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Abstract— New business infrastructures over the Internet pose
a new set of traffic constraints. In particular, multimedia and
interactive contents require guarantees of bandwidth and delivery
time. The broad deployment and real-time nature of this class
of applications require the provisioning of specific resources in
the network to guarantee a certain level of Quality of Service
(QoS). QoS techniques need ways of obtaining feedback about
the status of the QoS enabled paths, for example, for checking
the fulfilment of Service Level Agreements (SLA). A possible
technique for obtaining such feedback is by passively monitoring
the network traffic.

The issue with traffic monitoring is the additional bandwidth
needed by the control traffic generated by the different collection
points in order to synchronise its acquired QoS metrics. More-
over, passive monitoring at line speed is an expensive process both
in terms of resource consumption and price. However, some of
these requirements can be significantly reduced by using traffic
sampling.

This paper presents a novel methodology for intra-domain
on-line distributed QoS monitoring, which makes an efficient
use of the network resources by employing distributed sampling
mechanisms.

The proposal is validated by performing real tests on an
European-wide testbed. Our results show that the sampling
technique can significantly reduce the traffic overhead, while
obtaining very accurate estimations of the One Way Delay
performance metric.

I. INTRODUCTION

As heterogeneity of services grows in the Internet new
functionalities are required. Service providers and operators
are offering a large amount of multimedia contents for global
broadcasting (video streaming, on-line TV or videoconfer-
encing) which produces a considerable increase of real-time
traffic in the network. Some of these services usually come
with an associated fee, which is tied to a proper quality of
service. Given that Internet is based on a best-effort policy,
offering these services is not always easy. In this direction,
research efforts are set on efficient Quality of Service (QoS)
mechanisms that focus on ensuring the contract fulfilment.

QoS mechanisms permit to reserve resources, to prioritise
among different services, and even to guarantee the network
parameters available for a connection. The fact that network
usage is not static poses two major issues on QoS policies and
Internet in general. First, not all the traffic is constrained by
the same network parameters. For example, Web traffic does
not have tight demands in terms of One Way Delay (OWD),
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while VoIP needs low latency and low Packet Loss Ratio
(PLR) in order to keep the conversation within acceptable
thresholds of quality. And second, network conditions are
prone to change over time. In fact, the network can have high
variations due to cross-traffic or congestion. Hence, even QoS
policies require methods for querying the network status, both
for monitoring the QoS traffic constraints and for reacting in
case that compliance is going to be broken.

The most usual ways of acquiring the status of the network
are: i) by using SNMP on the routers, ii) by querying the
end-points of the communication, iii) by monitoring the traffic
along the path.

The first option gives too coarse information, and thus it
is not suitable for detailed metric reporting, because it is not
possible to correlate the obtained information with specific
flows or services.

The second option is a good approach for end-to-end user’s
perception of the QoS. The problem is the complexity and cost
of deploying the system in the final users’ premises.

The last option, which is the one used in this work, permits
to deliver specific and precise information of the desired flows
along their path. This is accomplished by placing collection
points in the ingress and egress routers of each domain that
report to an analyser unit on a per domain basis. We call this
monitoring infrastructure the Network Parameter Acquisition
System (NPAS) [1]. The main issue highlighted in our previous
work [1] and in such systems in general, is the high bandwidth
required to send the control traffic among the different entities
involved in the QoS metric reporting.

This paper extends our previous research by using dis-
tributed traffic sampling techniques that significantly reduce
the required reporting traffic (i.e. control traffic between the
collection point and the analyser unit). Our solution operates
by choosing specific packets in all the collection points of
the NPAS, which are matched using hash tables to reduce the
hardware resources needed by the system. NPAS is designed
so all the collection points can operate independently of each
other in an autonomous fashion.

The reporting architecture and the sampling optimisations
proposed in this work are validated by a set of real tests
performed in an European-wide overlay testbed available in
the EuQoS project [2], and by analysing real traces acquired
from the Catalan Academic Network. The results prove that
the sampling technique can reduce the control traffic by
one order of magnitude with very small errors in the OWD
estimation.

The rest of the paper is structured as follows: Section



II overviews related work about traffic sampling in QoS
scenarios. Section III presents the basic on-line reporting
architecture. The paper continues in Section IV with the
proposed sampling methodology. The validation along with
the results are presented in Section V. In section VI we discuss
about possible enhancements of the solution. Then the paper
finishes with the concluding remarks and the future work.

II. RELATED WORK

Traffic sampling for network metric estimation is a topic
covered many times in the past (e.g [3]–[7]). Sampling can be
applied to a broad range of fields with the goal of reducing
the needed resources to compute a given metric. This paper
focuses on using traffic sampling for efficient QoS metric
acquisition.

Such efforts on sampling Internet traffic evolved on Packet
SAMPling (PSAMP), an IETF Working Group in charge of
defining and standardising the different sampling techniques
applicable on network measurements.

In order to match each packet on each collection point,
of all the different approaches proposed by PSAMP, our
work requires a sampling method with a deterministic packet
selection function. A possible solution was first presented by
Duffield et al. [8], where the authors present a methodology
for inferring the packet’s trajectory by using hash sampling the
technique was called trajectory sampling. The solution reduces
the analysed traffic by using sampling together with a hash
function over some selected fields on the packet’s header. The
main difference between trajectory sampling and our approach
is that, while trajectory sampling uses hash sampling in order
to decide which packets to select regardless of its origin, we
must consider all the flows within SLA contracts, and hence
we must extend the usage of hash sampling. Specifically we
define a two level hash table to overcome this limitation.

In the distributed QoS metric analysis field another sampling
approach is used in [9], where well-known traffic sampling
methodologies are used for computing one-way delays and
packet losses in ATM networks. The caveat of that approach
is that it relies on the information stored in the ATM cells,
not permitting its application in other technologies. Moreover,
their solution only considers scenarios with two static moni-
toring points on the network, while our proposal goes one step
further giving a generic solution for technology independent
intra-domain QoS parameter acquisition.

More recently, T. Zseby in [5], [7] presents an architecture
for SLA validation with static monitoring points. The author
does not consider the full requirements for a large scale
deployment of the architecture, while our solution instead
involves an arbitrary number of collecting points and it is used
for general SLA assessment.

NPAS is not the only system for SLA assessment, there
is another solution, namely perfSONAR [10]. perfSONAR is
a tool intended to distributively monitor any network metric.
The authors present a methodology that provides meaningful
network performance indicators. The main difference between
this tool and our proposal is that while perfSONAR limits

Fig. 1. Architecture deployment example

the study to the link status by active traffic generation, NPAS
analyses directly the network metrics by passively collecting
the traffic. In our opinion, using active traffic generation is less
precise in general since we cannot guarantee that the network
treats the active probes with the same priority as normal traffic.

III. NETWORK PARAMETER ACQUISITION SYSTEM

On-line QoS monitoring requires an infrastructure for QoS
metric gathering. This work is centred in intra-domain sce-
narios and extends our previous research [1] by reducing the
required resources for distributed traffic monitoring.

Supporting inter-domain scenarios implies the definition of
specific aggregation methods in order to minimise the inter-
domain link overhead due to reporting traffic, such analysis is
left as an important part of our future work.

The system collects the traffic on each ingress and egress
points within the network, only including the traffic subject
to QoS policies. The computed network metrics are One-
Way Delay (OWD), IP Delay Variation (IPDV), Packet Loss
Ratio (PLR) and used bandwidth, which are the most relevant,
according to [11].

This infrastructure delivers a framework which publishes the
intra-domain traffic metrics to higher layer entities in the QoS
control plane, to assess whether the SLA contracts are fulfilled
or not. This mechanism is used for triggering the appropriate
actions if needed. Both actions and management policies are
out of the scope of this paper.

Figure 1 shows a generic network scenario where the system
is deployed. It is composed of the following entities:

1) The Monitoring Entity (ME): It is in charge of the traffic
collection via selection filters. The traffic selection policy
aggregates the data in a per flow or per Class of Service (CoS)
basis, but it can be easily extended to other configurations.

The traffic information collected by MEs is sent to a
per-domain analyser entity (Processing Entity - PE) which
computes the network metrics of all the traffic under analysis.

2) Processing Entity (PE): It is the central gathering point
within the domain. It performs most of the processing, identi-
fies aggregates, matches the information of the packets coming
from the MEs and computes the QoS metrics.

Further detail in the specification and bandwidth usage of
this solution can be found at [1].



Fig. 2. Structure of Flow (FT) and Packet (PT) Hash Tables

IV. DISTRIBUTED SAMPLING

The main limitation of the presented solution, which is
addressed in this paper, is the high bandwidth requirements
needed to report per packet information to the PE. This
limitation is solved by using traffic sampling over the collected
packets in the ME.

The complexity of applying sampling in this distributed
scenario is that centralised techniques (e.g. the techniques
presented in [4]) are not well suited for this task, since they
do not guarantee that all MEs capture exactly the same set
of packets. Thus, accurately determining packet losses or one
way delays is not feasible. We solve this issue by defining a
deterministic sampling technique to match exactly the same
packets all over the different ME, and later computing the
network metrics. This technique permits all the different ME
to collect traffic independently, only the selection function at
configuration time has to be shared by the MEs.

The distributed sampling method proposed in this paper is
based on the hash sampling technique proposed in [8]. Hash
sampling computes a hash function over a set of fields on
the packet’s header. Thus, a packet is only analysed if it falls
within specified positions in the hash table. This permits to
efficiently control the resources and the sampling rate of the
solution. In order to adapt this technique to our environment,
using only one hash table is not sufficient, since the QoS
monitoring framework has to guarantee that all the flows
under QoS contract are considered for the analysis. Thus, the
sampling must be applied within the flows, not directly to all
the collected traffic. Therefore we identify the packets using
two different keys, the flow identifier and the packet identifier.

A. Hash functions analysis

The above requirements are implemented using a two level
hash table as shown in Figure 2. The flows and the packets
tables are indexed by two different hash functions.

1) Flow Identifier hash function (FH): The flow identifier
(FID) has 32 bits and it is obtained using the typical 5-tuple
for flow selection: Source and Destination Addresses, Source
and Destination Ports and Protocol.

The flow identifier is hashed by a randomly generated H3
hash function [12], which distributes the flows uniformly and
unpredictably. This way, we guarantee minimum collisions in
the first hash table. If a collision is found, a linked list of
the colliding flows is created. In our context we must resolve
collisions on the flow tables, since the system must consider
all the flows under SLA constraints.

2) Packet Identifier hash function (PH): The packet identi-
fier (PID) has 32 bits, and it is generated by a CRC32 from 27
bytes of the packet’s payload, as proposed in [13]. However
the author states that other fields such as IP Source and
Destination or Protocol are also required, but in our scenario
these fields are already considered in FID, and hence ignored
on the PID computation. Moreover, as proved in [8], using 27
bytes of payload minimises the probability of different packets
obtaining the same identifier per collection period.

Using both functions presented above allows us to quickly
insert each desired packet’s QoS information. Each flow hash
table has a size of A packets, from where only the first r
are considered (see Figure 2 where we suppose r = 2 as an
example). Possible collisions on the second hash table are
ignored (the new packet silently overwrites the previous one).
Hence, a parameter to consider is the size of the packet hash
table. As we detail in the results, for fairly small hash tables
collisions are rarely found.

When a new packet arrives to a ME it is classified to the
flow where it belongs, the Flow hash Table (FT ) indicates the
specific table (PT ) where the packet must be stored. Then PH

is computed and the packet information is stored into the hash
table.

B. Applying the Sampling

Once we have all the information stored into the hash table,
the last step is to choose which packets will be sent to the
PE. In this paper we consider that the sampling rate is applied
uniformly within all the ME involved on the measurement. Let
ρ be the upper bound of the sampling rate. In some situations ρ
might not be applicable, since the number of packets received
by ME is discrete, then the minimum applicable sampling rate

to flow f is ρ( f ,1) =
1

R f
, where R f holds the number of packets

received during the time interval in flow f .
Analogously, the maximum sampling rate is achieved by

ρ( f ,R f ) =
R f

R f
= 1. Hence all the possible sampling rates for

flow f are: R f = {ρ( f ,1), . . . ,ρ( f ,R f )}. Then we define the
applied sampling rate to f as, ρ( f ,i) which ∀i : 1 ≤ i ≤ R f

is closest to the decided ρ.
Hence, the total effective applied sampling ρe is defined as

ρe =
∑| f |

i=1 ri

∑| f |
j=1 R j

(1)

where | f | is the number of flows among all the MEs and ri =
ρiRi, the considered packets in flow i for the study. Therefore
ρe defines the effective sampling rate on the system, and thus
the real required bandwidth for the control traffic. We must



highlight that this value depends on the traffic existing on the
network, thus not known in advance.

The application of the sampling rate to the packet’s hash
table must be done in a deterministic manner in order to syn-
chronise the different ME. Hence, a time window t (referred
to as bin from now on) is negotiated among the ME, such t
triggers the selection of the packets and flushes the hash tables.
The sampling rate is applied by selecting the first r f packets
of each monitored flow on all the MEs. r f is obtained from
the applied sampling rate ρ f and from R f : r f = ρ f R f .

Note that the hash tables on each ME will have exact copies
for the common flows except when there are packet losses, that
is when a packet appears on some ME and not on the others
down the path. After t time units we transfer r f packets of
each table towards PE, which matches all the packets over all
the MEs reporting the QoS metrics.

Another point to consider is when the OWD between two
ME is big, it can happen that some collected packets on the
first ME have still not reached the second, to avoid this, the
PE holds an historic of some time windows t. Due to space
constraints we do not discuss here the optimal value for this
historic. The reader is referred to [1] for a detailed description
of such parameter, in this work we assume that it is big enough
to consider every single packet arriving to PE.

C. Memory and Bandwidth Requirements

Since we might have gaps within the packet hash table, we
have to allocate memory for A entries for each PID to chose the
first r f . Assuming a flow hash table of τ active flows and λ bits
per FID, with ω bits per PID, the overall memory Θ required
per ME by the system is upper bounded by expression 2:

Θ ≤ λτ+ωτA (2)

Where λτ is the size in memory of the flow hash table, ωτ is
the size of one packet hash table. In our system λ = ω = 32bits
which produces Θ ≤ 32τ(A + 1). Where Θ depends on the
active flows τ and the size of the hash table A, and not on the
actual packets traversing the ME.

Regarding the bandwidth, using small r f implies less re-
quired bandwidth, lower sampling rate and less precision for
the results as we have less information to estimate the real
values.

Moreover, t determines the flushing period of the hash table
and thus bounding its reporting interval. In the next section
we discuss the appropriate value for A and t in a real scenario
along with the memory and bandwidth requirements of its
deployment.

V. TESTS AND RESULTS

In this section we validate the proposed sampling mecha-
nism by using an experimental testbed with a large set of tests.
We detail the experimental tests, the parameter selection (A, t)
and the accuracy obtained by applying several sampling rates
to the traces. The analysis is completed by the study of the
real memory requirements of the solution.

A. Experiments

For validating the proposed sampling mechanism we per-
formed a set of 520 tests using the 12 different testbeds from
EuQoS [2] partners, covering a total of 5 countries and 4
different access technologies (LAN, xDSL, UMTS and WiFi)
with an overlay architecture on the Géant research network
[14]. For this work the testbed is configured to act as a
single domain, with one ME deployed on each technology,
amounting to 12 ME and 1 PE.

The tests were performed by actively generating synthetic
traffic, emulating different applications, with a broad set of
combinations of different packet rates, packet sizes and dif-
ferent hours. A wide range of packet loss and delay variation
conditions were encountered given the different cross-traffic
found on the network at different days, hours and physical
locations of the testbed. That gives good set of tests to validate
the proposal.

In order to ease the validation, instead of directly sampling
the traffic, we collected the complete trace and applied the
different sampling rates off-line. For the sake of the exposition
we only show results for the following sampling rates: ρ =
0.35, 0.15 and 0.05, that correspond to effective rates (using
expression 1) ρe = 0.31, 0.11 and 0.04, which in our opinion
represent examples of low, medium and high sampling rates.
With this methodology we were able to compute the metrics
for each sampling rate and its accuracy by taking as reference
the complete original trace. Therefore we can compute the
accuracy of our solution.

In summary the methodology for validating the accuracy of
the technique consists of the following actions:

1) Generate the test traffic and gather all the traces on MEs.
2) Apply off-line the different sampling rates ρ f with the

chosen bin size t. This is the information sent to the PE.
3) At the PE, for each bin and ρe the average OWD is

computed.
4) Finally each sampled OWD result is compared with the

original, as detailed later in this section.

As a second set of experiments, in order to assess the
costs and the memory requirements of a deployment on a real
network, we performed a series of collections with real traffic
during several periods on the Catalan Academic Network,
which is a Gigabit ethernet link with a sustained traffic of
around 360Mbps, the access to the traces has been provided
by the SMARTxAC project [15].

B. Selecting t

t determines the interval of time we use to fill the hash tables
and send the sampled traffic information to the PE. Hence, t
impacts on the system in three different aspects. First, in the
reporting latency, the bigger is t the longer it will take the
system to react. Second, the effects of potential collisions on
the hash table, the bigger is t the more often packets enter to
the hash table, hence the collisions might increase. And third,
the smaller is t the more packets are being sent by the ME,
thus more control traffic overhead is generated.



A p bin with Col. Max. #Col Avg. #Col
19 0.3 1421 8.65

101 0.1 1339 4.87
1297 0.03 143 2.5

16979 ∼ 0 60 1.88

TABLE I

COLLISIONS FOR DIFFERENT SIZES OF A

In order to select an appropriate t we analysed the OWD and
the IPDV of all the performed experiments as we described in
[1]. In that work we show that a desirable bin size is t = 175ms
which is the value we chose for the validation.

C. Selecting A

One of the basis of our infrastructure is the use of a hash
table. The size of the table impacts directly to the system’s
performance. On the one hand, the smaller is the table the
less memory the system requires to operate. On the other hand,
the bigger is A the lower is the collision probability. We have
to point out that having collisions is not a big issue because
we are using sampling. Therefore we will not consider all the
packets for the analysis, as long as we have r f packets to study
per bin and per ME. So we advise using A � max{r f } for any
flow on the system.

In order to evaluate the effects of such table size we used
the Catalan Academic Network traces described before. There
the results show that typically on a network where t = 175ms
we have an average of ∼ 3500 flows with a total amount of ∼
10000 packets per bin. It results on an average of ∼ 3 packets
per bin on each flow, but with a maximum packets per bin of
1440. This values are upper bounds in our scenario, since we
consider all the traffic on the link, while for SLA assessment
we would only consider part of the traffic. Anyway we think
that the analysed traces are quite representative of the normal
behaviour on the Internet.

We used this information to study the effects of differ-
ent hash table sizes, specifically we choose different prime
numbers A = 19,101,1297 and 16979. Using prime numbers
together with a robust hash function is advisable in order
to minimise the collisions [8]. From the tests we computed
several statistics as shown in Table I. The table details the
probability of having a bin with a collision, in our case it is
∼ 30% for the minimum size and is rapidly reduced down to
0.01% in the case of the biggest considered A. From the bins
with collision we computed its maximum and average length
(columns 2 and 3 respectively), for example with size 1297
in the worst case we only have 143 collisions, while from all
the bins with collision their average is only 2.5. As it can be
noted the gain of further increasing A from 1297 is not worth
the cost increase in terms of memory, since we have a really
small amount of collisions.

In [8] the authors reccommend to use A = 16979, with our
strategy we can reduce this value because we classify the
packets into flows, reducing this way the amount of packets
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Fig. 3. CDF: relative error of the sampling estimate

ρe 99th prc. 95th prc. 50th prc.
0.04 0.16 0.04 0.001
0.11 0.08 0.02 ∼ 0
0.31 0.03 ∼ 0 ∼ 0

TABLE II

RELATIVE ERROR PERCENTILE FOR OWD

entering each hash table. Therefore the rest of the paper
assumes A = 1297.

D. Validation

We focus the validation of the platform with OWD accuracy
analysis. Some discussion about PLR is left for further study
as detailed in Section VI.

The study of the OWD accuracy is performed by comparing
the estimated values using sampling with the real results of the
full trace. Therefore, all the analysis computes relative error
values as detailed on equation 3:

εS =
∣∣∣∣1−

x̂
X

∣∣∣∣ (3)

Where X is the real value taken from the complete trace and
x̂ stands for the estimate obtained by applying sampling.

Expression 3 is applied to all the averages obtained from the
actions described previously. Figure 3 presents the Cumulative
Distribution Function (CDF) of the relative error of One Way
Delay. In the figure the X-axis shows the relative OWD
error and the Y-axis holds the cumulative probability. Table
II complements the results with the most relevant percentiles.

As it can be noted, the more we increase the sampling rate
the better is the accuracy. In the worst presented case with
ρe = 0.04, the error in estimating the 95th percentile of OWD
only shows 4% error, while for 90th percentile it is further
reduced to 2%.

In a SLA controlled scenario admissible OWD for typical
real-time applications range from 50 to 200ms (as in the case
of VoIP communications [16]). Having relative errors lower
than 2% give a usable estimate in order to decide whether the
quality is within good thresholds.



E. Memory and Bandwidth analysis

With the proposed sampling technique, we reduce the re-
quired control traffic proportionally to ρe. The associated cost
by using this approach is the increase in memory require-
ments of the solution. Each ME must hold the hash structure
presented before. We studied the memory requirements of
deploying this solution on the Catalan Academic Network
assuming the traffic conditions detailed previously.

With 3500 flows per bin, we need Θ � 18Mbytes on each
ME for the hash table. This value has been computed using
equation 2.

The amount of required memory on the PE depends on each
r f and on the amount of flows and ME. Assuming the above
network with 12 ME with 20 packets per bin and ρe = 0.11,
then r f = 2 hence the PE needs ∼ 328Kbytes.

VI. DISCUSSION

In this paper we discussed thoroughly the application of
distributed sampling in order to estimate the OWD. We left
out the study about PLR.

Analysing PLR is a more complex issue since for low rate
flows the system collects few packets per bin. It is well known
[17] that the achieved accuracy (within a 95% confidence
interval) when classifying sampled traffic into categories is

bounded by ε ≤ 1.96
√

1
r , where r is the amount of sampled

packets within the category (packet losses in our case).
Therefore estimating PLR with the above technique leads

to some inaccurate results with low rate flows. Hence this
technique is not suitable for the estimation of this metric. In
this regard we have performed some further research [18] with
dynamic adaptive sampling which leads to much better results
(i.e. our preliminary study we obtain errors below 10%).

The adaptive sampling solution instead of specifying a
static sampling rate to the system, permits to evaluate where
is important to focus the collection resources in order to
increase dynamically the sampling rate on the flows with more
probability of losses, for further details the reader is referred
to [18] and [19].

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a technique for reliable and efficient
on-line SLA assessment. Even if this work only covers intra-
domain scenarios, the architecture is ready to be extended to an
inter-domain environment independently of the existing access
technology.

With the aim of reducing the required bandwidth for the
on-line reporting, the proposed technique combines the usage
of sampling algorithms in conjunction with reliable hash
functions to obtain an efficient distributed system. The whole
architecture has been validated by broad deployment and
testing on an European wide testbed using Géant network.

The system reduces the generated control traffic by one
order of magnitude by using sampling rates down to 0.04 with
a relative error smaller than 2% for 90% of the cases for One
Way Delay. If more precision is required, our experiments

show that increasing the sampling rate (0.11 in our experi-
ments) reduces the estimated error to 1% for 95% of the cases,
still reducing ∼ 10 times the required resources compared with
the per packet reporting.

We also discovered that estimating PLR is much more
complex. Hence, in order to improve its estimation, we leave
as an important part of our future research the proposal of a
dynamic adaptive sampling technique to solve this issue.

Another point for further study is the architecture definition
and the experimental study of the inter-domain scenario. This
analysis would require the definition and capabilities of the
inter-domain entities and the interconnection protocols with
the peer domains.
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