX ,TY )
12: XR := rotate(X,R)
13: if matching_error(XR,Y ) < global_error then
14: actualize the matching and its error
15: end if
16: end for
17: end for
18: Set X̂ := scale(center(specular(X)))
19: x̂1 := closest_to_origin(X̂)
20: x̂2 := furthest_to_origin(X̂)
21: for all triangles TX̂ = {x̂1, x̂2, x̂} ∈ TX̂ do
22: for all examinable triangles TY = {y1, y2, y3}, where yi ∈ Y do
23: R := optimal_rotation(TX̂ ,TY )
24: XR := rotate(X,R)
25: if matching_error(X̂R,Y ) < global_error then
26: actualize the matching and its error
27: end if
28: end for
29: end for
30: end procedure
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In the hope of rapidly and accurately capturing the shape of Y , we there-
fore choose the points xmin and xmax of minimal and maximal norm to always
form part of the initial triangle TX . This leaves us with a linear number of
initial triangles:

TX =
{

conv{xmin, xmax, x} : x 6= xmin, xmax

}

.

Sometimes rotation does not suffice because the X and Y have different
orientations. Hence we may define X̂ = σ(X), where σ is some reflection,
for example that with respect to the plane {x = 0}. Analogously, we define
TX̂ = σ(TX). Note that x̂min = σ(xmin) and x̂max = σ(xmax).

Finding the error given R

To calculate the error induced by a rotation R, we must compute the map
π : {1, . . . , n} → {1, . . . , n}. We use a k-d-tree built from X to rapidly query
the closest corresponding rotated point. This gives us an injective map that
is not necessarily exhaustive; however, this has always been the case in the
experiments we have conducted. Note that we build the k-d-tree on the fixed
reference set, so that we only have to execute this preprocessing once.

Sorting pairs of points by difference in norm

Another crucial optimization to find the optimal rotation is the following. We
calculate the norms of all points in TX and Y , and sort the list

(∣

∣‖x‖−‖y‖
∣

∣ :
x ∈ TX , y ∈ Y

)

of absolute values of their differences by size. We then use
the two triangles formed by the first three pairs of points from this sorted
list to calculate the first candidate rotation R. Intuitively, this makes sense
because we expect these triangles to be quite similar. We then proceed with
other candidate triangles from the beginning of the list. One must take a
little care to check that each triple of the selected pairs really consists of six
distinct points.

Due to this optimization, for each triangle in TX we only examine certain
triangles in TY (the first according to this sorted list), and this improves the
execution time.
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1.4 Results

We experimentally evaluate the efficiency of our algorithm in terms of time
complexity and quality of the solution found. We test it in the following
examples:

• A 7-vertex polyhedron with a central vertex.

• A cluster Au28 consisting of 28 gold atoms.

• Instances of a scalable artificial dataset. In order to be able to experi-
ment with large datasets, we have implemented a program that outputs
an arbitrarily large point cloud and a perturbation of it, and allows the
amount of perturbation to be tuned.

Each instance is accompanied by a perturbed version, which we then try
to match.

1.4.1 7-vertex polyhedron with a central vertex

This dataset consists of a polyhedron with 7 vertices on its convex hull, along
with another point at the barycenter. Exhaustive enumeration confirms the
permutation output by our algorithm to be the optimal one.

We do not apply an optimal analytical minimization of the distances
between matched points; hence, we obtain S(Q,P ) ≤ 0.93518 instead of the
optimal S(Q,P ) = 0.47764. This shows that, despite computing the optimal
permutation, we overestimate S(Q,P ).

The algorithm spends approximately two seconds on this example.

1.4.2 Au28

For this 28-point instance, it is computationally out of the question to enu-
merate all 28! ≈ 3×1029 permutations. Other heuristic methods [2] have ob-
tained a permutation of the nodes in Au28 that lead to the bound S(Q,P ) ≤
1.69182. This heuristic consists of finding an optimal plane to apply a spec-
ular symmetry, assuming that no rotation is needed.

Here the specular symmetry approach is very important, since the two
datasets do not have the same orientation. Our algorithm finds a substan-
tially different permutation, leading to an upper bound for the symmetry
measure of S(Q,P ) ≤ 0.23426, which improves the former. This solution is
found in 20 seconds.
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(a)Au28 and ideal polyhedra before rotation. (b)Au28 and ideal polyhedra after rotation.

Figure 1.1: The Au28 dataset and its perturbed version before and after rotation,
but after applying the mirror symmetry. In both images, we have marked the
triangles that select the optimal rotation.

1.4.3 Scalable artificial dataset

Finally, to test the real time complexity and the quality of the solution when
both the size increases and the quantity of perturbation varies, we use our
artificial dataset generator. The time spent by the algorithm depending on
the size of the point cloud is shown in Figure 1.2. We also show our upper
bound on the symmetry measure compared with the real one given a fixed
size and varying the perturbation of the points.

Figure 1.2: Execution time of the matching algorithm in an artificial set of points.
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1.5 Other ideas

1.5.1 Local minimization techniques

Another possibility is to define a smooth function such as the one given by an
attractive potential between the reference points P = {pi} and the problem
points Q = {qi},

V (P,Q) =
∑

i,j

φ(‖pi − qj‖),

where φ(r) = −r−α for α > 0. Then, given a rotation R and a local chart
containing R with coordinates x, y, z, we will try a steepest descent method
on (x, y, z) 7→ V (R(x, y, z)P,Q). In this way R is changed slightly to get a
better match.

To avoid falling into local minima, we should grid the group of rotations
and take the elements of the grid as initial values for the steepest descent
method.
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