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Strict error bounds for linear solid mechanics problems
using a subdomain-based flux-free method
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Abstract We discuss, in this paper, a flux-free method for
the computation of strict upper bounds of the energy norm of
the error in a Finite Element (FE) computation. The bounds
are strict in the sense that they refer to the difference between
the displacement computed on the FE mesh and the exact dis-
placement, solution of the continuous equations, rather than
to the difference between the displacements computed on two
FE meshes, one coarse and one refined. This method is based
on the resolution of a series of local problems on patches of
elements and does not require the resolution of a previous
problem of flux equilibration, as happens with other meth-
ods. The paper concentrates more specifically on linear solid
mechanics issues, and on the assessment of the energy norm
of the error, seen as a necessary tool for the estimation of
the error in arbitrary quantities of interest (linear functional
outputs). Applications in both 2D and 3D are presented.
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1 Introduction

In the past few decades, research and industry in the field of
mechanics have relied increasingly on computational tools.
The models and the resolution methods have grown increas-
ingly complex and their careful assessment has become
unavoidable. In particular, the error arising from the res-
olution of equations defined on a continuum by the finite
element (FE) method has to be estimated and controlled
(the so-called “verification” [1]). Hence, this paper describes
a technique for the estimation of bounds on the energy
norm of that error, in the particular setting of linear solid
mechanics.

This technique is an a posteriori error estimation method,
which means that it uses the output of the FE computation to
assess its accuracy. Three groups of techniques exist within
that general class (see [2] for amore detailed review, and [3,4]
for recent journal special issues on the subject): one based
on the so-called constitutive relation error, by Ladeveve and
co-workers (see for example [5]); another based on the com-
parison of the discontinuous stress field computed by the FE
method and aregularized version, following the leading work
of Zienkiewicz and Zhu [6]; and, finally, a large family of
methods, generically called implicit residual methods, which
are based on the (approximate) resolution of a residual error
equation on a series of small local problems with appropriate
boundary conditions (see for example [7-10], and compar-
isons between approaches in [11-13]). Among these meth-
ods, we distinguish between the hybrid-flux methods (also
called equilibrated residual methods), where the local prob-
lems are element-based, and the flux-free techniques [7,13—
18], where the subdomains are patches of elements. The
advantage of the latter is that the boundary conditions on
the local problems are trivial, and that they do not require
any flux equilibration. In this paper, we will concentrate on



this type of technique, and we will follow more particularly
the approach described in [13,19].

In most of these subdomain-based methods, although the
local error estimation problems are posed on smaller geomet-
rical spaces, the functional spaces involved are still infinite-
dimensional. The exact error is therefore usually estimated
as the solution of an alternate FE problem, posed on a much
larger space than the original FE computation. Hence, the
bounds computed are given with respect to a “refined” solu-
tion and are valid only asymptotically. However, it is much
more interesting, from an engineering point of view, to pro-
vide strict bounds, that is to say with respect to the exact error.
A dual formulation was proposed to attain that goal in the
context of hybrid-flux residual estimators [20,21], and was
later extended to the flux-free error estimators in the case of
transient convection-reaction-diffusion problems [22,23].

This paper describes the extension of these concepts for
the derivation of strict bounds of the energy norm of the error
in the case of linear solid mechanics problems in the flux-free
methodology. Further, specific aspects are discussed and two
strategies are investigated for the enhancement of the bounds.
Finally, the accuracy of the estimated bounds is shown on
several examples in both 2D and 3D problems.

2 Model problem and main notations
2.1 Model problem

We consider an elastic polygonal domain Q C R? (see
Fig. 1). The boundary, I'=09%, is divided into two
complementary disjoint parts I'® (I'® 3 @) and I'N, where
essential and Neumann boundary conditions are imposed,
respectively. The boundary value problem to be solved reads:
findu : Q — R, such that

Divyo(u) +f =0 inQ
onI'N | (1)

onI'P

o(u)-n=g

u=>0

g(x)
rN

FD

Fig. 1 Model of the problem on the domain 2, with internal loads f,
boundary forces g on I'N and blocked on I'P (leff); and corresponding
finite element triangulation 7 with two stars in darker tones, €2; and
Q;, corresponding to nodes x; and x ;, respectively (right)

where the internal force per unit volume f € [2#~1(Q)]¢
and the Neumann boundary tractions g € [2#~1/2(I'N)}¢
are given, 7% (/) is the standard «-Sobolev space over &7,
and n is the outgoing normal vector. €(v) and o (v) are the
strain and stress tensors related to a displacement field v.

We define ¥ = {v € [#1(Q)]9, vire = 0}, the space of
admissible fields, and the weak formulation of problem (1)
states: find u € ¥, such that

ag(u,v) =£(v), Vv eV, 2)

where agq is given by ag(w, v) = fQ o(w):e(v)dQ and £
by £(v) = [of - vdQ+ [~ g v~ dT. The bilinear form
agq (-, -) induces the definition of the energy norm by ||v ||g2 =
aq(v,v).

The Lax-Milgram theorem ensures that Eq. (2) has a
unique solution in ¥/, that we will denote uex. However this
solution is usually not available analytically, and we may use
the FE method to compute approximations of it.

2.2 Finite Element solution and residual error equation

We therefore introduce a triangulation, J, of 2, whose ele-
ments and vertices are denoted, respectively, {7} }1<;<n, and
{xi}1<i<n,, with N, and N, the number of elements and ver-
tices. We assume that the triangulation is such that '® and I'N
consist of entire faces (edges in 2D) of the elements of Z.
For reasons that will appear in the sequel (more specifically
for the solvability of some local problems during the com-
putation of the error bounds, see Sect. 4.2), the FE approxi-
mation space over this triangulation is taken to be quadratic,
thatis ¥y ={ve ¥, v, € [P2(Ti)14,1 < k < N,}, where
P, (Ty), n € N, is the space of polynomials of order at most
n over Tk.

The approximation of uey in ¥ is then denoted ug, and
defined as the unique solution of

ag(uy,v) =£€(v),Vve¥y. 3)

The goal of error estimation techniques is to obtain informa-
tion on the error e = uex — uy € 7. By linearity, this error
is the solution of

ag(e,v) = €(v) —aqg(uy,v) =: R(v), VveV’, 4)

where the residual R is such that R(v) = 0, Vv € #j.
However, the resolution of Eq. (4) is of the same com-
plexity as that of Eq. (2), because e and v are still both in
the same infinite-dimensional space ¥ . Therefore, we do
not try to solve the problem exactly for e, but rather look
for bounds on the energy norm of e, namely on |[uex —
uy "%z = ||e||§z = ag(e,e) = R(e). Such bounds give a
global idea of the error resulting from the approximation of
uex by ugy. Another approach, more interesting from an engi-
neering point of view, would consist in looking for bounds on



the error in certain quantities of interest, |.% (uex) — & (ug)|,
but it can be brought back, using a proper error represen-
tation [24-29], to that of estimating bounds for the energy
norm (for the original problem and a dual one) so that it will
not be discussed any further here.

For problems for which the exact solution is known, one
can evaluate the ability of a particular method to provide
accurate bounds of the energy norm by using a global effec-
tivity index n = [|€]q/|lellq, or its local equivalent n; =
llell 7 /llell7,- Both should be close to 1 when the method
provides accurate bounds. Further, since the estimates that
are discussed in this paper are strict upper bounds of the
energy norm of the exact error, we will always have n > 1,
but no equivalent property for the local 7.

2.3 Domain decomposition
Due to the discontinuity of the stress o (ug), the stress o (e)
is continuous within each element of the mesh and discon-

tinuous over the element interfaces, denoted I"'™. More spe-
cifically, that stress is in the functional space

yhok() = {0 ={oijh<i,j<dloij € H#°(Tp), ISkSNe} 5
and we define the jump of the traction vector as

on Q2
on Fint .

o1 -1y,
[ [a. Lo S
where the indices 1 and 2 refer to the elements on each side
of the interface.

Further in the paper, we will decompose the domain €2 in
patches of elements (see Figs. 1 and 2), called stars,
{Qi}1<i<n,, and defined by Q; = {UTi|x; € T¢). The star
Q;, centered on x;, is therefore the set of elements in con-
tact with the node x;. It should be noted that each element
is a member of several stars (namely the stars centered on
each of its vertices) so that the patches defined here overlap
one another. These stars appear in the derivation of our error
bounds because they are the support of the linear FE interpo-
lation functions {¢; (x)}1<i<n,, such that ¢; (x;) = §;;, and
>N ¢i(x) = 1, ¥x € Q. Note that N, denotes the number
of vertices of the mesh, rather than the number of nodes, and
that these numbers are equal only when using a linear FE
method. Note also that the functions ¢; do not necessarily
coincide with the functions used for the FE interpolation of
uy, but that they are in 7.

The next section describes the dual formulation introduced
to ensure the strict upper bound character of the error esti-
mate, and the following presents the actual computation of
this error bound by the flux-free methodology.

Fig. 2 Examples of stars on a triangular mesh (/eff) and a quadrilateral
one (right)

3 Strict bounds for the energy norm of the error

Following [20,21], strict bounds for the energy norm of the
error can be derived by using a dual formulation, so that we
start from the strong form of the error estimation problem
rather than from the weak form (4).

3.1 Strong form of the residual error equation

Since the stresses corresponding to the FE solution uy are
possibly discontinuous at the interface between the elements
of the mesh, while those corresponding to u.y are continuous,
the stresses corresponding to the error field e are possibly dis-
continuous. This has to be taken into account and yields the
following strong formulation of the error estimation problem,
with jumps in the stresses: find e € ¥/, such that

Divyo (e) 4+ (f + Divyo(ug)) =0 in Q
o(e) - n=(g—o(ug)-n) on N
[o(e)-n]l + [o(uy) -n] =0 on [int’
e=10 on I'P

Extending the definition of g to TN UT" ™ by setting g(x €
") = 0, and remembering the extended definition of the
jump operator [[-]] (Sect. 2.3), one gets the equivalent system
of equations:

Divyo(e) +fg =0 inQ .
[o(e)-n] =gy on Ny rint
e=10 on I'P

where fy = f + Divyo (uy) and gy = g — [[o(uy) - n] are
the equivalent loads for the residual error equation.

3.2 Dual formulation of the residual error equation

The dual formulation consists in introducing a new vari-
able (, representing a stress tensor in g;y(2) = {q €
L3(Q), Divyq < +00 on Ty, Ty € 2}, and verifying

Divyq+fy =0 in Q

[q-n]l =gy on 'Ny [int” ©)



This stress tensor q is said to be statically admissible, and
aims at representing the stress tensor arising from the error,
o (e), while relaxing the Dirichlet boundary condition e = 0.
We also define, for any stress tensor field g, the complemen-
tary energy as

1
nc(q)=§/q:(C_1:qu.
Q

As stated below, any such statically admissible stress tensor
provides an upper bound for the energy norm of the error.

Theorem 1 Let e € ¥ be a displacement error field, solu-
tion of Eq. (4), and q € 74, (2) a stress tensor, solution of
the system (5). Then, the latter provides a strict upper bound
for the energy norm of the former as:

lellg < 27c(a),
and the equality is reached for q = o (e).

Proof For any displacement field v € # cancelling on T'P,
a stress tensor q verifying the strong formulation (5) also
verifies

/q :e(v) = R(v).
Q

As this is the case for the error e solution of (4), it yields

/q :e(e) = R(e) = ag(e, e) = |le]%.
Q

On the other hand, the expansion of the complementary
energy 7.(q — o (e)), which is always positive, and cancels
for q = o (e), yields

0 < 27:(q — 0/ (e) = 27c(q) + [lel} — 2/q  e(e)d,
Q

where we used [,0(e): C71:qdQ = [,q: C ' : o(e)
dQ,and C~! : o(e) = e(e). The expected result is obtained
by comparison of the last two equations. O

This theorem provides a way of computing a strict upper
bound for ||e||é. However it remains to actually construct a
statically admissible stress tensor verifying the system (5). In
the form written here, the problem seems only slightly less
complex than that of computing directly the exact displace-
ment field uex, because it is posed on the entire domain €.
The next section presents the flux-free method, that allows to
replace the global problem (5) by a series of local problems
posed on small patches of elements.

4 Computation of strict bounds of the energy norm
of the error using the flux-free methodology

Different flux-free methodologies have been developed over
the years [7,13-18], all sharing the property that they some-
how make use of a set of functions verifying the partition

of unity property to replace the global problem (either sys-
tem (5) or a more classical corresponding primal problem)
by a set of smaller local problems. They differ by the type
of functions and the way in which they are introduced in the
equations, and we will here follow the method described in
[13,19].

4.1 The flux-free methodology

In this method, we use the classical linear FE interpolation
functions {¢; }1<i<n, as the set of partition of unity functions
and define the local problems as follows: for all vertices i,
1 <i < N,,findasecond-order stress tensor g’ € iy (),
such that

DiVXqi +¢ifg =0 in Q;

[[qi -n]l = ¢; gy on [ , (6)
qg-n=0 onI'° Nag;

where ['; is the set of all edges of the star €2;, both in its inte-
rior and on its boundary, excepted those that might fall on the
Dirichlet boundary I'°. The homogeneous Neumann bound-
ary condition on the original Dirichlet boundary is added in
order to ensure equilibrium of the loads on the star. Note that,
using the expanded definitions of f 7, g7 and [-]], and seeing
that ¢; cancels on BQ,-\(FN U D), the system (6) can also
be written

Divxq’ + ¢; (f + Divyo (uy)) =0 in Q;

[[qi ‘0]l = —¢;flo(uy) -nJ on I';\9€2;
g -n=¢(g—o(uy)- n) onI'NNaQ;’
qgd-n=0 on 3 \I'N

This expanded version of the local system to be solved in each
star is here presented to describe more precisely the differ-
ent types of boundary conditions that are actually enforced.
However, for an easier reading, the rest of the paper will be
based on the equations in their reduced form (6).

The flux-free methodology provides an upper bound for
the energy norm of the error by the conjunction of Theorem 1
and the following:

Theorem 2 Let {q'}1<;<n, be a family of stress tensors, in
FHiv(2;), where each member verifies the system (6) for a
star ;. Defining qg, 1 <i < Ny, as

i _[d® vxe;
Go(X) = [0 VX ¢ Q;°

the stress tensor Q, constructed as

is then a statically admissible stress tensor, solution of the
system (5).



Proof For any point X in the interior of an element 7}, by def-
inition of the q§2 (x), q(x) is obtained as the sum of the qi (%),
with an index running only on the vertices of that element.
Hence Divyq = > Divyq’ = — > ¢; fy = —fy, because
the ¢; form a partition of unity. Likewise, for x € rint §(x)
is the sum of the @/ (x), with an index running only on the
vertices of the side (segment in 2D or face in 3D),and -n =

>q n=>Y ¢ gy =gnu. O

Remark 1 The Neumann condition imposed on the Dirichlet
boundary of the original problem means that, besides veri-
fying the system (5), the stress tensor § will also verify q -
nro = 0. As q originally aimed at representing the stresses
arising from the error o (e), it should rather verify e;rp = 0,
and possibly o (e) - n;rp # 0. Hence, this condition is nec-
essary to impose the equilibrium of the local problems, but
is possibly detrimental to the quality of the estimation of the
error stress field. However, we will see, in the applications,
that it does not seem to deteriorate the quality of the error
bounds in a significant manner.

4.2 Solvability of the local problems

Provided that it can be constructed, the family of stress ten-
sors {Q'}1<i<w, described above provides a strict bound of
the energy norm of the error. However, the solvability of the
local problems (6) remains to be checked. It is given by the
following:

Theorem 3 Let uy be a FE solution of (3), at least qua-
dratic in the sense that the FE interpolation space Vg
contains at least all element-wise quadratic polynomials over
the domain 2:

Yy ={veV v € [P2(T)], 1 <k <N}

If the loads £ and g of the FE problem (3) are piecewise
polynomials, of order py and py, respectively,

felr e L@, [P, 0] 1 sk = N},
and
d
ge{g € L2092, g, € [Py, 020]" 1=k = V],

where Q2 = 02N dTy, then, for each star Qj, 1 <i < N,
there exists at least one stress tensor Q', piecewise polyno-
mial, solution of the system (6).

This theorem is similar to the one proved in [21, Appen-
dix A], but set on stars rather than on elements. Hence, we
will base our proof on the latter, and, before proceeding, we
recall it here, along with two useful lemmas.

Lemma 1 (Theorem 1 of [21]) For any given set of forcing
functions f|1, € [pr(Tk)]d and g1, € [Ppg(Tk)]d, equili-
brated in the sense that their equivalent force and moment
cancel, that is to say,

/fdQ+/ng =0, (7)
Tk

Ty
and
/xxfdQ+/xxng=O, (8)
Ty ATy

there exists at least one dual feasible solution q; € {q* =
{afh=i j=aloij € L*(T), 1 < k < Ne), verifying

in Ty

g -m=g, on dT}’

which is piecewise polynomial of degree p, with p > p, and
pP=>Dpf

I Divgqr +f =0,

Proof As indicated, this lemma is proved in [21, Appen-
dix A] and will not be derived here. However, it is important
to note that the proof requires the splitting of the element 7.
A triangular element is hence split into three, a quadrilateral
is split into four triangles, and a tetrahedron into four tetrahe-
dra, each time by adding a node in the center of the original
element. Also, the proof has formally been performed only
for 2D problems and should be, in a future work, extended
to 3D. O

The two following lemmas will allow us to use the previ-
ous one to prove Theorem 3.

Lemma 2 Letuy be a FE solution of (3), at least quadratic.
Then, for any star Q; of 2, 1 <i < N,, the system of loads
{dify, pign} is self-equilibrated in the sense that the result-
ing force and moment cancel, that is to say:

/¢ifHdQ+/¢ingF =0, )
Q; r;

and

/xx¢,-fHdQ+/xx¢,-ngF:O, (10)
Q; L

Proof We first examine the case of the resulting force. As
the functions ¢; are linear over each element of the mesh,
and we considered a quadratic FE interpolation space ¥,
any constant vector a would fall in #7, except that it does
not verify the Dirichlet boundary condition on I'°. Hence,
a modified version of Eq. (3) is verified for v = ¢;a, where
a term is added to account for the condition on I'P. We get,
using the fact that the support of ¢; is Q;, ¢; (x ¢ ;) =0,

/ o(up) : e(da) dS — / (o (up) - 1, dra)dT
Q; I‘Dﬂaﬁi

=/(f, ¢$ia)d + / (g, pia)dl’
Q;

'NNag;



Using the divergence theorem, accounting for the possible
discontinuity of the stresses o (ug) between the elements,
and observing that the terms on the Dirichlet boundary con-
dition cancel out, we get that

/(IIa(uH)-n]l,¢ia)df'—/(Divxa(un),¢ia)d9
ry; Q;

/ (g, dia)dT.

rNNag;

_ / (F, $ia)dQ +
Q

Recalling the definitions of fy and gy (Sect. 3.1), this
equation can be rewritten

(9/ ¢,~fHdQ,a) i (r/ ¢ingF,a) =0.

i
As this is true for any constant vector a, we get the expected
equation for the resulting force. The same reasoning leads to
the equilibration of the moments because, for any constant
vector a, the function ¢;a x x would be in ¥, be it for the Di-
richlet boundary condition, so that the modified (quadratic)
FE equilibrium gives

/ Fedbimsty il mendi— | (Phvortassy, Bmmenidt

T Qi
= / (f, pia x x)dQ2 + / (g, pia x x)dT".
Q; rNnag;

which leads to the expected result simply by using the rules
of the triple product (a, b x ¢) = (a x b, ¢), Va, b, c. O

Lemma 3 Let Q; = {U;(V;lTk} be a star, loaded by f <
[L2(2)) and g € [L%(T';)1%), equilibrated in the sense
of (9) and (10). Then, it is possible to construct a distri-
bution of loads on the boundary of each element (g} <
[L2(8Tk]d)}15k5/v,., such that f|7, and gj be equilibrated,
in the sense of (7) and (8), on each element, and

[g*l =g, onT;.

Proof The proof follows a rather classical technique, that is
described, for example, in [5, Section 8.3] for solid mechan-
ics problems, or in [2, Section 6.4] for scalar problems. We
recall here the main steps, in the case of one particular inte-
rior star, and send the reader to the above references for a
more general proof and details.

We consider an interior star (for which the central node
x; ¢ 0Q2) with three elements Ey, E5, and Ej3, exterior sides
FI,O, Fz’o, and F3‘0, oriented interfaces Fl'z, F2,3, and F3’1
(see Fig. 3, and loads g1 0, 22,0, £3,0, £1,2, 2.3, 3,1 on the
corresponding elements. We look for surface loads g*l" 2 g’l'" 3
g5 1> 82 3> 83 1» 83 o> Where the first subscript indicates the ele-
ment to which the loads refers, and the second the element

Fig. 3 Example of a star with the notations used in the proof of
Lemma 3

that the support interfaces connects to. These loads must ver-
ify local jump conditions:

gT'z = gi] =g1,2
83— 832 =823 (11
gé", = g?,3 = g3,1,
as well as the equilibrium on each element. For example, on
element E1, this leads to

[ @awar+ [ @hsoar+ [ omr
INF) i3 o

+/ (fig,,2)dQ2 =0,
E;

for any solid motion movement a. Equivalent equations can
be written for the other two elements, and, using the jump
conditions, this leads to a system of equations in the form

frl,z (gT.Z’ a)dl' + er,l (g;p a)dl' = £y(a)
frn,z (g1, )dT" + fr2'3 (g3 3,a)dl = {5(a) .
fFZ.S (ggﬁ’ a)dr + fF3,1 (g§.l’ a)dr — 83(3)

This system allows to compute the value of the moments
(the integrals) on the left hand side. Then, a distribution (for
example linear) is chosen for the value of g} ,, g3 3, and g3 |,
and the last three loads g3 |, g3 ,, and g] ; are derived using
Eq. (11). O

These three lemmas allow to prove Theorem 3 very easily.

Proof of Theorem 3 Indeed, Lemma 2 tells us that the loads
on the stars, as defined in system (6), are equilibrated. Hence,
Lemma 3 can be used to derive a surface load on the bound-
ary of each element that verifies the conditions required for
the application of Lemma 1. The latter gives us the desired
result directly.

It should be rightly noted that this theorem does imply that
the flux-free method described here cannot be used to derive
strict upper bounds for solid mechanics problems that have
been solved using linear FE interpolation functions. The rest
of this section now concentrates on implementation issues,
and, in particular, on the choice of one solution among all
the possible ones for each local problem (6).



4.3 Implementation and minimization strategies

We start this section with the derivation of the matrix sys-
tem corresponding to the system (6). Since it is under-deter-
mined, we then turn to the description of two possible ways
of choosing one among the possible solutions, and finally
discuss several implementation aspects of interest.

Derivation of the matrix system  We first choose the order of
the polynomial used for the representation of the stress tensor,
n, and introduce, for each star, the basis p' = {p;n}lgm_s No
of the (element-wise polynomial) stress tensor space {q' =
gjeli<je<a, gjom € Pu(Ti), T C R2;}. We then introduce
the vector Ql = [Qin] 1<m<N, Of coordinates of a stress ten-
sor in that basis as

&= 0o
m=1

Note that the number Ny of elements in the basis depends on
the number of dimensions d of the physical space, the degree
n chosen for the representation of ', as well as on the num-
ber of elements in the star. For example, for a 2D star of N,
elements, there are n(n 4 1)/2 elements in the polynomial
representation and d(d + 1)/2 independant components of
the (symmetric) stress tensor, so that Nog = nd(n + 1)(d +
)N, /4.

We then introduce bases for the divergence space,
that is a vectorial basis with a polynomial order n — 1, and
for the tractions on I'; and T'°. We denote these bases
Py = {Py_i mhi=m=n;, Pr = {Pr . }1<m=n,, and pj, =
{p"Dym}Kmf N3, Tespectively. Considering the same example
as above, we would have N1 = nd(n — 1)N,/2, N> = ndN;
and N3 = ndNp, with N; and Np the number of sides in I';
and I'P, respectively. The matrix enforcing the divergence
D = [Dj], and those for the tractions N! = [N]!e] and

N2 = [N]Ze] are then defined as
Dje=— [ (B} ;s Divxp))d <, 1<j<Ni, 1<L<No,

Q

N}e=—/ (pinj,[[p; -n])dl, 1<j<N,, 1< < Ny,
T

and
Nfg=—/(p",),j,p2-n)dr,1sjsN3, 1 << No.
r;

Finally, we introduce the vectors of coordinates F and G
of ¢ify and ¢;gy in the bases p,_, and pr., respectively.

The system (6) can then be written in the following matrix
form

D F
N'|[Q]=]|6G
N2 0

However, this system is, in general, under determined, and
a decision must be taken as to which of the possible solutions
should be selected. We study here two possibilities, both aim-
ing at minimizing the global complementary energy (associ-
ated with §) by minimizing the local complementary energy
(associated with the q'). Indeed, all possible solutions of sys-
tem (6) provide a strict upper bound for the energy norm of
the error through their complementary energy (Theorem 1),
so that the ideal choice, for a given order of the polynomial
describing the qi , would therefore be that which minimizes
the complementary energy 7. (q = ZlN:L 1 9. This § with the
minimum complementary energy is the one that will provide
the sharpest bound.

Minimization without accumulation The first natural pro-
posal is therefore to find the g’ as the solution of the following
minimization problem:

q' = arg min 7.(q'),
q[

under the constraint that the §' be solutions of the system (6).
This can be enforced through the use of a lagrangian
approach. In view of the constraints, we therefore introduce
three dual functions A1, A, and A3, and define the lagrangian
of the minimization problem as:

1 . . .
c$=§/¢:CAWQ—/ath¢+@me
Q Qi

—/(Xz,llﬁi ‘0]l —¢ign)dl' — / (A3, - m)dT.
i

rPRag;

The matrix equations for the system are then derived by can-
celling the functional derivatives of that lagrangian ., with
respectto @', A1, A2 and A3, and projecting the corresponding
equations in appropriate bases.

We therefore introduce the mass matrix M= [M ;1< je<ny,
as the projection in the basis p’ of the complementary energy
operator,

1 ‘ ‘
Mﬂzz/m:CmWQISLESM,
Q;

and the vectors L1, Ly, and L3 of the coordinates of A, Ap,
and A3 in the bases p,_,, pr-, and p%,. The matrix system that



will be solved in each star therefore takes the form:

M DT NlT N2T Q 0
D Li| |F
N 0 L|-|c (12)
N2 L; 0

Minimization with accumulation However, although the qi
all minimize locally the complementary energy on their star
Q;, there is no certainty that § = Z,N:LI g’ will globally
minimize the complementary energy on 2. Hence, we pro-
pose an alternative approach, where all the information that
was already computed is used for the minimization. For the
first stars that are considered, this process is equivalent to
the previous one. However, towards the end of the compu-
tation, when most of the stars have been computed already,
this method will actually provide the solution that, given all
that was already computed, gives the global minimum for
the complementary energy of §. Note that this means that the
order in which the stars are computed will have an impact on
the result of the computation. Also, there is no security that
the results computed in this manner are better than the ones
computed with the previous one. However, we will see in the
examples in the next section, that the order variability can
actually be used to one’s advantage, and that this technique
does indeed provide very good results.

We therefore choose an order for the computation and
number the stars accordingly 1 < i < N,. When considering
the star €2;, the local problems on the stars Q2;, 1 < j < i
have already been solved, and the corresponding g/ com-
puted. We then change the previous minimization problem
by the following one:

i—1
q' =argminz, (G + > g/ |. (13)
gl ;
j=1

under the same constraints as earlier. The system (12) is then
modified in the following way:

M DT NlT N2T Q —MQ*
D Li| | F
N 0 L| | G
N2 L3 0

where the vector Q* holds the coordinates, in the basis p(£2;),
of the stress field obtained from the stars that have already
been computed before €2;.

Elements refinement  Inthe proof of the existence of a stress
tensor verifying the system (6) (Proof of Theorem 3), each
element has to be splitted such that two sides of the original
element pertain to different elements of the new mesh. Hence
triangles are splitted into three new triangles and quadrilat-
erals into four quadrilaterals, each time by creating a new

node in the interior of the polygon. We chose here to create
the new node at the barycenter of the nodes of the element
considered. Note that this refinement can be performed at
a global level, and once only at the beginning of the com-
putation, since the same element in two different stars has
to be splitted each time in the same manner. Note also that
this refinement operation is computationally inexpensive but
that the cost of the resolution of each local problem (6) rises
because the number of elements in each star is larger.

Order of the polynomials The proof of Theorem 3 also
indicates that there is a minimal polynomial degree for the
stress tensor required to prove its existence, but any higher
order polynomial is also valid. Limited numerical experi-
ments were performed and seem to indicate that there is, in
most cases, an improvement of the effectivity index when
using higher order polynomials. However, this has a very
important cost because the number of terms in the polyno-
mial basis increases very rapidly with the polynomial order
(in 2D, the second-order basis includes the terms 1, x, y, x2,
xy and y?, while the third-order basis also includes the terms
x3, x2 v, xy2 and y3; in 3D, the second-order basis includes
the terms 1, x, y, z, x2, Xy, yz, xz, yz and 72, while the
third-order one is twice as large with the terms x>, x2y, xy?,
y3, x2z, xyz, yzz, xz2, yzz, z3). The computational cost of
the resolution of the systems (6) rises then very rapidly and
the improvement of the effectivity index does not seem to
balance the cost. In all the applications shown in the next
section, the minimum order (quadratic polynomials for the
stresses) is always used.

Parallelization The fact that the local problems are inde-
pendent has two advantages: firstly, the computation can be
performed very easily on several computers in parallel, and
secondly the global computational cost increases only line-
arly with the number of nodes. Indeed, using the commercial
code Cast3m [30] for the FE computations and a Matlab [31]
implementation for the error estimation (that could probably
be optimized), the tests that we ran indicate that the cost of
the error estimation is equivalent to that of the FE computa-
tion for a few thousand nodes, and becomes lower for larger
computations. Note that when running the error estimation
in parallel, either the previous minimization strategy has to
be limited to the stars that are actually computed on the local
CPU, or some communication between the nodes has to be
implemented.

5 Applications
To illustrate the accuracy of the upper bounds developed in

this paper, we chose three examples of application: a 2D per-
forated square plate in plane stress, a 2D gravity dam in plane
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Fig. 4 Model of a quarter part of the perforated square plate

strain, and finally a 3D carabiner. All FE computations are
performed using Cast3m [30], and the upper bound compu-
tation, using the flux-free method, is implemented in Matlab

[31].

5.1 2D perforated square plate in plane stress

The first example that will be considered here is that of a thin
square plate with rectangular holes in 2D plane stress. That
plate is loaded on the left and right sides by a unit normal
traction. The problem is therefore symmetric both in the hor-
izontal and vertical directions so that only a quarter of the
plate is actually modeled, with appropriate boundary condi-
tions (see Fig. 4). The Young’s modulus and the Poisson’s
ratio of the plate are taken as E = 1 N/m? and v = 0.3.
Due to the geometry, the solution of this problem is expected
to show singularities in the corners of the interior hole, and
the numerical errors to be concentrated there. Note that the
same problem was already considered in several papers by
various authors [13,19,21,32,33]. We will study here the val-
ues of the effectivity indices computed on different meshes,
investigate the possibility of using the upper bound of the
error to drive an adaptive process, by looking in particular
at the maps of local effectivity indices, and comment on the
different optimization strategies discussed in Sect. 4.3.

The first mesh that has been considered for this problem
is the one on the left in Fig. 5, and is the same as the one
used by some of the authors in the references above. The
exact value of the displacement field for this problem is not
known but can be computed accurately by considering an
‘overkill’ mesh, that is to say an extremely refined mesh. The
displacement field on the crude mesh is then interpolated on
the refined one to yield the value of the error and hence its
energy norm, either globally or in each element of the crude
mesh. As an example, the distribution of the energy norm of
the exact error | e|| g for two different meshes is presented in

0 0

Fig. 5 Two embedded FE meshes with maps of the exact energy norm
of the error

Fig. 5. As expected it shows a very strong localization of the
error around the corners of the hole.

Following the ideas presented in this paper, and first per-
forming independent minimization on each star, the compu-
tation of the upper bound of the energy norm of the error
yields a global effectivity index of n = 1.066 for this first
mesh. As it should be as close as possible to 1, and will always
remain larger because of the upper bound property, this result
is excellent. When using, on the other hand, the accumulation
strategy presented in Eq. (13), the order in which the stars
are solved becomes important, so that different effectivity
indices can be found for the same mesh. We investigate this
effect by computing 10,000 times the effectivity index for the
same mesh, but changing randomly the order in which the
stars are solved. The results are plotted (in light grey shade)
as a histogram in Fig. 6. As can be observed by comparison
with the value computed without accumulation (the black
dot on the figure), the value of the effectivity index is almost
always lower with the accumulation strategy (about 10 cases
out of 10,000 yeld higher effectivity indices, but the values
are almost equal to the case without accumulation and are
hidden below the dot in the figure). Further, we perform two
more series of experiments: on the one hand, 10,000 trials
with a random ordering, but always starting by the star with
the highest error (the lowest corner of the hole in the plate,
see Fig. 5), and on the other hand, 10,000 trials with a ran-
dom ordering, but always starting by the two stars with the
highest errors (both corners of the hole). The results are also
plotted on Fig. 6, and show that substantial improvements of
the effectivity index can be obtained by performing accumu-
lation starting by the stars that ultimately participate the most
in the computation of the upper bound 27.(q = an=Dl qd).
However, note that this can be only used when we have a
knowledge a priori of the location of these stars. This may
be the case for problems with strong singularities, as is the
case here, and in the next problem, but is not true in gen-
eral. However, in general cases, the accumulation strategy
does seem advisable, because it always appears to lower the
global effectivity index.
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Fig. 9 Distribution maps of a the upper bound, computed using the
flux-free method, and b the exact energy norm of the error, computed
using an ‘overkill’ mesh; and ¢ histograms of the local effectivity indi-
ces. The indices of the four elements with the largest error, summing up
to 75% of the total error, are indicated by black dots on the histograms.
The upper left figures are zooms in the black box on the mesh in Fig. 8b,
and the upper right figures are zooms on the white box on the mesh in
Fig. 8c

For two meshes (Fig. 8b and c, respectively), we plot
in Fig. 9 (left and right sides, respectively) the local upper
bound maps and compare them with the exact error distri-
butions. Although the upper bound property is only ensured
at the global level, we observe that the distribution of upper
bounds is very close to that of the exact error. This is fur-
ther shown by plotting the histogram of the local effectivity
indices for all elements. It shows a strong clustering, in both
cases, a little below 1. However, note that the four main ele-
ments, that participate to 75% of the total energy norm of
the error (all located around the corners of the hole), all have
local effectivity indices above 1 (black dots in the figure).
All in all, it seems that the method, at least for this problem
with strong singularities, predicts local error slightly below
the exact value, while balancing this at the global level by
slightly overestimating it for the elements close to the singu-
larity.

1"

Fig. 10 Model of the gravity dam

5.2 2D gravity dam in plane strain

We then turn to a more elaborate problem, of a 2D gravity
dam in plane strain, described in Fig. 10. The model, already
used in [6], consists of a dam, with a hole representing a gal-
lery, and loaded both by gravity and a hydrostatic pressure
where the water would stand. That last load is approximated
by a triangular horizontal load on the (almost) vertical face
of the dam (starting at O on top of the face, and rising with
depth) and a vertical load on the soil standing beneath the
reservoir. The boundary conditions below the soil are split
into rolling conditions on the left and right sides, and homo-
geneous Dirichlet condition on the bottom. This model for
the boundary conditions therefore allows some degree of set-
tlement of the dam. The Young’s modulus and Poisson ratio
are taken as E = 10GPa and v = 0.2. The total length of
the model is L = 28 m, for a height of H = 16 m from the
highest point to the lowest.

The main differences with the previous problem are the
complexity of the geometry (several singularity points and a
curved boundary), the complexity of the loads (besides the
constant surface load as before, a triangular surface load and
a volume load), and finally the strong Dirichlet condition on
the bottom. We particularly expect the Dirichlet condition on
such a large part of the boundary to hinder the quality of our
upper bounds since the statically admissible stress tensor field
that we estimate will verify a homogeneous Neumann condi-
tion on this surface. Further, note that, theoretically speaking,
the upper bound property is only valid for piecewise linear
boundaries, which is not the case here. However, the overkill
meshes will be computed here as refinements of the current
one, so that our bounds will indeed be upper bounds with
respect to the overkill solutions.

We study here the same issues as in the previous example:
quality of the global effectivity index depending on the opti-
mization strategy, rate of convergence of the upper bound
in comparison with that of the exact error, and, finally, qual-
ity of the local effectivity indices and adaptive process
driving.
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Fig. 11 Influence of the minimization strategy on the global effectivity
index: histograms of the effectivity indices obtained using the accumu-
lation strategy with random ordering of the stars (light grey shade),
and starting with the stars at the geometrical discontinuities (dark grey
shade); and value obtained without accumulation (black dot)

We first plot a histogram of the effectivity indices com-
puted for 10,000 trials (the mesh is that of Fig. 13a), using
the accumulation strategy and a random ordering of the stars
(see Fig. 11, light grey bars) and compare it with the value
obtained without accumulation (black dot on the same fig-
ure). As before, the values obtained with accumulation are
almost always better than that obtained without accumula-
tion, and when not, they are so close that are hidden on the
graph below the black dot. It is interesting to see here that
the histogram is bi-modal. By computing, for each star, the
correlation (not shown here) between their ranking in the res-
olution and the value of the effectivity index obtained, it is
observed that correlation is extremely high (in negative) for
the star in the left corner of the interior gallery and extremely
high (in positive) for one just next to it. Further, these values
are much higher than for any other star. Hence, it can be con-
cluded that getting an effectivity index in one side or the other
of the histogram is mainly driven by the respective ranks of
these two stars: taking the star in the corner before means a
better effectivity index. We also plot the histogram obtained
for 10,000 trials on the same mesh, with accumulation and
a random ordering of the stars, but always starting with the
star in the left corner of the gallery. As before, the effectivity
index is then much better in all trials.

We then study the rate of convergence of the upper bound
for a series of homogeneously refined meshes. The first mesh
is that of Fig. 13a. Contrarily to the previous example, we do
not consider here embedded meshes. Indeed, the geometry
of the curved boundary is not well interpolated on that first
mesh, and this issue would stick for all meshes derived from
it. We therefore used again the meshing program EZ4U, that
time asking for a constant element size throughout the mesh.
The global effectivity indices obtained for the six meshes
considered range from n = 1.15 to n = 1.35. These values
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are higher than in the previous example, mainly due to the
large Dirichlet boundary condition in the bottom. A prelim-
inary correlation study between the rank of the stars on that
boundary and the value of the effectivity index seems to indi-
cate the presence of some kind of pattern between the rank
of the stars at the singularity points on the Dirichlet bound-
ary condition and their neighbors. However, a more complete
study would be required to draw more definite conclusions
and possible strategies for improvement of the effectivity
index. In any case, the values obtained here are already highly
satisfactory.

Finally, we consider the possibility to drive an adaptive
refinement process using the upper bound. With the same
meshing software as before, and providing local size maps
as indicated for the previous example (with an additional
smoothing step that is not relevant here), we obtain a series
of refined meshes, some of which are plotted in Fig. 13. The
global effectivity indices for these meshes also range from
n = 1.15 to n = 1.35. Note that, in the last mesh, there
seems to be unrelevant refinements around the singularities
at the bottom of the domain. This is a consequence of the
homogeneous Neumann boundary condition satisfied by our
estimated stress field at the Dirichlet boundary conditions
of the original problem. We therefore get error estimates at
these locations that are slightly overestimated, and are there-
fore refined. Finally, we plot, in Fig. 14, the local maps of
the upper bound, next to local maps for the energy norm of
the error obtained with the corresponding overkill mesh, as
well as the histogram of the local effectivity indices. The con-
clusion is essentially the same as for the previous example:
the local effectivity indices seem to be overestimated for the
elements with the highest participation in the global effec-
tivity index, and slightly underestimated for the others. As
shown by the rate of convergence obtained using the adapted
meshes (Fig. 12), the upper bound seems to be adequate to
drive an adaptive process.

5.3 3D carabiner

Finally, we discuss results obtained for a 3D carabiner model.
We consider the material to be aluminium with Young’s mod-
ulus E = 70 GPa and Poisson ratio v = 0.3. The load is a
surface load representing the pull of a rope on each side of
the carabiner (see Fig. 15) or the loads taking place during
an axial stress test. The total force acting on each side is
F = 20 kN, which is a standard value for the design of such
device. The forces acting on each side are equilibrated so that
we do not impose any Dirichlet boundary condition and the
displacement is defined but for a rigid body motion.

The mesh we consider here has 22908 DOFs (note that
the reason for not considering larger meshes is that overkill
computations would then not be possible). The global effec-
tivity index for this mesh is very low, n = 1.06. However,
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Fig. 12 Convergence of the energy norm of the error with the number
of DOFs for a uniform refinement of the mesh (dashed line and crosses)
and an adaptive refinement (solid line and circles)

the authors believe, as was the case in 2D problems, that this
effectivity index might increase slightly for problems with
strong Dirichlet boundary conditions. The maps of the local
upper bounds and energy norm of the exact error (relative
values) are then presented on Fig. 16. They show an excel-
lent adequacy between the local estimate and exact value of
the energy norm of the error for this problem. Therefore, the
flux-free method seems to be, in 3D, an adequate possibility
for the driving of adaptive mesh refinement schemes, as was
already shown in 2D. The histograms showing the ratio, for
each element, of the upper bound on the exact error, are also
very good, although they seem slightly more widespred than
their counterpart in 2D. Note, however, that there is no sin-
gularity in this problem. More study will therefore be needed
to evaluate whether the spreading around the mean value for
that ratio is due to the dimensionality of the problem or to
the singularities in the problem. Further, a large clustering of
low values of the ratio can be observed. By comparison of the
dark and light grey bars, this clustering is seen to originate
from elements for which the error is extremely low (lower
than 0.01% of the maximum local value of the exact error),
and therefore to be of no importance. As in 2D, we observe
here a tendency of the method to slightly underestimate the
local effectivity indices for elements with little weight in the
evaluation of the global effectivity index and to slightly over-
estimate those with more importance (see the black dots on
Fig. 16).

6 Conclusion

In this paper, we presented a flux-free method for the deriva-
tion of strict upper bounds for the energy norm of the error
between a FE solution and the exact solution, in linear solid
mechanics problems. The computation of the bounds are per-
formed locally on patches of elements, and do not require a
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Fig. 13 Sequence of adapted meshes. The errors indicated are the rel-
ative energy norms of the exact error and the white box in mesh b cor-
responds to the zoom in Fig. 14. a 2,248 DOFs, error: 6.25%, b 6,044
DOFs, error: 2.48%, ¢ 16,048 DOFs, error: 1.02%, d 32,892 DOFs,
error: 0.55%

previous step of global flux equilibration. The bounds were
shown on several examples to be very sharp, and some ways
of improving them were discussed, in particular by perform-
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Fig. 14 Distribution maps of a the upper bound, computed using the
flux-free method, and b the exact energy norm of the error, computed
using an ‘overkill’ mesh; and ¢ histograms of the local effectivity indi-
ces. The indices of the four elements with the largest error, summing up
to 50% of the total error, are indicated by black dots on the histograms.
The mesh figures are zooms in the white box on the mesh in Fig. 13c

Fig. 15 Model of the carabiner: the arrows indicate the location and
direction of the loads

ing accumulation during the minimization, and starting the
process by the stars centered on a singularity when it is
known. It is also possible the increase the order of the poly-
nomial used to represent the admissible stress field, but this
increases the cost of the method disproportionally.

The main limitation of the method we proposed is the
requirement to compute the FE solution using quadratic inter-
polation functions, so as to ensure the equilibration of the
loads for the local problems in the error estimation. As dis-
cussed, the presence of a large Dirichlet boundary condition
seems to decrease slightly the sharpness of the upper bound,
and this should be investigated further. It should also be noted
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Fig. 16 Distribution maps of a the upper bound, computed using the
flux-free method, and b the exact energy norm of the error, computed
using an ‘overkill’ mesh; and ¢ histograms of the local effectivity indi-
ces, considering all elements (dark grey bars) or only those for which
the exact error is superior to le-4 times the maximum local exact error
(light grey bars). The indices of the ten elements with the largest error,
summing up to 35% of the total error, are indicated by black dots on
the histograms

that, theoretically speaking, the strict upper bound property
is true only when considering a boundary which is piece-
wise-linear.



In the course of this paper, we have shown how to con-
struct a stress field g which is statically admissible in 2 in the
sense that it equilibrates exactly all the loads. However, we
use here only its complementary energy to yield the desired
upper bound. A very promising alternative use of this stati-
cally admissible field is to derive strict bounds in the context
of nonlinear solid mechanics, using the works of Ladeveve
and coworkers [34,35]. This will be the object of a forthcom-

ing paper.
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