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We apply nonparametric methods to a consideration of price transmission processes within U.S. egg 

markets at the turn of the XIX century. Gordon (2000) labelled this as an era of “Great Inventions” which 

contributed to the subsequent years of significant productivity growth and noted that the development of 

mechanical refrigeration and transportation technologies played an important role in this growth. Our 

models present certain advantages relative to parametric models traditionally employed in price 

transmission analyses. We compare results derived from local polynomial modelling to those obtained 

using alternative nonlinear threshold models. Both techniques suggest that U.S. egg markets were 

interrelated at the turn of the XIX century. However, nonparametric techniques often suggest a higher 

degree of price transmission than that implied by threshold models. Results also suggest that threshold 

models may have difficulties in adequately capturing price relationship dynamics, especially when these 

are of a highly nonlinear nature.  
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Introduction 

Spatial price analysis uses different statistical techniques to evaluate price relationships 

between spatially distant markets in order to shed light into the patterns and workings of 

marketing. Specifically, the literature on spatial price transmission provides several 

empirical methods that evaluate the extent to which price signals are transmitted across 

space. As Fackler and Goodwin (2001) note, most tests of spatial price relationships can 

be economically justified through the point-location model. This well-known,  simple 

and highly stylized economic framework, first discussed by Enke (1951) and Samuelson 

(1952), represents the equilibrium conditions inherent in the Law of One Price (LOP). 

Though the terminology has been loosely applied, the (weak version) of the LOP is an 

equilibrium concept involving that, in a well-functioning market, arbitrage activities 

will preclude prices of a homogeneous good at two separate locations to differ by an 

amount greater than transfer costs. This is equivalent to the spatial arbitrage condition 

that implies that the actions of arbitrageurs will move the spatial price spread toward the 

costs of transferring goods from one market to another.1 Moreover, it is important to 

note that, in order for regional price adjustments to take place, explicit trade between a 

pair of markets may not be necessary. For example, one may find a situation in which 

two agents located in two spatially different markets sell into a third common market. 

One would expect that the actions of buyers would result in equilibrating pressures that 

should equalize prices without any direct flow of commodities existing between the pair 

of markets. To the extent that these equilibrating pressures take place, improved 

information on prices should contribute to spatial price convergence. Of course, such 

                                                 
1 It should be noted here that other concepts such as market integration or efficiency have also been 

utilized to characterize situations in which price shocks are transmitted across spatially separate markets 

(see Fackler and Goodwin, 2001, for further detail). 
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price-sensitive mechanism should be based upon the existence of adequate 

transportation and handling facilities that, even if trade flows are limited, create the 

potential for relatively relevant commodity movements.  

The objective of this article is to assess the spatial arbitrage condition by 

applying nonparametric techniques. We apply these techniques to a sample of U.S. egg 

prices at the turn of the nineteenth century (October 1881 to October 1911). From a 

methodological point of view, the paper explicitly considers the nonlinear nature of 

spatial price behaviour. Nonlinear modelling of price adjustments assumes that there 

exist different states of nature or regimes and that the regime occurring at a certain point 

in time determines the dynamic price behaviour. While several econometric procedures 

have been devised to capture nonlinear price relationships, threshold models are one of 

the most widely used. Most of these models view price behaviour as a regime-switching 

process with a band of inaction that guarantees that price differentials will revert to a 

certain range. Within each regime, price adjustments are assumed to be linear and a 

discrete jump at a threshold value is supposed to lead regime-switching. In this line of 

research, Chavas and Metha (2004) have proposed an extended error correction model 

that allows price dynamics to differ across regimes. While these authors treat regime-

switching as exogenous, more general models of asymmetry incorporate this issue as 

endogenous. These models include threshold autoregressive (TAR) models (Obstfeld 

and Taylor, 1997; Ghoshray, 2002), or threshold vector error correction (TVECM) 

models (Lo and Zivot, 2001; Goodwin and Piggott, 2001). All these approaches have in 

common their parametric nature. Parametric approaches to model price relationships 

require the formulation of assumptions about the true nature of price behaviour that may 

prove to be too restrictive or unrealistic. 
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Contrary to parametric models, nonparametric techniques such as local 

polynomial modelling (see Fan and Gijbels, 1996, chapter 3) do not require any 

assumption about the functional form characterizing price behaviour. In being data 

driven methods, it is the data that informs and determines the shape of the relationships 

among the variables studied. Local estimators offer yet another advantage over 

parametric methods. While robust estimation of threshold models requires stationary 

thresholds, local estimators do not assume constant transactions costs bands. Hence, the 

use of nonparametric techniques should be preferred when changes in thresholds over 

the period of analysis are suspected. Up to date, the use of nonparametric techniques to 

study nonlinear aspects of price transmission has been very limited. Mancuso, Goodwin 

and Grennes (2003) assessed capital market integration by using local linear regression 

(LLR) models. Though price transmission between spatially separate food markets has 

been an important research topic, no analysis has attempted to address spatial food price 

relationships using nonparametric techniques.2 The use of nonparametric methods is the 

main novelty of the paper and represents a contribution to the literature. 

Our empirical study focuses on the U.S. egg market at the turn of the nineteenth 

century and is considered of interest for two main reasons. First, because technological 

developments during the second industrial revolution benefited the exchange of a wide 

variety of goods and contributed to increased economic interdependence and spatial 

price convergence (Holmes, 1913; Zapoleon, 1931). Perishable commodities were 

amongst the most favoured.3 Specifically, the adoption of mechanical refrigeration by 

                                                 
2 An exception is the paper by Barrett and Li (2002) that includes a semi-parametric test for spatial 

market equilibrium. 

3 As it is well known, the second industrial revolution, which can be roughly dated from 1860 to 1900 

comprises a series of inventions such as the electricity, the internal combustion engine, communication 

innovations, and so on (Gordon, 2000). All these inventions involved substantial changes in the patterns 
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the 1890s represented a vital element to the development of food production and 

distribution industries. Though previous to the 1890s the regional exchange of 

perishable foods was, to a certain extent, promoted by the investment in ice-refrigerated 

cars by some U.S. meatpackers, refrigeration based on ice played a relatively small role 

in food production and distribution. As a result, prior to the 1890s there was little cold 

storage of perishables (Goodwin, Grennes and Craig 2002). Mechanical refrigeration 

had a relevant impact on both the geography and economics of the egg industry 

(Anderson, 1953). Hence, the analysis of the economic impacts of food preservation 

mechanisms provides an interesting contribution to the literature. However, econometric 

estimations that reflect price linkages in food markets during the period of relevant 

changes described above are very scarce. Goodwin, Grennes and Craig (2002) and Serra 

and Goodwin (2004) constitute two exceptions.  

Second, in spite of the technical developments already mentioned, the egg 

manufacturing industry suffered from many shortcomings during the period of analysis. 

A first problem concerned egg handling (see the next section for more detail). Poor 

handling techniques would result in a high proportion of eggs not reaching city markets 

and in important economic losses (Philips, 1909). A second problem was the slow and 

difficult development of the egg manufacturing industry resulting in small scale 

operations during the period of analysis. These shortcomings are likely to have limited 

spatial arbitrage opportunities relative to other commodities. Since trade in 

manufactured products such as frozen or dried eggs can bring the entire industry into a 

more competitive environment, it is interesting to see whether a slow industrial 

development limited regional price convergence for eggs during the period of study. 

                                                                                                                                               
of trade. Exchanges in small cities began to disappear in favour of centralized warehouses close to large 

centres of population that would concentrate and then distribute commodities in their areas of operation. 
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  Our article is organized as follows. We devote the next section to a 

description of the technical change and the U.S. egg markets at the turn of the 

nineteenth century. The econometric methods section discusses the econometric 

methodology employed. The empirical application is presented in the fourth section. We 

close the article with a brief summary of the analysis and the derived conclusions.  

 

Technical Change and the U.S. Egg Markets at the Turn of the Nineteenth 

Century 

The last decades of the nineteenth century have been identified as an era of increased 

development and economic integration (see O’Rourke and Williamson, 1999). 

Improvements in transportation, refrigeration, and communication mechanisms made it 

easier for buyers and sellers to contact each other, yielding a higher level of market 

integration and reduced regional price spreads (Zapoleon, 1931). Economic integration 

resulted in an increase in trade, a more efficient use of resources and growth in 

productivity and overall production (Gordon, 2000; Zapoleon, 1931). Economic 

integration was not limited to capital (Sylla, 1969) or labour markets (Williamson, 

1995). It also characterized the evolution of agricultural commodity markets such as 

grain markets (O’Rourke, 1997; Zapoleon, 1931). Among the improvements mentioned 

above, the adoption of refrigeration technologies constituted a key factor in the 

development of food production and distribution and allowed food trade to occupy 

prominent positions in international trade. Though a considerable amount of food was 

traded in the form of dried, canned, or preserved foodstuffs, the relevance of fresh 

produce trade, aided by progress in cold storage and refrigerated shipments, should not 

be underestimated (the U.S., for example, imported substantial quantities of shell eggs 

from China at that time) (Zapoleon, 1931; Koudele and Heinsohn, 1960). 
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Between 1830 and the Civil War, the American urban diet improved as a result 

of an increase in the use of fresh foods to the detriment of certain traditional items such 

as salted meats (Cummings, 1940). The growth of cities and urban markets in the 

Northwest concentrated the demand for these foods. Farmers began producing 

marketable surpluses first in the immediacies of the town and later further out in the 

hinterlands. Commercialization of perishables such as eggs or dairy products grew 

aided by the development of stockyards and the rail lines proliferation in the Midwest 

(Craig and Weiss, 1993). Widespread use of fresh meats, vegetables, fruits, and other 

perishables substantially expanded the demand for refrigeration as a means to preserve 

food.  It was between 1830 and 1860 that the first attempts to refrigerate perishables by 

using natural ice were made. Between 1860 and 1890 there was an increased use of ice 

to store food which led to the growth of the cold-storage industry and the development 

of refrigerator cars mainly in the hands of the meat industry. The ice-based refrigeration 

became relevant to the meat-packing industry as a means of keeping meats in the 

packing plant, preserving the product during transportation, and producing cured-meat 

during hot seasons. Although the availability of railroads to the East had allowed a 

substantial trade in live animals from producing areas to the city centres, the scarce use 

of refrigeration had compelled slaughter facilities to locate in city centres to avoid 

spoilage. Advances in ice-based refrigeration involved progress in the coordination of 

the shipping, wholesaling and retailing of meat, as well as other perishables. They 

allowed the meat-packing industry to expand and reallocate towards the livestock-

producing areas (Anderson, 1953). In spite of the advantages of shipping dressed-meat 

relative to live animals, railroads, with a vested interest in livestock trade, resisted the 

development of the refrigerated meat commerce since it reduced tonnage to haul and 

jeopardized the investments made in livestock loading and feeding facilities. This 
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resulted in the so-called “big four” packers (Armour, Hammond, Morris and Swift) 

investing in their own cars and becoming to dominate the dressed beef market 

(Aduddell and Cain, 1981). 

Contrary to the meat packing industry, the egg industry did not experience much 

change with the ice-based refrigeration. By the 1880s ice-cooled rooms displaced old 

preservation methods such as water glass or lime water. However, eggs were cold stored 

only as a last resort and they were usually the inferior grade eggs that would be kept 

refrigerated, thus giving this product a bad reputation (Pennington, 1941). 

In spite of the progress made in natural ice-based refrigeration mechanisms, the 

potentialities of natural ice were limited and posed many problems to food preservation: 

apart from the fact that large quantities of ice were needed for refrigeration, which 

required very expensive structures, ice would generate moist, it was inherently 

unsanitary and limited the range of temperatures that could be produced. As a result, ice 

played a relatively small role in the production and distribution of food (Anderson, 

1953; Goodwin, Grennes, and Craig, 2002). The storage of perishables remained a 

problem until the widespread adoption of mechanical refrigeration by the 1890s.  

The adoption of mechanical refrigeration represented a vital element to food 

production and distribution since the early 1890s. It increased arbitrage opportunities in 

short shelf life commodity markets (Anderson, 1953; Goodwin, Grennes, and Craig, 

2002; O’Rourke and Williamson, 1999) and it soon became to dominate meat 

preservation, allowing to intensify and broaden the industry changes that had begun 

with the introduction of natural ice. Mechanical refrigeration was also key to the 

production and distribution of other perishables such as milk and milk products or 

fruits. It became essential for egg distribution as well, given the fact that egg 

deterioration varies directly with temperature. In spite of this it should be noted that, 
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during the 1890-1913 period, almost no refrigeration was employed in the early stages 

of egg marketing. By using poor handling methods, eggs were transferred from the farm 

to the village merchant. The product would receive better attention after reaching the 

shipper who would send them to the cities using refrigerator cars. Once in the cities, 

eggs would either be stored in refrigerated warehouses or be forwarded to retail stores 

where they would receive no better treatment than in farms (Anderson 1953). It was not 

until after 1913 that egg handling started to improve under the auspices of the United 

States Department of Agriculture.  

A considerable proportion of eggs such as cracked, dirty or small eggs of 

inferior quality could not be shipped in the shell to the city markets. By 1900 it began 

the practice of salvaging these eggs by freezing them. However, the egg-freezing 

industry failed to grow rapidly mainly due to poor sanitation measures that yielded an 

inferior product (Koudele and Heinsoh, 1960). By the end of the nineteenth century, the 

egg-freezing industry was still at a very early stage of its development. It was mainly 

operating on a small scale, due to the fact that eggs were manually separated until 1912, 

when the hand separator was invented. Additionally, the egg industry was struggling to 

solve relevant sanitary and refrigeration problems affecting egg products. Another 

drawback precluding the expansion of the egg industry was the lack of demand for its 

products, mainly due to the low quality of the final outcome. The use of dried eggs, 

prior to the freezing of eggs, was scarce and principally limited to army camps.  The 

consumption of frozen eggs, also limited, mainly came from bakers and other food 

manufacturers. It was not until World War II that the U.S. egg manufacturing industry, 

especially the egg drying industry, considerably expanded as a result of both public 

programs to encourage increased production of eggs through government purchases at 
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supported prices and an increased demand from the Armed Services (Koudele and 

Heinsohn, 1960). 

In spite of the limitations affecting the development of the egg-manufacturing 

enterprise, refrigeration had a relevant impact on the economics of the egg industry. The 

introduction of refrigerated cars allowed Corn Belt states to develop their production 

potential to the maximum (Anderson, 1953). Additionally, refrigerated warehouses 

altered the seasonal production structure for eggs allowing a smoother supply flow 

throughout the year. With the exception of the analyses of Goodwin, Grennes, and 

Craig (2002) and Serra and Goodwin (2004), there are no econometric estimations on 

price transmission processes within agricultural commodity markets during this period 

of rapid and relevant changes.  In our empirical application, we concentrate on the U.S. 

egg markets. 

 Though the adoption of technical improvements at the end of the nineteenth 

century, especially the introduction of mechanical refrigeration, contributed to a 

significant increase in the regional price convergence of perishable commodities 

(O’Rourke and Williamson, 1999), it is a priori unclear how these changes affected egg 

markets. On the one hand, the refrigerator car and cold-storage warehouses expanded 

arbitrage possibilities. On the other, the combination of the high perishability of fresh 

shell eggs, the lack of a high scale egg-manufacturing industry, and the still deficient 

handling methods used on shell eggs, may have limited spatial arbitrage operations of 

egg products during the period of analysis relative to other commodities, thus limiting 

price convergence for eggs. Our paper aims at determining how all these issues affected 

spatial price relationships within the U.S. egg markets.  
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Econometric Methods 

As noted above, spatial price transmission analyses aim at testing predictions derived 

from the economic theory and show how price shocks are transmitted across space. 

Specifically, several studies of the spatial arbitrage condition have focused on the 

analysis of the regional price spread (see Obstfeld and Taylor, 1997; or Goodwin and 

Piggott, 2001). Early analyses used price correlations to shed light on spatial price 

linkages (see Blyn, 1973). This approach, however, has been criticized since it may 

suffer from inferential biases. Given the fact that prices are typically non-stationary, 

more recent research has paid particular attention to the time-series properties of price 

data. Cointegration-based tests have been applied (see Sanjuán and Gil, 2001; 

Alexander and Wyeth, 1994; Zanias, 1993; or Goodwin, 1992). However, these tests 

have also been criticized since they do not account for transactions costs (see McNew 

and Fackler, 1997; or Barrett, 1996). 

 Current studies have recognized the relevance of allowing for transactions costs 

in spatial price analyses. These costs include all costs related to spatial arbitrage and 

trade such as transportation and freight charges, risk premium, refrigeration costs, 

spoilage, etc. The influence of these costs may result in nonlinear price adjustments (see 

Obstfeld and Taylor, 1997; Sercu, Uppal and Van Hulle, 1995; Hecksher, 1916). 

Nonlinearities should be present whenever transactions costs create a band of price 

differentials within which arbitrage activities do not take place because the marginal 

costs of trading exceed the marginal benefits. As noted, threshold models are one of the 

most widely used procedures to capture nonlinearities in price relationships. These 

models represent price linkages by a combination of different regimes corresponding to 

the trade/ no trade conditions.  
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Tong (1978) originally introduced nonlinear threshold time series models. Tsay 

(1989) developed a method to model threshold autoregressive processes and to test for 

threshold effects in autoregressive models. Balke and Fomby (1997) extended the 

threshold autoregressive models to a cointegration framework by considering a model 

where there is a discontinuous adjustment to a long-run equilibrium. Specifically, the 

equilibrium error follows a mean-reverting threshold autoregression outside a given 

range, while having a unit root inside the range. Balke and Fomby (1997) suggest to 

estimate this model through a two-step approach whereby threshold parameters are 

chosen through a grid search that minimizes a sum of squared errors (SSE) criterion. In 

this paper we follow the proposal by Balke and Fomby (1997). 

The literature review presented above provides evidence that analyses of price 

transmission have typically been based on parametric approaches. As noted, these 

approaches may imply too strong and inadequate assumptions on the functional form 

that characterizes price relationships. In threshold models, for example, each threshold 

separates two linear segments representing price adjustment under different regimes. 

Hence, the transition from one regime to another is assumed to be sharp and 

discontinuous, involving that the price differentials that motivate individuals to 

undertake arbitrage activities and/or adjust prices, are common across economic agents. 

The sudden range reversion assumption implicit in threshold models might be too 

restrictive in a variety of situations. Teräsvirta (1994) contends that time aggregation 

and non-synchronous trade are likely to favour smoother transition processes. Mancuso, 

Goodwin and Grennes (2003) argue that discontinuous range reversion may be adequate 

if transactions costs and uncertainties were homogeneous across different individuals, 

but might be too restrictive otherwise. The smoothed TAR models introduced by 

Teräsvirta (1994) partially overcome this limitation by allowing for gradual adjustments 
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between regimes. However, in being parametric, these models still carry the potential 

for specification biases as a result of an inappropriate parametric assumption. The risk 

of specification biases grows when one studies periods of relevant changes that are 

likely to involve structural breaks and alter transactions costs. On the contrary, 

nonparametric techniques do not require any preliminary assumption about the shape of 

the functional form characterizing price linkages. Instead, the data completely inform us 

how relationships look like, which constitutes a clear advantage over parametric 

methods. Because nonparametric techniques do not require any preliminary guess on 

price behaviour, we are interested in applying these techniques to a characterization of 

spatial price relationships, and in comparing the results with those arising from 

alternative parametric TAR models. For ease of exposition, we first describe the 

parametric techniques to then offer details on the nonparametric methods employed.  

 

Threshold Autoregressive Models 

Obstfeld and Taylor (1997) devise a method to assess price transmission across spatially 

separate markets in the presence of transactions costs or uncertainty. Specifically, 

through the use of a threshold autoregressive model (TAR) of price differentials, they 

model price relationships as a regime-switching process with a band of inaction. This 

model introduces an important concept: that of commodity points - thresholds that 

delimit a region where price differentials show no central tendency due to the lack of 

arbitrage activities. These points may reflect the influence of the aforementioned 

transactions costs. Threshold models are useful in situations where the economic 

behaviour cannot be captured by a single regime. This occurs when some forcing-

variable leads a switching, that can occur back and forth, among different regimes. 

These regimes are represented by different parameter estimates of the underlying model. 
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Usually, analyses of spatial price behaviour take the magnitude of regional price 

differentials as the variable that determines regime-switching (Serra and Goodwin, 

2004; Mancuso, Goodwin, and Grennes, 2003).   

 A simple autoregressive model (AR) of price differentials can be represented as: 

1t t tY X eβ −= + , where 1 1( ) ( )− −= ∆ = − − −t t it jt it jtY X P P P P  represents the adjustment in 

regional price differentials in period t ,4 being itP  and jtP  the prices of a certain 

commodity in two spatially separate markets (i  and j ). Regional price differentials in 

the previous period 1t −  are represented by 1 1 1( )t it jtX P P− − −= − , while te  is a white 

noise error term. Under a TAR model, lagged price differentials ( )1tX −  allow to 

distinguish among different regimes that represent different price behaviour. These 

different regimes are represented by different values of the parameter β . A three 

regime TAR can be expressed as follows: 

 

(1) (1)
1 1 1

(2) (2)
1 1 1 2

(3) (3)
1 2 1

t t t

t t t t

t t t

X e if X c

Y X e if c X c

X e if c X

β

β

β

− −

− −

− −

 + −∞ < ≤
= + < ≤
 + < ≤ +∞

 (1) 

 

where 1c  and 2c  are the threshold parameters or, in other words, the commodity points.  

Parameters ( )β j , 1,2,3=j , represent the speed at which price differentials are corrected. 

If arbitrage operates between two markets, then price relationships are expected to 

exhibit the following pattern. When 1 1 2−< ≤tc X c  the price gap should have no central 

                                                 
4 Although AR models involve a dependent variable which corresponds to the first-differenced 

explanatory variable ( )∆ tX , we use the notation tY  since it is more convenient in the exposition of the 

nonparametric techniques which can be applied to more general situations.  



 14

tendency, i.e., there should be no error correction. However, for price differentials 

outside the central band, arbitrage activities are expected to revert price gaps towards 

this band. Hence, we expect (1)β  and (3)β , i.e. price convergence outside the neutral 

band, to be negative, while (2)β  should be (equal or) close to zero. 

 Since we do not impose the restriction that (1)β = (3)β , a three regime TAR is 

estimated allowing for asymmetries in price transmission. A significant literature that 

was recently surveyed by Meyer and von Cramon-Taubadel (2004) has examined the 

extent to which responses to price shocks are asymmetric. While most such studies have 

considered transmission of shocks among different levels of the market rather than 

different locations, the same general issues underlie both forms of asymmetries. In this 

line of research, Ghoshray (2002) evaluated the asymmetry of adjustments in 

international wheat prices and its implications for market competitiveness, product 

differentiation, and government intervention. The literature has identified several causes 

of asymmetries that may be relevant to the U.S. egg markets at the turn of the XIX 

century. First, as Abdulai (2000) notes, middlemen in the marketing chain with market 

power, are likely to respond more quickly to price shocks that involve a reduction in 

their marketing margins, relative to the speed of response when these margins are 

increased. This may lead to asymmetries in regional price transmission. As explained 

above, one of the impacts of the introduction of mechanical refrigeration was to 

concentrate food production and distribution in the hands of a few dealers. Hence, 

market power could have affected the egg industry during the period of study. A second 

explanation for asymmetries relates to unequal development of transportation and 

handling facilities. As Goodwin and Piggott (2001) explain, trade flows tend to 

primarily occur in one direction, which leads to these inequalities and favours shipments 

in one direction relative to the other. Though trade data are unavailable, bibliographical 
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references indicate that egg trade would mainly move from Corn Belt states to the 

highly populated eastern cities such as New York (Anderson, 1953).5 

The TAR model can be estimated using sequential iterated least squares 

regression in two steps. The aim of the first step is to estimate threshold parameters. For 

this purpose a grid search is conducted. The first or lower threshold is searched over the 

minimum and the median of the lagged price differentials, while the upper threshold is 

searched over the range that goes from the median to the maximum value of the lagged 

price differentials. This search is restricted in order to ensure an adequate number of 

observations in each regime. For a given pair ( )1 2,c c , (1)β , (2)β , and (3)β  can be 

determined through the OLS regressions of tY  on 1tX −  for each sub-sample. From this 

estimation, the residual sum of squares is derived giving 2
1 2 1 2

1

ˆ ˆ( , ) ( , )
n

t
t

c c e c cσ
=

=∑ . The 

aim of the grid search is to maximize a standard F test for a linear AR against the 

alternative of a TAR: 
2 2

1 2
2

1 2

ˆ ( , )

ˆ ( , )

c c
F n

c c

σ σ
σ
−=

%
, where n  represents the number of 

observations, 2
1 2ˆ ( , )c cσ  stands for the error variance of the TAR model, being 2σ%  the 

error variance of the AR model.  Hence, in the second step of the process, the estimates 

of  1c  and 2c  are obtained as: ( )
1 2

2
1 2 1 2

,
ˆ, arg min ( , )

c c
c c c cσ= , which is equivalent to 

maximizing F. The F test for the significance of the differences in parameters across 

regimes does not have a standard distribution, its p-value is determined following the 

method provided by Hansen (1997).  

Prior to the estimation of the TAR models, we evaluate the time series properties 

of the data by using unit root and cointegration tests. Previous research has shown that 

                                                 
5 See  Blinder (1982) or Wohlgenant (1985) for other factors causing asymmetries.  
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unit root tests can be seriously distorted by structural changes in time series. Several test 

statistics have been proposed to correct this problem (see Rappoport and Reichlin, 1989; 

Banerjee, Lumsdaine and Stock, 1992; Zivot and Andrews, 1992; or Perron, 1997). In 

order to determine whether price series are non-stationary or whether the apparent non-

stationarity is due to a structural break, we use Perron’s (1997) sequential test.6 Second, 

cointegration among prices is tested using the Johansen (1988) test.7  

 

Local polynomial fitting 

Locally weighted regression techniques were introduced in the statistical literature in 

the late 1970s (see Cleveland, 1979; Stone, 1977; or Katkovnik, 1979) and have become 

a method of choice in the estimation of regression functions due to their advantages that 

include easy interpretation, good behaviour near the boundary, capacity to adapt to 

various designs, as well as the existence of fast algorithms for computing them (see 

Cleveland, 1979; Cleveland, Devlin and Grosse, 1999; Fan, 1992; or Fan and Gijbels, 

1995). We use these techniques to estimate a nonparametric version of a threshold 

autoregressive model of spatial price differentials. As we explain in the introduction 

section, we hypothesize that these techniques will suggest a smoother price behaviour 

than that implied by TAR models.  

Consider a series of independently and identically distributed observations 

1( , )t tX Y−  for t=1,…,n, from a population 1( , )X Y− . As noted above, tY  represents the 

adjustment in regional price differentials in period t  and 1tX −  is the value of the regional 

                                                 
6 The truncation lag parameter is selected using the general to specific recursive method proposed by 

Perron (1997). 

7 The lag length of the vector autoregressive model is selected to ensure non-autocorrelation of the 

residuals and to minimize the AIC criterion.  
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price differentials in the previous period 1t − . Responses of Y  are related to the 

covariate 1−X  through a regression function m  which is unknown. The unknown 

function can be approximated using a Taylor series expansion, i.e., by modelling m  

locally around a certain point kx , using a simple polynomial of order p . If we represent 

the local regression function by ( )1( )k km x E Y X x−= = , the Taylor series expansion 

can be expressed as 
( )

0 0

( )
( ) ( ) ( )

!
β

= =

≈ − ≡ −∑ ∑
jp p

j jk
k j k

j j

m x
m x x x x x

j
, where 

( ) ( )

!
β =

j
k

j

m x

j
, 

being ( ) ( )j
km x  the j th derivative of the regression function ( )km x .  This is precisely 

the basic idea behind local polynomial fitting, i.e., to locally approximate a regression 

function around a certain point kx , by fitting a regression surface to the data points 

within a certain neighbourhood of kx . From the Taylor series expansion, it is evident 

that the estimator for the function and its derivatives can be derived from: 

ˆˆ ( ) !β=j
k jm x j , where β̂ j  denotes the solution to the following weighted least squares 

problem: 

 

2

1
1

1 0

min ( )
β

β −
−

= =

   −− −   
  

∑ ∑
j

pn
j t k

t j t k t
t j k

X x
Y X x K

h
 (2) 

 

where kh  is the bandwidth that controls for the amount of local averaging or, in other 

words, the size of the neighbourhood of kx . K  is a kernel function whose role is to 

smooth data points in the given local neighbourhood. More clearly, K  is a weighting 

scheme to the local least squares problem that down-weights the contribution of those 

observations away from kx . Local polynomial fitting techniques require the adoption of 

several important decisions. A first one concerns the selection of the order of the local 
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polynomial (p). As Fan and Gijbels (1996, chapter 3) explain, since the modelling bias 

is mainly controlled by the bandwidth, the selection of p  is less critical. Although a 

large value for p  would presumably reduce the modelling bias, it can yield noisy 

estimates. These authors explicitly recommend to use the lowest polynomial order 

according to the formula: 1= +p j , which involves 1=p 8 in our case or, more 

intuitively, a local linear regression estimation. By using a local linear regression, the 

least squares problem presented above can be reduced to: 

 

( )2 1
1,

1

min ( )
n

t k
t t k t

a b
t k

X x
Y a b X x K

h
−

−
=

 −− − −  
 

∑  (3) 

 

where 0β=a  and 1β=b  are parameters. Another relevant decision that one needs to 

take in order to apply local polynomial techniques relates to the bandwidth parameter. 

The literature has emphasized the relevance of bandwidth selection, based on the 

influences that kh  can have on the final results. Choosing to select an excessively small 

bandwidth can result in noisy estimates, while a large bandwidth can yield important 

modelling biases. The bandwidth can be chosen either subjectively or objectively by the 

data. A frequently used objective bandwidth selection technique is the cross-validation 

method, which we adopt to choose an optimum constant bandwidth ( =kh h). This 

method chooses h  to minimize the squared prediction error: ( )2

1

ˆ
=

−∑
n

t t
t

Y Y , where t̂Y  is 

any estimate of the regression function involving the smoothing parameter h . For each 

observation t, the estimate ̂tY  is obtained by computing the regression function without 

                                                 
8 We are only interested in the regression function ( )km x , but not in its derivatives. Hence, 0=j . 
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the tth observation and by predicting tY . In our application, the predicted value for tY  is 

derived using the Nadaraya-Watson nonparametric regression estimator: 

1

1 1

1 1

ˆ
−

− −

= =

      − −=          
      

∑ ∑
t tn n

t k t k
t t t t

t t

X x X x
Y K K Y

h h
, where 

1=
∑

tn

t

represents the exclusion of 

the tth observation. The minimization process requires the computation of the squared 

prediction error at different bandwidth grid points. The bandwidth h  is searched over a 

region defined by 0.1 and 2 standard deviations of the independent variable 1tX − .9  

The second decision relates to the kernel function. In this paper the 

Epanechnikov kernel is selected as Fan and Gijbels (1996, chapter 3) have shown it to 

be an optimal weight function: ( ) [ ]
2

1,1

3
( ) 1 ( )

4 −= −K g g I g . The solution to the problem 

in expression (3) is given by: 
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9 It should be noted here that the corrected Akaike information criteria (Hurvich and Simonoff, 1998) was also 

used as an alternative method for bandwidth selection and the results derived were very similar. 
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 It is thus clear that the derivation of the local linear regression estimator requires 

to calculate five different quantities (,0nS , ,1nS , ,2nS , ,0nT , and ,1nT ). Though we evaluate 

the estimators at each point in our sample, it is useful to note that, in order to speed up 

computations and since estimated curves are usually presented in graphical form, the 

estimators can be also evaluated at grid points only, which reduces the number of kernel 

evaluations to be done (see Fan and Gijbels 1996, chapter 3).  

 An intuitive summary of the local linear regression method is presented in the 

following lines. This method proceeds by first choosing a point kx   and using the local 

linear regression to derive an estimate of the regression function at that point. The local 

regression is estimated using data points around kx . The size of the neighbourhood is 

controlled by the bandwidth. Once the bandwidth is selected, a weighted least squares 

regression is estimated, where sample points away from kx  are down weighted relative 

to the points closer to kx . The weighting of points is done by using a kernel function. 

 We would like to note here that, although we implement local linear regression 

techniques to estimate the nonparametric counterpart of an AR(1) model, nonparametric 

regressions can be extended to other multivariate settings in a straightforward manner. 

However, these extensions are not very useful in practice as a result of the “curse of 

dimensionality” (see Fan, 2000 for further detail). As this author notes, though 

multivariate nonparametric modelling is an area which is rapidly evolving, it still merits 

further research.  

The very nature of the LLR involves that no parameters are produced on which 

to base tests of the usual form. Thus, we rely on a visual graphical inspection of the 

plotted results to infer price behaviour. To assure inferences, asymptotic confidence 

intervals are computed following Härdle (1990) in the following way ̂ ±t aY c s, where ac  
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is the (100-a)-quantile of the normal distribution, and s is the sample estimate of the 

variance of Ŷ . Specifically, s can be computed as: 
ˆ
ˆ

σ= kc
s

nhf
, where 

1
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hnf
 (see Härdle 1990, p. 

98-101 for further detail). 

 Since the mathematics of nonparametric techniques are easily written in matrix 

form, we implemented the technique through a user-defined program executed in 

Matlab version 6.1. As Fan (2000) notes, applications of nonparametric techniques have 

been hampered by a lack of software, since they are not available in the most common 

statistical packages. In the next section we apply the techniques described to a 

consideration of spatial price relationships in the U.S. egg markets at the turn of the 

nineteenth century.  

 

Data and Empirical application 

The basis for our empirical analysis lies in a study that was conducted in 1913 by the 

U.S. Department of Agriculture (Holmes, 1913).  This study was directed at evaluating 

the extent to which the advent of cold storage had affected markets for certain important 

commodities, including eggs. To assess price transmission processes within U.S. egg 

markets at the turn of the nineteenth century, our empirical analysis uses monthly U.S. 

egg prices taken from Holmes (1913), observed from October 1881 to October 1911 

and quoted at different relevant wholesale markets.10 Zapoleon (1931) stresses the 

relevance of the development of centralized warehouses located near to the largest 

                                                 
10 A four page annex in Holmes (1913) offers detailed information on the name of the publications from 

which prices were obtained, as well as a detailed statement of the grades of the commodities for which 

prices were compiled. A copy of this annex is available from the authors upon request. 
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population centres for regional price convergence. These centralized warehouses would 

collect and then forward commodities within their areas of operation. New York, 

Boston and Baltimore are selected as three markets representing these new trade 

structures. Since they are three spatially close markets, equilibrating price adjustments 

are likely to have occurred between them. As noted before, the introduction of 

refrigerated cars allowed Corn Belt states to develop their production potential to the 

maximum, hence it is also interesting to see how prices in producing areas related to 

prices in markets close to population centres. Since, by the beginning of the XIXth 

century, Iowa was the first state with regards to the value of egg and poultry production 

(Philips, 1909) we have also chosen to analyze the Dubuque market. Hence, our price 

analysis comprises four markets, of which three are located in the East coast, are 

relatively close to each other (the distance separating Boston and Baltimore from New 

York is about 200 miles) and represent large centres of population and a Corn Belt 

market representing a distant supply area (Dubuque is located at more than a thousand 

miles from New York).  

As explained above, in light of its nonparametric nature, the LLR is more easily 

interpreted by graphical representation which recommends against specifying too 

complex models. In this regard, we carry out a pair-wise analysis. Pair-wise analyses are 

very common in the price transmission literature and represent a natural avenue for 

studying price relationships, since arbitrage conditions should hold for any pair of 

prices. Goodwin and Piggott (2001) propose to define pairs of prices composed by a 

central market price ( )1−itP  and another market price ( )1−jtP , being the central the 

largest market in terms of volume. Statistics on trade volumes in the period studied are 

unavailable. As an alternative, census data for the period studied indicate New York as 

the most populated U.S. city followed, among other cities and at a considerable 
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distance, by Boston and Baltimore. Hence, New York is likely to have been the largest 

market in terms of volume. As a result, it is also likely to have lead price formation, a 

point which can be confirmed by the weak exogeneity tests carried out in the framework 

of the Johansen’s cointegration model. Of interest is to note that other studies have also 

provided evidence of the leading role often played by big markets located in 

consumption areas in price formation (see Serra and Goodwin, 2004). As a result, we 

choose New York as the central market price.11  Hence, the explanatory variable in our 

model corresponds to the lagged price differential between New York and another 

market price ( 1 1 1− − −= −t it jtX P P ), while, as explained above, the dependent variable 

( 1−= −t t tY X X ) shows the change experienced by this price differential in period t. 

Prices are measured in levels. 

Graphs of the price series are presented in figure 1, where one can see that they 

follow very similar patterns, suggesting important price transmission processes within 

U.S. markets. Tests evaluating time series properties of the data are offered in table 1. 

By allowing both a change in the intercept and in the slope, the Perron (1997) test 

suggests that the null of a unit root cannot be rejected for any price series.12 Hence non-

stationarity is genuine and should not be attributed to a structural break. Johansen tests 

provide evidence in favour of stationary long run relationships among the pairs of 

prices. Weak exogeneity tests indicate that the null of weak exogeneity of the New York 

market cannot be rejected. This is compatible with the relevance of the New York 

                                                 
11 At the request of an anonymous referee, however, other possible combinations of markets were also 

investigated, such as the Baltimore-Boston alternative. Results show that arbitrage activities also hold for 

these pairs of prices. 

12 Results of the other modalities of the test (which are available upon request) do not differ from the ones 

presented here. 
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market in the study by Holmes (1913, p. 8), who quoting Mr. F. G. Urner, noted that 

“…the greatest development of cold storage as a public utility began with the 

introduction of mechanical refrigeration shortly before 1890.” He also noted that New 

York’s egg consumption increased 52.5% from 1900 to 1910 (Holmes, 1913, p. 11).  

Underlying the interest in how cold storage may have affected New York egg markets 

was a strong concern that warehousemen were using cold storage to assert market 

power and raise prices (Holmes 1913, p.7).  Warehouse interests countered that, to the 

contrary, the advent of cold storage had actually reduced prices for consumers of eggs. 

 Results derived from the application of the TAR technique are presented in table 

2. As noted above, we estimate a three-regime TAR in order to allow for asymmetries in 

the process of price adjustment. The F-test suggests that threshold effects are 

statistically significant for all pairs of prices. Results are compatible with the existence 

of arbitrage activities that correct spatial price gaps as suggested by Heckscher (1916). 

Hence, in spite of the problems that afflicted the egg industry during the period studied,  

arbitrage activities aided by the aforementioned technical developments were relevant 

enough to guarantee price transmission across space. Parameters 1c  and 2c  are an 

estimate of threshold points and the difference between the two is an estimation of 

transactions costs bands. We find transactions costs bands to be the largest for the New 

York-Dubuque model indicating large price differentials between these two markets. As 

explained before, Dubuque is close to a major producing area and thus is likely to have 

been a net exporter of eggs. Conversely, New York, as well as Boston and Baltimore, 

represent major consumption centres. Prices in such centres probably include a 

significant transactions costs charge. As a result, transactions costs are expected to be 

higher between an importer and a net exporter market than between two consumption 

centres, and this is what our results reflect. TAR parameter estimates provide evidence 
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of asymmetric price adjustments that confer a certain advantage to New York over the 

other markets. While negative (or small positive) price differentials ( 1 1−−∞ < ≤tX c ) are 

quickly corrected, positive price gaps (2 1−< ≤ +∞tc X ) are arbitraged away at a slower 

path, i.e., (1)β >  (3)β . The first situation whereby 1 1−−∞ < ≤tX c  corresponds to New 

York prices being below the other market prices, while 2 1−< ≤ +∞tc X  involves New 

York wholesalers enjoying the highest price. In band parameter estimates are not 

statistically significant or take low positive values. Consistently with the existence of 

transactions costs, this implies that either price differentials within the band follow a 

random walk process, or are even allowed to experience a very small growth.  

 Results derived from the local polynomial fitting are graphed in figures 2  to 7. 

Figures 2, 4 and 6 represent the LLR predicted values and, for comparison purposes, the 

TAR model predicted values. In figures 3, 5 and 7 we present the nonparametric 

regressions and their confidence intervals. Except for extreme price differentials, 

confidence bands are tight, which increases the reliability of inferences from graphical 

inspection. It can be seen that the nonparametric regressions resemble the lines that 

represent the values predicted by the TAR model. Consistently with the parametric 

models, nonparametric techniques suggest that deviations from the long-run equilibrium 

are corrected in a nonlinear fashion. The slope of the LLR is higher for price 

differentials outside a certain band and smaller within the band. Hence, and as 

suggested by the TAR, there is a range of price differentials where equilibrating price 

adjustments may be less intensive, which is compatible with the existence of 

transactions costs. Additionally and in agreement with TAR models, nonparametric 

results suggest that out of band adjustments are not symmetric, with negative price 

differentials being corrected more quickly relative to positive spreads.   
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In spite of the similarities between the two methodologies, several differences 

between the models arise. First, as anticipated, in that it does not assume homogeneous 

transactions costs across economic agents, LLR allows the transition from one regime to 

another to be smoother relative to TAR models. Second, where TAR models suggest a 

still market, local polynomial fitting shows that a price adjustment still takes place. In 

addition, this adjustment can be relatively quick as is the case with the New York – 

Boston model.  It is also important to note that the area of reduced price adjustment in 

the LLR is shorter than its parametric counterpart (this is especially evident in figures 4 

and 6). Hence, nonparametric techniques imply that markets are more strongly 

interconnected either though information transmission, or through arbitrage, than what 

one would conclude from simple observation of the parametric model. In the third 

place, nonparametric techniques suggest that TAR models, since they are estimated with 

a limited number of regimes, may have difficulties in capturing the true nature of price 

relationships. According to LLR, big price differentials cause a change in price 

behaviour that is not adequately captured by the straight lines derived from the 

parametric method, and that could suggest necessity to allow for more price regimes in 

the TAR model. It is also possible that this behaviour is only due to the presence of 

outliers in the sample.  

 In short, nonparametric techniques offer certain advantages over parametric 

methods that are mainly due to the fact that they do not require any assumption about 

the functional form characterizing price linkages and do not impose transactions costs to 

be homogeneous and constant. This makes these techniques especially well suited to 

study price transmission processes during periods of relevant changes that are likely to 

alter commodity points.  
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Concluding Remarks 

Recent studies of regional price transmission have focused on the nonlinear nature of 

market price linkages which may be caused by transactions costs. Nonlinear modelling 

of price adjustments assumes that there exist different states of nature or regimes and 

that the regime occurring at a certain point in time determines the dynamic price 

behaviour. Though parametric threshold models have been widely used to capture 

nonlinearities in price relationships, these techniques may be too restrictive to 

satisfactorily represent price linkages. As an alternative, we apply nonparametric 

methods to a consideration of the degree of price transmission between U.S. egg 

markets at the turn of the nineteenth century. Gordon (2000) labelled this as an era of 

“Great Inventions” which contributed to the subsequent years of significant productivity 

growth and noted that the development of mechanical refrigeration and transportation 

technologies played an important role in this expansion. Contrary to parametric models, 

nonparametric techniques do not require any assumption about the functional form 

characterizing price behaviour. Instead, the data completely inform us how the 

relationship looks like, which constitutes a clear advantage over parametric methods. 

Nonparametric techniques offer further advantages over parametric methods that are 

mainly due to the fact that they do not require transactions costs to be homogeneous and 

constant. This makes these techniques especially well suited to study price transmission 

processes during periods of relevant changes that are likely to alter commodity points. 

We compare results derived from local polynomial modelling to those obtained using 

alternative nonlinear threshold models.  

 Both techniques suggest that U.S. egg markets were closely interrelated at the 

turn of the XIX century, thus showing the relevance of technological developments in 

promoting price transmission across space. However, local linear regressions often 
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suggest a higher degree of price transmission than that implied by threshold 

autoregressive models. More specifically, and contrary to TAR models, LLRs suggest 

that even small price differentials tend to be arbitraged away. While TAR models 

support the existence of a band of price differentials within which no adjustment takes 

place, nonparametric regressions imply price adjustments even within thresholds, albeit 

at different rates. Hence, and according to nonparametric techniques, markets are more 

strongly interconnected either through trade flows or information. Results also suggest 

that TAR models may have difficulties in adequately capturing price relationship 

dynamics, especially for extreme price differentials.  
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TABLE 1. Time series properties of the data 

Unit Root Tests 

Price Perron (critical  

value at 10%) 

Break date 

 

New York -3.64 (-4.82) 1893:09 

Baltimore -3.39 (-4.82) 1893:01 

Boston -3.79 (-4.82) 1895:02 

Dubuque -3.39 (-4.82) 1893:01 

Johansen Tests 

Model λmax, r=0 

(critical value 

at 10%) 

λmax, r=1 

(critical value 

at 10%) 

Weak exogeneity test  

(p-value) 

Ho: New York is 

weakly exogenous 

New York - Baltimore 11.84 (10.29) 7.4 (7.50) 1.21 (0.27) 

New York - Boston 21.72 (10.29) 0.75 (7.50) 1.29 (0.26) 

New York - Dubuque  29.46 (10.29) 6.93 (7.50) 0.51 (0.48) 
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TABLE 2. TAR model parameter estimates 

Markets Thresholds and F-test TAR parameters 

 1c  2c  F-test 

(p-value) 

(1)β  

(standard 

error) 

(2)β  

(standard 

error) 

(3)β  

(standard 

error) 

New York-Baltimore 

0.13 5.00 

53.24 

(0.00) 

-1.77 

(0.26) 

0.01 

(0.05) 

-0.25 

(0.05) 

New York-Boston 

-1.50 1.05 

16.89 

(0.01) 

-0.99 

(0.1) 

0.09 

(0.25) 

-0.77 

(0.08) 

New York-Dubuque 

-0.25 7.5 

41.65 

(0.00) 

-1.26 

(0.36) 

0.11 

(0.04) 

-0.17 

(0.03) 
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Figure 1. Price Series 
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Figure 2. LLR and TAR models: Boston-New York 

 

 

where: 

__ represents the TAR model 

oo represents the LLR model  
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Figure 3. LLR model and confidence intervals: Boston-New York 

  

 

where: 

__ represents the LLR model 

·· represents confidence bands  
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Figure 4. LLR and TAR models: Baltimore-New York 

 

 

where: 

- represents the TAR model 

o represents the LLR model 
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Figure 5. LLR model and confidence intervals: Baltimore-New York 

  

 

where: 

__ represents the LLR model 

·· represents confidence bands  
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Figure 6. LLR and TAR models: Dubuque-New York 

 

where: 

- represents the TAR model 

o represents the LLR model 
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Figure 7. LLR model and confidence intervals: Dubuque-New York 

  

 

where: 

__ represents the LLR model 

·· represents confidence bands  

  

 


