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A. Rodŕıguez-Ferran ∗, I. Morata and A. Huerta
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Abstract

We present an efficient and reliable approach for the numerical modelling of failure
with nonlocal damage models. The two major numerical challenges – the strongly
nonlinear, highly localized and parameter-dependent structural response of quasi-
brittle materials, and the interaction between non-adjacent finite elements associ-
ated to nonlocality – are addressed in detail. Reliability of the numerical results is
ensured by an h-adaptive strategy based on error estimation. We use a residual-
type error estimator for nonlinear FE analysis based on local computations, which,
at the same time, accounts for the nonlocality of the damage model. Efficiency is
achieved by a proper combination of load-stepping control technique and iterative
solver for the nonlinear equilibrium equations. A major issue is the computation
of the consistent tangent matrix, which is non-trivial due to nonlocal interaction
between Gauss points. With computational efficiency in mind, we also present a
new nonlocal damage model based on the nonlocal average of displacements. For
this new model, the consistent tangent matrix is considerably simpler to compute
than for current models. The various ideas discussed in the paper are illustrated
by means of three application examples: the uniaxial tension test, the three-point
bending test and the single-edge notched beam test.
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1 Introduction

Damage models are nowadays a common choice in the numerical modelling
of failure of quasi-brittle materials [1]. To avoid the pathological mesh depen-
dence exhibited by local damage models, one may use either gradient damage
models or nonlocal damage models. These two related strategies regularize
the problem and ensure mesh objectivity. In gradient damage models, strain
derivatives are incorporated into the constitutive equation [2]. In nonlocal
damage models [3,4,5], strain (or, rather, a strain-related state variable) is
smoothed by means of an integral average in the vicinity – associated to a
characteristic length – of each point. The latter approach is considered in this
paper.

Another clear trend in computational mechanics is the quest for reliable com-
putations. The quality of the results must be guaranteed in a quantifiable,
objective manner. This has led to adaptive finite element analysis based on
error estimation.

The price to pay for reliable results is a large number of degrees of freedom,
especially in nonlinear solid mechanics. This means that one needs computa-
tionally efficient numerical methods.

Of course, efficiency and reliability is a general concern in all the fields of
computational mechanics. However, when modelling quasi-brittle failure with
nonlocal damage models, we face some specific challenges:

(1) Due to brittleness, the structural response is strongly nonlinear, very
localized and highly dependent (at the quantitative and even qualitative
level) on the value of the material parameters.

(2) Due to nonlocality, there is interaction between non-adjacent finite el-
ements. This poses several difficulties. The consistent tangent stiffness
matrix, for instance (needed for quadratic convergence in Newton itera-
tions), cannot be assembled from elementary contributions solely.

(3) Many error estimators are based on local (element-wise) computations.
This fact must be conciliated with the nonlocal nature of the damage
model: adaptivity typically leads to element sizes smaller than character-
istic length.

1.1 Objectives

In this context, the main goal of this paper is to present an efficient and
reliable approach for the numerical modelling of failure with nonlocal damage
models. The key ingredients are:
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(1) A residual-type error estimator based on element-wise computations which,
at the same time, accounts for the nonlocality of the constitutive model
[6].

(2) An h-adaptive strategy driven by the error estimator which yields nu-
merical results with the desired accuracy. The FE discretization errors
are kept under control and, thus, the physical significance of the compu-
tations is guaranteed [7,6].

(3) Advanced arc-length control techniques, adapted to the highly localized
failure patterns.

(4) A flexible approach to achieve quadratic convergence in Newton itera-
tions. The element-to-element stiffness matrices can either be assembled
into the global tangent stiffness matrix [8] or accounted for in the right-
hand-side vector to prevent fill-in.

(5) A new model based on nonlocal displacements. The standard approach
is to define the nonlocal state variable as the nonlocal average (NLA)
of the (strain-related) local state variable. Other approaches have been
proposed in the literature (see [9] for a comparative analysis), based, for
instance, on nonlocal strains or nonlocal damage. An alternative approach
is presented here: to use nonlocal displacements, obtained as the NLA of
local displacements, to drive the evolution of damage. According to our
preliminary numerical experiments, the resulting model exhibits a satis-
factory behaviour and it is very attractive from the computational point
of view, especially regarding the computation of the consistent tangent
matrix.

1.2 Outline of Paper

The rest of the paper is organized as follows. Nonlocal damage models are
briefly reviewed in Sect. 2. The proposed model based on nonlocal displace-
ments is presented in Sect. 3 and illustrated with a uniaxial tension test. Af-
ter that, various relevant issues regarding the efficiency and reliability of the
computations are discussed in Sect. 4 and illustrated by means of numerical
examples. Sect. 4.1 deals with iterative solvers, a key aspect for computational
efficiency (numerical example: three-point bending test). The consistent tan-
gent matrix for the proposed model based on nonlocal displacements is derived
in Sect. 4.2 (uniaxial tension test). The adaptive strategy based on error es-
timation is discussed in Sect. 4.3 (single-edge notched beam test). The two
main aspects, nonlinearity and nonlocality, are covered respectively in Sects.
4.3.1 and 4.3.2. The concluding remarks of Sect. 5 close the paper.
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2 Overview of Nonlocal Damage Models

For simplicity, only elastic-scalar damage models are considered here. However,
many of the ideas, methods and algorithms can be extended to more complex
damage models incorporating, for instance, anisotropy or plasticity [5,10].

A generic nonlocal model of such type consists of the following equations,
summarized in Table 1:

• A relation between Cauchy stresses σ and small strains εε, where the loss of
stiffness (from elastic stiffness C to zero stiffness) is described by means of
a scalar damage parameter D which ranges from 0 to 1, (1);
• The definition of a local state variable Y as a function of strain εε, (2);
• The definition of the nonlocal state variable Ỹ as the average of the local

state variable Y , (3);
• A weighting function α which depends on the distance r between two points

and contains a characteristic length lc as a parameter, (4);
• A damage evolution law, where the nonlocal state variable Ỹ drives the

evolution of the non-decreasing damage parameter D, (5).

Table 1
General expression of an elastic-damage model

Stress-strain relationship σσ(x, t) =
(
1−D(x, t)

)
Cεεε(x, t) (1)

Local state variable Y (x, t) =Y
(
εε(x, t)

)
(2)

Nonlocal state variable Ỹ (x, t) =

∫

Vx

α(x− z)Y (z, t) dV (3)

Weighting function α(x− z) =α(r; lc) with r = ‖x− z‖ (4)

Damage evolution D(x, t) =D
(
max
τ≤t

Ỹ (x, τ)
)

(5)

Many nonlocal damage models encountered in the literature can be accom-
modated with little or no modification into the general framework of Table 1.
The most common choices for (2), (4) and (5) are reviewed next.

2.1 Local State Variable

The local state variable Y is a suitable scalar measure of strains εε. Three
common definitions are the energy release rate [1,11]

Y =
1

2
εεTCε , (6)
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the average of positive principal strains εi used in the Mazars model [12]

Y =
√∑

i

[max(0, εi)]
2 , (7)

and a function of strain invariants used in the modified von Mises model [13]

Y =
k − 1

2k(1− 2ν)
I1 +

1

2k

√√√√
(

k − 1

1− 2ν
I1

)2

+
12k

(1 + ν)2
J2 . (8)

In (8), I1 and J2 are the first and second invariants of the strain and deviatoric
strain tensors respectively, and k is the ratio of compressive to tensile strength.

2.2 Weighting Function

The weighting function α is typically defined as

α(r; lc) =
α0(r; lc)∫

Vx
α0(r; lc) dV

(9)

where α0 is the Gaussian function [14,15,7]

α0(r; lc) = exp

[
−
(

2r

lc

)2
]

. (10)

For computational efficiency, the infinite support of the Gaussian function is
truncated for the nonlocal averaging. Another possibility is to use a parabolic
function with compact support, see [9]. In any case, the integral in the de-
nominator of (9) is not a constant: near the boundaries, the support of α0

may lay partially outside the domain, so a lower value of the integral is ob-
tained. In fact, it is necessary to modify the Gaussian function α0 into the
weighting function α as indicated by (9) to ensure consistency of order 0 (i.e.
reproducibility of constant functions). This guarantees that a constant field of
local state variable Y (x) = Y is not modified due to nonlocal averaging (that
is, Ỹ (x) = Y (x) = Y ) and, hence, that a constant strain field εε results in a
constant stress field σσσ.

As a remark, is is worth noting that this function is sometimes written as
[9,16]

α0(r; lc) = exp


−

(
r√
2lc

)2

 . (11)

Note that the characteristic lengths in (10) and (11) differ by a factor of 2
√

2.
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2.3 Damage Evolution Law

Two typical choices to describe the evolution of damage above the damage
threshold Y0 are the exponential law [12]

D = 1− Y0(1− A)

Ỹ
− A exp

[
−B

(
Ỹ − Y0

)]
(12)

and the polynomial law [17,16]

D = 1− 1

1 + B(Ỹ − Y0) + A(Ỹ − Y0)2
. (13)

In (12) and (13), parameter A is associated to residual strength and parameter
B controls the slope of the softening branch at the peak (i.e. at Ỹ = Y0), see
[7].

In Mazars model, damage D is expressed as a combination of tensile damage
Dt and compressive damage Dc [12]. Each of these two components evolves
according to an exponential law (12), with the corresponding parameters Ac

and Bc for compression and At and Bt for tension.

A third option, especially suited for simplified analyses, is the linear softening
law. Between the damage threshold Y0 and a maximum admissible value Yf ,
damage evolves according to

D =
Yf

Yf − Y0

(
1− Y0

Y

)
, (14)

which leads to a linear softening branch in a stress-strain diagram.

3 A Nonlocal Damage Model Based on Nonlocal Displacements

As Table 1 reflects, the standard approach is to define a scalar local state
variable Y (as a function of strains) and then to average it into the nonlocal
state variable Ỹ , which drives the evolution of damage.

However, other variables can be selected for averaging. In fact, a number a
proposals can be found in the literature. Either scalar (for instance: damage
D) or vectorial (for instance: strain ε) Gauss-point quantities may be aver-
aged into the corresponding nonlocal quantities (D̃ and ε̃ε in the two examples
mentioned). The existing approaches are compared in [9] by means of a simple
1D numerical test (bar under uniaxial tension).
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Table 2
Standard approach (nonlocal state variable) vs. alternative approach (nonlocal dis-
placements). Subscript NL denotes quantities with nonlocal information but com-
puted locally. The tilde is reserved to truly nonlocal quantities (i.e. computed via
nonlocal average, NLA, of a local quantity)

Standard approach Alternative approach

Local displacement u Local displacement u

Local strain ε = ∇su Nonlocal displacement ũ = NLA(u)

Local state var. Y = Y (εε) Nonlocal strain εεNL = ∇sũ

Nonlocal state var. Ỹ = NLA(Y ) Nonlocal state var. YNL = Y (εNL)

Damage evolution D = D(Ỹ ) Damage evolution D = D(YNL)

Local strain ε = ∇su

Stress-strain law σ = (1−D)C : ε Stress-strain law σσ = (1−D)C : εε

A new proposal is made here: to compute nonlocal displacements ũ by aver-
aging the local (i.e. standard) displacements u. These nonlocal displacements
ũ drive the evolution of damage, see Table 2.

Regarding the basic ingredients of a nonlocal damage model reviewed in Sect.
2, the only one that requires some modification is the weighting function. Since
displacements, rather than strains, are averaged, consistency of order 1 (i.e.
reproducibility of polynomials of degree 1) is needed to ensure that a constant
strain field results in a constant stress field. This can be done in a simple and
computationally efficient manner, as described in Appendix A.

The relevance of consistency of order 1 is illustrated by Fig. 1. If a linear 1D
field of local displacements is averaged with the weighting function (9), see
Fig. 1(a), it is not reproduced correctly near the boundaries. The discrepancy
increases with nonlocality, measured as the ratio of characteristic length to
element size, see zoom in Fig. 1(b). With consistency of order 1, on the other
hand, the nonlocal displacement field matches the local field, see Fig. 1(c).

Numerical Example: Uniaxial Tension Test

A clamped bar is subjected to uniaxial tension, see Fig. 2(a) and [18]. The one-
dimensional version of the damage model based on nonlocal displacements, see
Table 2, with Y (ε) = ε and a linear softening law, see Fig. 2(b), is used. The
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Within each increment, the equilibrium equation remains nonlinear and de-
mands an iterative solution. A nonlinear solver amounts basically to the se-
lection of a particular stiffness matrix for iterations.

4.1.1 Iteration Matrices

One possibility [17,15,7,6] is to work with the secant stiffness matrix, com-
puted from the damaged elastic moduli (1−D)C. The main advantage of this
approach is that the secant matrix is symmetric positive definite and very sim-
ple to compute (the factor (1−D) at each Gauss point is the only difference
with respect to the elastic stiffness matrix). The main drawback is that it must
be supplemented with convergence acceleration and, even so, convergence is
only linear.

If quadratic convergence is desired (full Newton-Raphson method), the consis-
tent tangent matrix is required [20]. For nonlocal damage models, this poses
a substantial difficulty: due to nonlocality, there is interaction between non-
adjacent nodes, and the consistent tangent matrix exhibits a larger bandwidth
(with respect to the sparsity pattern of the elastic or secant matrices) [17,8],
as discussed next.

In FE analysis, the internal force vector is typically computed with a Gauss
quadrature as

f int(u) =
∑

p

wpB
T
p σσp(u) (15)

where p ranges the Gauss points, wp are the corresponding integration weights,
Bp is the usual matrix of shape function derivatives at Gauss point p and
stresses σσp are

σσσp(u) = (1−Dp)CBpu︸ ︷︷ ︸
εp

. (16)

The consistent tangent matrix is

Ktan :=
∂f int

∂u
=
∑

p

wpB
T
p

∂σp

∂u
. (17)

Combining (16) and (17) results in

Ktan = Ksec + Knonlocal (18)

where

Ksec =
∑

p

wpB
T
p (1−Dp)CBp (19)
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is the secant stiffness matrix and

Knonlocal = −
∑

p

wpB
T
p Cεεp

∂Dp

∂u
(20)

is the nonlocal tangent contribution which accounts for the variation of the
damage parameter.

By applying the chain rule, the term ∂Dp/∂u can be expressed as

∂Dp

∂u
= D′(Ỹp)

∂Ỹp

∂u
. (21)

The integral (3) required for nonlocal averaging is also approximated via a
numerical quadrature, so the nonlocal state variable Ỹp is

Ỹp =
∑

q∈Vp

wqαpqYq , (22)

where q ranges the Gauss points ξξq in the neighbourhood Vp of Gauss point
ξξp, and αpq = α(r = ‖ξξp − ξξq‖).

By differentiating (22), the last term in (21) can be expressed as

∂Ỹp

∂u
=
∑

q∈Vp

wqαpq

∂Yq

∂u
=
∑

q∈Vp

wqαpq

∂Yq

∂ε
Bq (23)

where the chain rule and the relation ∂εεq/∂u = Bq have been used.

By replacing (23) into (21) and then into (20), the nonlocal matrix can be
expressed as

Knonlocal,Y = −
∑

p,q∈Vp

wpqB
T
p CεpD

′(Ỹp)
∂Yq

∂εε
Bq (24)

where wpq = wpwqαpq and the subscript Y denotes the nonlocal quantity. Due
to the double loop in Gauss points caused by nonlocal interaction, Knonlocal,Y

cannot be assembled from elementary contributions solely.

To avoid the additional non-zero entries, some authors [13,16] neglect the
nonlocal interaction by taking wpq = 0 for p 6= q:

Klocal,Y = −
∑

p

wppB
T
p CεpD

′(Ỹp)
∂Yp

∂εεε
Bp . (25)

However, the resulting local tangent matrix Ksec + Klocal,Y is no longer con-
sistent, and quadratic convergence is lost.
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Table 4
Properties of stiffness matrices

Increased Nonlocal
Matrix Symmetry bandwidth interaction Convergence

Ksec Secant Yes No No Linear

Ksec + Klocal,Y Local tangent No No No Linear

Ktan Consistent tangent No Yes Yes Quadratic

These three basic choices are summarized in Table 4.

4.1.2 Quadratic Convergence Without Fill-in

If the consistent tangent matrix is chosen, equilibrium iterations read

Ki
tanδu

i+1 = −ri , (26)

where i is the iteration counter, ri is the residual and δui+1 is the iterative
correction in displacements.

Due to the increased bandwidth of Ki
tan, fill-in during the factorization is

considerably larger than for a local (tangent or secant) stiffness matrix. If
this additional fill-in is a critical factor, it can be avoided by accounting for
the nonlocal interaction in the right-hand-side vector. The consistent tangent
matrix can be expressed as

Ktan = Ksec + Klocal,Y + Kp6=q,Y (27)

where Kp6=q,Y is the part of the nonlocal matrix Knonlocal,Y neglected when
approximating (24) by (25).

Equations (26) and (27) can be combined into the system of equations

(
Ki

sec + Ki
local,Y

)
δui+1 = −ri −Ki

p6=q,Y δui+1 (28)

which can be solved with an inner iterative scheme,

(
Ki

sec + Ki
local,Y

)
δui+1

k+1 = −ri −Ki
p6=q,Y δui+1

k (29)

where k is the counter for the inner iterations. Note that extra fill-in is in-
deed precluded, because the matrix in system (29) is local. Moreover, once
Ki

sec +Ki
local,Y is factorized, the inner iterations have a relatively modest com-

putational cost. Linear convergence is expected for these inner iterations k,
but – and this is the key issue –, quadratic convergence without increased
fill-in will be achieved for the expensive, outer equilibrium equations i. More-
over, the tolerance of the inner k loop is usually not taken as a constant, but
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4.2 Consistent Tangent Matrix for Model Based on Nonlocal Displacements

The proposed model based on nonlocal displacements has very attractive nu-
merical properties. As shown here, the consistent tangent matrix is quite sim-
pler to compute than in the standard case shown above.

Equations (15)-(20) are also valid for the new model. However, the term
∂Dp/∂u is now

∂Dp

∂u
= D′(YNLp

)
∂Y

∂εεNL

(εNLp
)
∂εεNLp

∂ũ

∂ũ

∂u
. (31)

Since nonlocal averaging is performed at the beginning, the rest of the con-
stitutive model is “local”. Note, in particular, that the usual shape functions
are used in the FE discretization of nonlocal displacements and that nonlo-
cal strains εNL are computed locally as the symmetrized gradient of nonlocal
displacements, see Table 2. This means that

εεNLp
= Bpũ =⇒ ∂εεNLp

∂ũ
= Bp , (32)

where Bp is the same matrix of shape function derivatives used in (15).

The last term in (31), ∂ũ/∂u, reflects the nonlocality of the model. After finite
element discretization and numerical integration, the averaging process (A.6)
leads simply to

ũ = Au =⇒ ∂ũ

∂u
= A , (33)

where A is a matrix of nonlocal connectivity. Note that this matrix contains
purely geometrical information associated to the finite element mesh. It does
not change as damage evolves, so it can be computed and stored at the be-
ginning of the analysis (provided, of course, that a fixed mesh is used).

Substitution of (31), (32) and (33) into (20) results in

Knonlocal,u = Klocal,uA (34)

with

Klocal,u = −
∑

p

wpB
T
p CεεεpD

′(YNLp
)

∂Y

∂εNL

(εεεNLp
)Bp . (35)

Note that Klocal,u can be computed in the usual way by assembling elementary
matrices, like in any local material model. After that, nonlocality is accounted
for by means of the constant matrix A, which “spreads” the stiffness of Klocal,u

into Knonlocal,u.
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Figure 12. Uniaxial tension test. Sparsity pattern of the consistent tangent matrix
at load steps A, B, C and D, see Fig. 7(a)

thus provoking fill-in in the tangent matrix Ktan.

4.3 Adaptivity Based on Error Estimation

Even for nonlinear problems, simply obtaining a finite element solution is
nowadays not enough. One must also ensure the quality of the numerical re-
sults in an objective, quantifiable manner. With that purpose, we present here
an adaptive strategy based on error estimation [7,6]. The two key ingredients
are a residual-type error estimator for nonlinear problems [23] and h-remeshing
[24].

The issue of reliability is relevant in all fields of computational mechanics. In
failure modelling of quasi-brittle materials, it is critical. Due to brittleness, the
particular choice of a constitutive equation or a set of material parameters can
have a very significant influence (not only quantitative but even qualitative)
on the failure mechanism.
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Of course, the finite element mesh also affects the numerical solution. For this
reason, it is essential to keep FE errors under control when assessing the effect
of material modelling. If models or sets of parameters are compared with a
given mesh (deemed “sufficiently fine” but with no objective measure of its
quality), the effect of FE discretization errors could be erroneously attributed
to the different material models.

The key ingredient of the adaptive strategy is the error estimator. We use a
residual-type error estimator first developed for linear problems in continua
[25] and later extended to other problems, such as local nonlinear models,
e.g. plasticity or visco-plasticity [23,26], nonlocal nonlinear models (nonlocal
damage [6]), or (linear and nonlinear) shells [27].

The focus here is in the two main issues of the problem under consideration:
nonlinearity and nonlocality. More details about the error estimator can be
found in the references just cited.

4.3.1 Error Estimation: Nonlinearity

Finite element discretization of the governing partial differential equation ren-
ders the algebraic nonlinear equilibrium equation

f int
H (uH) = f ext

H , (37)

where the unknown is the nodal displacement vector uH , f int
H (uH) is the vector

of nodal internal forces associated with uH and f ext
H is the discretized external

force term. Subscript H denotes that the working mesh has characteristic size
H.

The exact error of uH is defined as eexact
u

:= u − uH , where u is the exact
solution. Of course, eexact

u
cannot be computed because u is not available.

Instead, the error eexact
u

is approximated by the reference error eu := uh−uH ,
where uh is the finite element solution obtained with a finer mesh (h � H,
the approach considered here) or a higher-order interpolation:

f int
h (uh) = f ext

h . (38)

Note that (38) can also be expressed as

f int
h (uH + eu) = f ext

h . (39)

Computing eu (or, equivalently, uh) is computationally much more expensive
than computing uH , because it involves solving a much larger nonlinear sys-
tem of equations over a finer mesh, (38) or (39). For this reason, the basic
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Figure 13. Finite element of mesh H subdivided into 4× 4 elements of mesh h

idea of residual-type error estimators is to approximate eu by low-cost local
computations over subdomains.

The natural subdomains for local computations are the finite elements. For this
reason, the first phase of the error estimator consists on solving the nonlinear
system (39) locally inside each finite element of the working mesh (interior
estimate, see Table 6). To do so, each element Ωk of size H is meshed into
4 × 4 elements of size h, see Fig. 13. That it, the fine mesh h is nested into
the working mesh H, with h = H/4.

To avoid the expensive flux-splitting procedures of other residual-type error
estimators (required to prescribe Neumann boundary conditions for each local
problem), homogeneous Dirichlet boundary conditions for the error are pre-
scribed on the element boundary ∂Ωk (that is, uh = uH on ∂Ωk). This equality
is also set, over all the element Ωk, as the initial approximation. Once error
ek

elem is obtained, its squared energy norm (based on the SPD secant stiffness
matrix) is computed and added up into the global error estimate.

Of course, the error eu is not really zero along all element edges, as assumed
during the interior estimate. For this reason, a second set of local problems
is solved, over a different partition of the computational domain into subdo-
mains. A natural choice is to associate these subdomains, called patches, to
the nodes of the working mesh (patch estimate, see Table 7). If four-noded
quadrilateral elements are used, a patch consists of one-fourth of each element
sharing the node, see Fig. 14.

To compute the estimate e`
patch for patch Λ`, the same ideas discussed for

elements apply. Again, the boundary conditions and the initial approximation
for the local nonlinear problem over the patch consist in setting e`

patch to zero
over ∂Λ` and Λ` respectively. The only difference is that orthogonality between
patch estimate e`

patch and interior estimate eelem must be imposed, as discussed
next.

The total error in patch Λ` is the sum of the patch estimate e`
patch and the
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Table 6
Pseudocode for the first phase of the error estimation procedure. The interior es-
timate E is stored both locally (E(Ωk) for k = 1, 2, . . .) and globally (E(Ω) for the
whole domain Ω)

loop on elements k = 1, 2 . . .

• Build up local refined mesh for element Ωk

• Set trivial Dirichlet b.c. ek
elem = 0 on ∂Ωk

• Set initial approximation ek
elem = 0 in Ωk

• Solve iteratively local nonlinear problem

r(ek
elem) := f int

h (uH + ek
elem)|Ωk

− f ext
h |Ωk

= 0

• Compute squared local norm

E(Ωk) = (ek
elem)TKk

sec,he
k
elem

• Store error function: eelem ← eelem + ek
elem

• Upgrade global estimate: E(Ω)← E(Ω) + E(Ωk)

end loop

Interior estimate

Figure 14. Patch associated to a node of mesh H subdivided into 4× 4 elements of
mesh h

interior estimate restricted to the patch, e
Λ`

elem:

e
Λ`

total = e`
patch + e

Λ`

elem . (40)
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The squared norm of the total error is

EΛ`

total =(eΛ`

total)
TKk

sec,he
Λ`

total

= (e`
patch)

TKk
sec,he

`
patch︸ ︷︷ ︸

E(Λ`)

+ (eΛ`

elem)TKk
sec,he

Λ`

elem︸ ︷︷ ︸
E

Λ`
elem

+ 2(eΛ`

elem)TKk
sec,he

`
patch︸ ︷︷ ︸

0

.

(41)

Note that orthogonality between e
Λ`

elem and e`
patch (i.e. cancellation of the third

term in the RHS of (41)) is required so that the squared norm of the total
error can be obtained by adding the squared norms of the interior and patch
estimates.

The requirement (eΛ`

elem)TKk
sec,he

`
patch = 0 is a multi-point linear constraint on

e`
patch. For convenience, it can be expressed as

cTe`
patch = 0 with c = Kk

sec,he
Λ`

elem (42)

The linear constraint (42) can be imposed in a simple manner by means of
Lagrange multipliers, see [28]. It is also possible to use so-called transformation
methods, see references cited in [28].

The proposed two-phase approach for error estimation is summarized in Tables
6 7.

4.3.2 Error Estimation: Nonlocality

The proposed two-phase approach for error estimation consists basically in
solving two sequences of local nonlinear problems over subdomains (elements
and patches), see Tables 6 and 7. The material model, however, is nonlocal.
As a consequence, the internal forces f int must be carefully computed in order
to account for the nonlocal nature of the damage model [6].

The “natural” approach would be, see central column of Table 8, to obtain the
error in strains eεε from the error in displacements eu (in the corresponding
element or patch), compute the refined strains εεεh and the local state variable
Yh. The nonlocal average over the subdomain (element k or patch `), NLAsub,
then yields the nonlocal state variable Ỹh, which drives the damage parameter,
Dh. Finally, refined stresses σσh are computed.

Note that the nonlocal average that transforms Yh into Ỹh is over a local
support. This fact leads to non-physical responses, especially in zones of large
damage gradients. Assume, for instance, that the error in strains is small and
εεεh ≈ εεεH . A small variation in Ỹ is also expected (Ỹh ≈ ỸH). However, it
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Table 7
Pseudocode for the second phase of the error estimation procedure. The patch
estimate is used to improve the estimate both locally (E(Ωk) for k = 1, 2, . . .) and
globally (E(Ω) for the whole domain Ω)

loop on patches ` = 1, 2 . . .

• Build up local refined mesh for patch Λ`

• Set trivial Dirichlet b.c. e`
patch = 0 on ∂Λ`

+ orthogonality to eelem

• Set initial approximation e`
patch = 0 in Λ`

• Solve iteratively local nonlinear problem

r(e`
patch) := f int

h (uH + e`
patch)|Λ`

− f ext
h |Λ`

= 0

• Compute squared local norm

E(Λ`) = (e`
patch)

TK`
sec,he

`
patch

• Upgrade global estimate: E(Ω)← E(Ω) + E(Λ`)

• Upgrade local (element) estimate:

n`
over

= number of elements overlapping Λ`

for k such that Ωk ∩ Λ` 6= ∅
E(Ωk)← E(Ωk) + E(Λ`)/n

`
over

end loop

Patch estimate

may happen that Ỹh � ỸH , because Ỹh contains no information about nearby
zones.

This point is illustrated in Fig. 15, which depicts the local state variable, the
nonlocal state variable and the damage parameter for a given time increment
in a zone of the working mesh H with large gradients. The circled element
has a very small local state variable YH , see Fig. 15(a), below the threshold
Y0. However, since the elements to the right have large values of YH , it has
a relatively large (above Y0) nonlocal state variable ỸH , see Fig. 15(b), which
leads to damage, see Fig. 15(c). If the standard model is used to solve the
local problem on the circled element during error estimation, a small error
in strains leads to a small variation in the local state variable which, after
nonlocal averaging over the element, results in a low value of the nonlocal
state variable (that is, Ỹh � ỸH). As a consequence, damage cannot increase
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Table 8
Standard nonlocal damage model and model modified for error estimation. Note
the difference in the computation of the nonlocal state variable, steps 4 and 5

Standard model Model for error estimation

1. Error in displ. eu eu

2. Error in strains eεε = ∇s(eu) eεεε = ∇s(eu)

3. Strain εh = εH + eεε εh = εH + eεε

4. Local state var. Yh = Y (εεh) Yh ≈ YH +
∂Y

∂ε
(εεεH)eεε

︸ ︷︷ ︸
eY : Error in Y

5. Nonlocal state var. Ỹh = NLAsub(Yh) e
Ỹ

= NLAsub(eY ) ;

Ỹh = ỸH + e
Ỹ

6. Damage Dh = D(Ỹh) Dh = D(Ỹh)

7. Stresses σh = (1−Dh)C : εεh σh = (1−Dh)C : εh

in the circled element during error estimation. When estimating the error for
the circled element, the nonlocal state variable ỸH , rather than the local state
variable YH , is representative of its mechanical properties.

For this reason, the nonlocal damage model is slightly modified for error es-
timation, see right column in Table 8. The difference resides in the way the
nonlocal state variable Ỹh is computed. By means of a first-order Taylor ex-
pansion, the local state variable Yh is expressed as YH plus an error term eY .
Note that the derivatives ∂Y/∂εε needed for computing eY are also required for
the computation of the consistent tangent matrix, so they do not represent a
computational overhead of the modified model.

The error term eY is averaged over the element/patch into e
Ỹ
. As a conse-

quence, Ỹh is computed as the addition of a reference value ỸH , which describes
the real damaged stiffness, and an error term e

Ỹ
.

With this modified model, a small variation in strains does result in a small
variation in the nonlocal state variable (that is, Ỹh ≈ ỸH). Going back to Fig.
15, this means that the damage level of the circled element may either remain
constant (for Ỹh < ỸH) or increase (for Ỹh > ỸH) during error estimation.

To sum up: the standard model is not capable of capturing the spread of the
damaged zone associated to error estimation.
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where P(z) = {p0(z), p1(z), . . . , pn(z)}T contains a complete basis of the space
of polynomials of degree less or equal to n. The vector of coefficients c(x) is
obtained by a least squares fitting with the local scalar product

〈g, h〉x =
∫

Vx

α0(x− ξ)g(ξ)h(ξξ) dξ , (A.2)

centered at x and weighted with α0. The resulting normal equations are

M(x)c(x) = b(x) (A.3)

with
M(x) =

∫

Vx

α0(x− ξξ)P(ξξξ)PT (ξξξ) dξξ (A.4)

and
b(x) =

∫

Vx

α0(x− ξ)P(ξ)f(ξξ) dξξ . (A.5)

The smoothed function at x, f̃(x), is obtained by evaluating the local poly-
nomial approximation (A.1) at z = x, that is

f̃(x) = flc(z = x) = PT (x)c(x) . (A.6)

For n = 0 (consistency of order 0), (A.6) boils down to the standard nonlocal
averaging represented by (3) and (9). For n = 1 (consistency of order 1), (A.3)
is a linear system of dimension 2 to be solved at each node. This is done only
once, at the beginning of the computation, and coefficients c0(x) and c1(x)
are stored and reused throughout the analysis.
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[6] A. Rodŕıguez-Ferran, I. Arbós, A. Huerta, Adaptive analysis based on error
estimation for nonlocal damage models, Revue européene des éléments finis
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