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Abstract
A probabilistic interpretation for the output obtained from a tri-class Support Vector Ma-

chine into a multi-classification problem is presented in this paper. Probabilistic outputs

are defined when solving a multi-class problem by using an ensemble architecture with

tri-class learning machines working in parallel. This architecture enables the definition

of an ‘interpretation’ mapping which works on signed and probabilistic outputs providing

more control to the user on the classification problem.
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1. Introduction

Support Vector Machines (SVMs) are learning machines which implement the structural
risk minimization inductive principle to obtain good generalization on a limited number
of learning patterns. This theory was originally developed on the basis of a separable
binary classification problem with signed outputs ±1. Roughly speaking, two SVM-based
approaches exist to extend binary classification to multi-class classification [19]. The “all
the classes at once” approach solves the multi-classification problem by considering all
instances from all classes in an unique optimization formulation, whereas the “decompo-
sition-reconstruction” architecture defines an ensemble architecture with learning machines
working in parallel. Latter approach is usually preferred since the optimization problem is
more manageable. Several architectures [12, 14, 17] have been developed combining parallel
SVMs into a multi-classification framework, with binary methods based on one-versus-rest
(1-v-r) or pairwise (1-v-1) classes division. The 1-v-1 scheme is usually preferred to the
1-v-r scheme [11] because it takes less training time.

Probabilistic outputs according to the method introduced by Sollich [18] are considered
in a multi-classification ensemble architecture with several learning machines working in
parallel. The approach taken into consideration for the ℓ-class problem is based on the
ℓ-SVCR machine [3] for multi-classification purposes. The ℓ-SVCR machine is especially
addressed towards avoiding any loss of information which occurrs in the usual 1-v-1 train-
ing, by using a similar two-phase (decomposition, reconstruction) scheme. Furthermore,
it is well-known that the comparison of outputs of different SVMs which provide the final
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output when bi-classifiers are used in multi-classification problems is deemed an inadequate
approach [10, 13, 15]. Therefore, a direct comparison between numeric outputs of different
parallel SVMs is avoided by using a probabilistic approach.

The paper is organized as follows: both SVMs and Sollich’s approach are briefly introduced
in the next section. In Section 3, SVMs are analyzed for multi-class problems when 1-v-
1 SVMs are implemented in a two-phase scheme. Sollich’s probabilities are generalized
for a ℓ-SVCR decomposition and the counterpart reconstruction scheme is determined.
The interpretation of the new paradigm is presented in Section 4, and an experimental
comparison with other approaches is given in Section 5. Section 6 provides a final discussion
and concludes this paper.

2. Probabilities in SVMs

Let Z = {(x1, y1), · · · , (xn, yn)} be a training set, with {x1, · · · ,xn} ⊂ X , and yi ∈ Y =
{−1, 1} for a binary classification problem. In the general SVM algorithm, inputs x are
firstly mapped onto vectors φ(x) in some feature space, F ⊂ IRd, by a non-linear mapping.
Ideally, in the feature space, where an inner product is defined, the problem should be
linearly separable and a search procedure is performed in the form of a decision hyperplane
π ≡ ω ·φ(x)+ b = 0, leading to the SVM optimization problem [6]: to find a vector ω ∈ IRd′

and a bias b ∈ IR which minimizes

min
ω∈IRd′

1

2
‖ω‖2 + C

n
∑

i=1

ξi

s.t.

{

yi (ω · φ(xi) + b) − 1 + ξi ≥ 0, ∀i
ξi ≥ 0, ∀i

(1)

where ‖ ‖ and · denote the norm and the inner product in F , respectively.
Patterns exactly matching the first set of inequalities verify ξi = 0, and hence no pe-

nalization occurs of the risk function to be minimized. Remaining training vectors do in-
crease the risk function by a quantity C ξi = C [1 − yi(ω · φ(xi) + b)] (Karush-Kuhn-Tucker
condition)[19]. Hence, a new formulation of the risk function could be considered:

1

2
‖ω‖2 + C

n
∑

i=1

l(yi(ω · φ(xi) + b))

where l(z) is the ‘hinge loss’ function: l(z) = |1 − z|+, that is, l(z) = 1− z if 1− z ≥ 0, and
l(z) = 0 otherwise.

From this formulation, a distribution on (X,Y ) (considered as a random vector) is derived
[18] such that the problem (1) is a maximum likelihood problem. Accordingly, it follows
that the probability of y conditioned to x where θ = (ω, b) with θ(x) = ω · φ(x) + b is

P (y|θ(x)) =











1

1 + e−2Cyθ(x)
if |θ(x)| ≤ 1

1

1 + e−Cy[θ(x)+sign(θ(x))]
if |θ(x)| > 1.

This generalization is not disturbed by the former considerations: if a new entry x is
θ(x) > 0 then P (Y = 1|θ(x)) > P (Y = −1|θ(x)) and the signed output is Y = 1; analo-
gously, for θ(x) < 0 then the signed output is Y = −1.
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3. SVMs for Multi-Classification. ℓ-SVCR Machines

A set of possible labels {θ1, · · · , θℓ}, with ℓ > 2 is considered. Let Z = {(xi, yi)}
n
i=1 be a

training set. Subsets Zk ∈ Z, defined as Zk = {(xi, yi) : yi = θk} generate a partition in Z,
which is denoted as nk = #Zk, and hence n = n1 + · · · + nℓ. If Ik is the number of index i
where (xi, yi) ∈ Zk, then it follows that

⋃

i∈Ik
{(xi, yi)} = Zk.

The 1-v-1 SVM is a well-known multi-classification SVM approach which reduces the
problem to learning and aggregating preference predictions among the possible labels. In
this approach, L = ℓ·(ℓ−1)

2 binary classifiers are trained to generate hyperplanes fkh, 1 ≤ k <
h ≤ ℓ, which separate training vectors Zk with label θk from training vectors in class θh, Zh.
If fkh discriminates without error then sign(fkh(xi)) = 1 for xi ∈ Zk, and sign(fkh(xi)) =
−1 for xi ∈ Zh. Remaining training vectors Z \ {Zk

⋃

Zh} are not considered in the
optimization problem. Hence, for a new entry x, the output from the machine fkh(x) is
interpreted as:

Θ(fkh(x)) =

{

θk if sign(fkh(x)) = 1
θh if sign(fkh(x)) = −1.

In the reconstruction phase, a scheme is implemented which takes into consideration the
label distribution generated by machines in the parallel decomposition {(θk,mk)}, where mk

is the number of votes obtained by label θk from the machines fi, i = 1, · · · , L,
∑

k mk = L
and 0 ≤ mk ≤ ℓ − 1.

A drawback cited for this approach is that the number of machines to be trained is high
in comparison with the 1-v-r approach when ℓ is high. A second problem, considered in the
literature, is that data from only two classes is considered in training each machine, and
hence, output variance is high, and any information from the remaining classes is ignored
and may even be later misinterpreted. Hence, the SVM solution is affected by this loss
of training information: if a hyperplane fkh must classify an input xi with i /∈ Ik

⋃

Ih,
only output fkh(xi) = 0 will generate a correct interpretation. One improvement yet to be
analyzed is to force every training input from different classes θk and θh to be contained into
the hyperplane fkh(x) = 0. By following this idea, the ℓ-SVCR machine was introduced [3]
which is briefly described below.

3.1 ℓ-SVCR Machines

A hyperplane which separate inputs in class θ1 from class θ2, in order to simplify notation,
is sought. Training vectors are ordered in such a form that the first n1 vectors belong to
class θ1, followed by the n2 vectors belonging to class θ2 and the remaining vectors are from
the rest of the classes.

Following the classic SVM approach, the objective is to find a hyperplane f12(x) = 0 which
separate classes θ1 and θ2. Nevertheless, information in the rest of the classes is now used
for the hyperplane construction: f12(x) must allocate entries from class θ1 into the region
{x : f12(x) ≥ 1}, entries from class θ2 must allocate into the region {x : f12(x) ≤ −1}, and
the remaining vectors must be allocated into a region, depending on a parameter 0 ≤ δ < 1,
{x, : |f12(x)| ≤ δ}. Parameter δ allows to a slack zone (a ‘tube’) to be created around the
hyperplane where remaining training vectors are covered.
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The most general solution in the form f12(x) = ω · φ(x) + b of the ℓ-SVCR problem can
be obtained if kernel functions are introduced and restrictions are relaxed by using slack
variables and, hence, by solving the problem:

min
ω∈IRd

1

2
‖ω‖2 + C1

n1+n2
∑

i=1

ξi + C2

n
∑

i=n1+n2+1

(ϕi + ϕ∗
i ) (2)

subject to

yi (ω · φ(xi) + b) ≥ 1 − ξi, ∀i = 1, 2, · · · , n1 + n2, (3)

−δ − ϕ∗
i ≤ ω · φ(xi) + b ≤ δ + ϕi, ∀i = n1 + n2 + 1, · · · , n, (4)

ξi ≥ 0, ∀i = 1, 2, · · · , n1 + n2,
ϕ∗

i , ϕi ≥ 0, ∀i = n1 + n2 + 1, · · · , n,
(5)

with 0 ≤ δ < 1. The new machine assigns a new entry x to a class in accordance with

Θ(f12(x)) =







θ1 if f12(x) > δ
θ0 if |f12(x)| ≤ δ
θ2 if f12(x) < −δ

(6)

where θ0 is an artificial label designating a no-label assignment. Furthermore, the solution is
presented in the form [3]: f12(x) =

∑

i αi k(xi,x)+ b where αi are the Lagrange multipliers
associated to (2), whereby

∑

i αi = 0 and bias b is obtained from restrictions on the support
vectors [7].

3.2 Probabilities in ℓ-SVCR Machines

Let θ(x) = ω·x+b be a solution of (2) subject to restrictions (3–5), depending on parameters
ω and b, with ω ∈ IRd and b ∈ IR. Therefore,

• If vector xi is labelled θ1, then the correct output for the ℓ-SVCR machine is θ(xi) ≥ 1,
because output yi = 1 for the 1-v-1 learning machine f12(x) has been matched with
θ1 in (6). Otherwise, it follows from (3) that ξi = 1 − θ(xi) ≥ 0 is added to the risk
function.

• If vector xi is labelled θ2, then a similar study can be developed with θ(xi) ≤ −1 and
ξi = 1 + θ(xi).

• If vector xi is labelled θk with k 6= {1, 2} then the correct output for the ℓ-SVCR
machine is |θ(xi)| ≤ δ, because output yi = 0 has been matched with θ0. Otherwise,
it adds a loss in the risk function ϕ∗

i = −θ(xi) − δ if θ(xi) < −δ or ϕi = θ(xi) − δ if
θ(xi) > δ.

Following Sollich’s approach, when the hinge loss function is used, “probabilities” can be
assigned to y = 1 and y = −1 depending on the new input x, and parameters ω and b:

Q[y = 1|θ(x)] = exp [−C1 l(θ(x))] ,
Q[y = −1|θ(x)] = exp [−C1 l(−θ(x))] .

Furthermore, by considering the δ-insensitivity function
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|z|δ =







−z − δ if z < −δ
0 if −δ ≤ z ≤ δ

z − δ if δ < z

then output y = 0 can be assigned with “probability”

Q[y = 0|θ(x)] = exp [−C2 |θ(x)|δ] .

In order to convert these quantities into effective probabilities, then v(θ(x)) =
∑

y∈{−1,0,1} Q[y|θ(x)]
must be considered. Hence, if an adequate distribution is chosen on X, ω and b, the maxi-
mum likelihood problem obtained by using probabilities

P [Y = i] = P [y = i|θ(x)] =
1

v(θ(x))
Q[y = i|θ(x)], i = −1, 0, 1,

is the same as the ℓ-SVCR problem. An example for these probabilities is displayed in
Fig. 1. It can be seen that results on the machine are very intuitive:

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0
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0.4
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P(Y=−1) 

P(Y=1)

P(Y=0) 

Fig. 1: Probability function for δ = 0.5, C1 = 6 and C2 = 2.

• if θ(x) < −1, the probability assigning label y = −1 is higher than the other two
probabilities, and it increases as θ(x) decreases.

• if θ(x) > 1, the probability assigning label y = 1 is higher than the other two proba-
bilities, and it increases along θ(x).

• if −δ < θ(x) < δ, the probability assigning label y = 0 is higher than the other two
probabilities, and it increases the nearer it is to 0.

3.3 Reconstruction Scheme

When probabilities are considered in the models, a new ‘interpretation mapping’ for ℓ-SVCR
outputs, different from (6), is defined:

Θ(f12(x)) =







θ1 if P [Y = 1] > max {P [Y = 0], P [Y = −1]}
θ0 if P [Y = 0] ≥ max {P [Y = −1], P [Y = 1]}
θ2 if P [Y = −1] > max {P [Y = 0], P [Y = 1]} .

(7)
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Furthermore, the reconstruction scheme given in (7) is better than the reconstruction
scheme given in (6) in the sense that equalities in the number of votes can be broken by
using a mean of probabilities for each class.

It is worth noting that the output scale in a standard SVM is determined such that outputs
for the support vectors are ±1. Hence, output comparison for different SVMs which provide
the final output when bi-classifiers are used in multi-classification problems is deemed an
inadequate approach [10, 13, 15]. Therefore, a direct comparison between numeric outputs
for different parallel SV machines is avoided in our probabilistics approach.

Outputs to be taken into for each implemented ℓ-SVCR are: (i) an assigned label from ℓ-
SVCR, and (ii) the probability associated to the labelling. Hence, users have more complete
information about outputs from the overall multi-class architecture. This point is illustrated
with the example of the four classes given in Table 1 where an equality between two classes,

Table 1: Example of probabilities in ℓ-SVCR Machines.

fkh 1-2 1-3 1-4 2-3 2-4 3-4

Label θ1 θ1 θ0 θ2 θ4 θ4

Probability 65% 80% 55% 80% 80% 70%

θ1 and θ4 can be observed. The machine assigns label θ4 as the winner since the probability
mean of θ1 (72.5%) is smaller than the probability mean of θ4 (75.0%). Furthermore, it can
be seen that mapping f14 introduces an error because the final label output is implied, so
an ‘a posteriori’ study should be considered.

3.4 ℓ-SVCR Parameters

Parameters to be tuned in (2) are: (i) k, the kernel function; (ii) C1, the associated weight
for the sum of errors in the two discriminated classes; (iii) C2, the associated weight for
the sum of errors in the remaining classes; (iv) δ, the insensitivity parameter. As usual,
the kernel function is a very relevant choice because it determines the feature space where
separation between classes is realized.

The ‘interpretation mapping’ defined in (7) allows the relationship among C1, C2 and δ
to be made evident. By using both the definition of the probabilities and the symmetric
relationship between regions in (7), the frontier between classes can be evaluated by calcu-
lating the value δ∗ = θ∗(x) such that equation P [Y = 1/θ∗(x)] = P [Y = 0/θ∗(x)] is verified,
which yields the solution θ∗(x) = δ∗ = C1+C2 δ

C1+C2
. This solution is a convex combination of

the frontiers for the ℓ-SVCR and the SVM standard machines, δ and 1, respectively. If
substitution is made, the mapping can be regarded as

Θ(f12(x)) =







θ1 if θ(x) > δ∗

θ0 if |θ(x)| ≤ δ∗

θ2 if θ(x) < −δ∗
(8)

which is similar to that defined in (6), but with δ∗ depending on C1, C2 and δ. Hence, as
δ∗ ≥ δ, it is straightforward to prove that this new mapping is more restrictive than (6)
when assigning a label θ1 or θ2.

Variations on the frontiers can be studied in this new expression with respect to the pa-
rameters. If C2 and δ are fixed, then increasing C1 signifies giving more weight to migrations
between labels θ1 and θ2 because δ∗ is approximated towards value 1. Hence, the ‘tube’
region is wider and the resulting learning machine takes little risk. Similar reasoning can
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be carried out if C1 decreases (δ∗ is approximated towards value δ), with a riskier learning
machine being generated.

If C1 and δ are fixed, the increasing C2 is equivalent to increasing the weight on errors with
patterns labelled θ0, and, therefore, the number of inputs with label θ1 or θ2 are increased.

If C1 and C2 are fixed, then interpretation of changes in 0 ≤ δ ≤ 1 is the same as in the
original configuration problem.

By studying variations on the frontier with respect to joint variations on C1 and C2, it
can be noted that δ∗ = 1− 1−δ

1+C1/C2
and from here, it follows that: if ratio C1/C2 increases

then the frontier tends towards 1; if ratio C1/C2 decreases, then the frontier tends towards
δ. As a particular case, if C1 = C2, then the frontier is the point midway between δ and 1.
For an automatic selection of δ and further discussion about this parameter, see [2].

4. An Example on Enterprise Data

A data benchmark problem composed of 474 vectors [16] is considered as an illustrative
example. The dimension patterns are grouped into 3 classes with a label dominating the
other two labels which implies that the complexity of the classification problem is high.

The labelling distributions of both dataset and training set which is formed by extracting
the first 200 vectors, are given in Table 2. Thus, for a random labelling, the probability of

Table 2: Labeling distribution of dataset and training set in the illustrative example.

dataset training set
Label 1 2 3 1 2 3

Number 363 27 84 150 11 69

Percentage 75.68% 5.71% 17.72% 75% 6.5% 19.5%

assigning correct labels is 62.07%. However, if information about label distribution is used,
then label “1” can be assigned to any entry x and the probability of correct output becomes
75.68%. Hence, our overall multi-class machine must improve this baseline percentage. The
classification has been developed over normalized data and allocates a higher weight to
migrations between outputs “1” and “-1”, in fij, than migrations to or from “0” (C1 = 5
and C2 = 3). In this way, influence from label “1” is reduced. The insensitivity parameter
is adjusted to δ = 0.1 and the kernel is a standard Gaussian function with parameter σ = 1.

Accuracy for the machine evaluated on the training vectors is 95% correct, 5% error and
all the training patterns are classified. A low insensitivity parameter δ = 0.1 causes the
labelling of all the data, and as a result several errors can be appreciated. Accuracy results
obtained on the test vectors are given in Table 3. Overall, the model makes a correct
prediction on 247 patterns (90.15%), makes mistakes on 21 (7.66%) and no label is assigned
on 6 (2.19%). It can be concluded that SVMs are sensitive to the relative size of the classes,
an inherent characteristic on any discriminant analysis.

5. Experimental Results

In this section, experimental results are presented for several datasets (Iris, Wine, Glass,
Vowel, Vehicle and DNA) from the UCI Repository of machine learning databases [4].

The results have been obtained by following the experimental framework which was pro-
posed by [9] and was continued in [1], but with some modifications introduced to incorporate
the suggestions in [8] and [20]. Hence, training data have been normalized, (that is, mean

7



Gonzalez-Abril Et al.

Table 3: Results on the test set.

Prediction label Percentage

Label 1 2 3 0 Correct Error Unlabelled
1 201 1 7 4 94.37% 03.76% 01.88%
2 6 8 0 2 50.00% 37.50% 12.50%
3 7 0 38 0 84.44% 15.56% 00.00%

zero and standard deviation one), in order to avoid problems with outliers. Test data are
normalized accordingly.

The standard 1-v-1 and 1-v-r formulation and the ℓ-SVCR with C1 = C2 = C and δ
automatically chosen [2] are considered for multi-classification problem. Their performance,
(in the form of accuracy rate), has been evaluated on models using the Gaussian kernel.
Therefore, two hyperparameters must be set: the regularization term C and the width of
the kernel σ. This space is explored on a two-dimensional grid with the following values:
C =

[

24, 23, . . . , 2−10
]

and σ2 =
[

2−11, 2−10, . . . , 21
]

.
The criteria used to estimate the generalized accuracy is a ten-fold cross-validation (CV)

on the whole training data, except for the DNA dataset. This procedure is repeated between
3 and 30 times, according to the size of the dataset, in order to ensure good statistical
behaviour. The optimization algorithm used is the exact quadratic program-solver provided
by Matlab, except for the Vowel and DNA datasets, that an iterative solver has been
employed [5]. The best cross-validation mean rate among the several pairs (C, σ2) is reported
in Table 4. where can be observed that similar performance results are obtained by all three
approaches, however slight differences can be appreciated.

Table 4: A comparison of the best accuracy rates using the RBF kernel.

Dataset CV 1-v-1 (C,σ2) 1-v-r (C,σ2) Tri-class (C,σ2)
Iris 30 96.73 (20, 2−4) 96.00 (26, 2−5) 95.49 (28, 21)

Wine 25 98.39 (211, 2−4) 97.86 (22, 2−4) 97.06 (27, 2−4)
Glass 10 70.91 (23, 2−2) 71.11 (29, 2−5) 71.81 (2−1, 2−8)
Vowel 10 98.95 (23, 2−1) 98.48 (23, 20) 99.36 (23, 2−1)
Vehicle 3 84.17 (28, 2−5) 86.21 (28, 2−5) 88.18 (26, 2−3)
DNA – 95.45 (23, 2−6) 95.78 (21, 2−7) 95.86 (22, 2−8)

6. Conclusions

In this paper, a probabilistic version of a multi-class Support Vector Machine is introduced.
Multi-classification problems are analyzed by this machine which is also able to provide
the user with guidelines for the labelling process. This new procedure, generated by using
probabilities, is more complete and reliable than the standard approach and the accuracy
rates is improved in some cases.

The δ-insensitivity zone generated for ‘no-labelling’ allows all the difficult labelling pat-
terns to be covered. In this way, the patterns without any assigned label can be controlled
by the δ parameter and the user can specify the level of risk that the machine takes in the
labelling process.
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