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Abstract We discuss, in this paper, a flux-free method for
the computation of strict upper bounds of the energy norm of
the error in a Finite Element (FE) computation. The bounds
are strict in the sense that they refer to the difference between
the displacement computed on the FEmesh and the exact dis-
placement, solution of the continuous equations, rather than
to the difference between the displacements computed on two
FEmeshes, one coarse and one refined. This method is based
on the resolution of a series of local problems on patches of
elements and does not require the resolution of a previous
problem of flux equilibration, as happens with other meth-
ods. The paper concentrates more specifically on linear solid
mechanics issues, and on the assessment of the energy norm
of the error, seen as a necessary tool for the estimation of
the error in arbitrary quantities of interest (linear functional
outputs). Applications in both 2D and 3D are presented.
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1 Introduction

In the past few decades, research and industry in the field of
mechanics have relied increasingly on computational tools.
The models and the resolution methods have grown increas-
ingly complex and their careful assessment has become
unavoidable. In particular, the error arising from the res-
olution of equations defined on a continuum by the finite
element (FE) method has to be estimated and controlled
(the so-called “verification” [1]). Hence, this paper describes
a technique for the estimation of bounds on the energy
norm of that error, in the particular setting of linear solid
mechanics.
This technique is an a posteriori error estimation method,

which means that it uses the output of the FE computation to
assess its accuracy. Three groups of techniques exist within
that general class (see [2] for amore detailed review, and [3,4]
for recent journal special issues on the subject): one based
on the so-called constitutive relation error, by Ladevève and
co-workers (see for example [5]); another based on the com-
parison of the discontinuous stress field computed by the FE
method and a regularized version, following the leadingwork
of Zienkiewicz and Zhu [6]; and, finally, a large family of
methods, generically called implicit residual methods, which
are based on the (approximate) resolution of a residual error
equation on a series of small local problems with appropriate
boundary conditions (see for example [7–10], and compar-
isons between approaches in [11–13]). Among these meth-
ods, we distinguish between the hybrid-flux methods (also
called equilibrated residual methods), where the local prob-
lems are element-based, and the flux-free techniques [7,13–
18], where the subdomains are patches of elements. The
advantage of the latter is that the boundary conditions on
the local problems are trivial, and that they do not require
any flux equilibration. In this paper, we will concentrate on
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This stress tensor q is said to be statically admissible, and
aims at representing the stress tensor arising from the error,
σ(e), while relaxing the Dirichlet boundary condition e = 0.
We also define, for any stress tensor field q, the complemen-
tary energy as

πc(q) = 1

2

∫
�

q : C−1 : q d�.

As stated below, any such statically admissible stress tensor
provides an upper bound for the energy norm of the error.

Theorem 1 Let e ∈ V be a displacement error field, solu-
tion of Eq. (4), and q ∈ H div(�) a stress tensor, solution of
the system (5). Then, the latter provides a strict upper bound
for the energy norm of the former as:

‖e‖2� ≤ 2πc(q),

and the equality is reached for q = σ(e).

Proof For any displacement field v ∈ V cancelling on �D,
a stress tensor q verifying the strong formulation (5) also
verifies∫
�

q : ε(v) = R(v).

As this is the case for the error e solution of (4), it yields∫
�

q : ε(e) = R(e) = a�(e, e) = ‖e‖2�.

On the other hand, the expansion of the complementary
energy πc(q − σ(e)), which is always positive, and cancels
for q = σ(e), yields

0 ≤ 2πc(q− σ(e)) = 2πc(q)+ ‖e‖2� − 2
∫
�

q : ε(e)d�,

where we used
∫
�

σ(e) : C−1 : qd� = ∫
�

q : C
−1 : σ(e)

d�, and C
−1 : σ(e) = ε(e). The expected result is obtained

by comparison of the last two equations. �

This theorem provides a way of computing a strict upper

bound for ‖e‖2�. However it remains to actually construct a
statically admissible stress tensor verifying the system (5). In
the form written here, the problem seems only slightly less
complex than that of computing directly the exact displace-
ment field uex, because it is posed on the entire domain �.
The next section presents the flux-free method, that allows to
replace the global problem (5) by a series of local problems
posed on small patches of elements.

4 Computation of strict bounds of the energy norm
of the error using the flux-free methodology

Different flux-free methodologies have been developed over
the years [7,13–18], all sharing the property that they some-
how make use of a set of functions verifying the partition

of unity property to replace the global problem (either sys-
tem (5) or a more classical corresponding primal problem)
by a set of smaller local problems. They differ by the type
of functions and the way in which they are introduced in the
equations, and we will here follow the method described in
[13,19].

4.1 The flux-free methodology

In this method, we use the classical linear FE interpolation
functions {φi }1≤i≤Nv as the set of partition of unity functions
and define the local problems as follows: for all vertices i ,
1 ≤ i ≤ Nv , find a second-order stress tensorqi ∈Hdiv(�i ),
such that⎧⎨
⎩
Divxqi + φi f H = 0 in �i

[[qi · n]] = φi gH on �i

qi · n = 0 on �D ∩ ∂�i

, (6)

where �i is the set of all edges of the star�i , both in its inte-
rior and on its boundary, excepted those that might fall on the
Dirichlet boundary �D. The homogeneous Neumann bound-
ary condition on the original Dirichlet boundary is added in
order to ensure equilibrium of the loads on the star. Note that,
using the expanded definitions of f H , gH and [[·]], and seeing
that φi cancels on ∂�i\(�N ∪ �D), the system (6) can also
be written⎧⎪⎪⎨
⎪⎪⎩

Divxqi + φi (f + Divxσ(uH )) = 0 in �i

[[qi · n]] = −φi [[σ(uH ) · n]] on �i\∂�i

qi · n = φi (g − σ(uH ) · n) on �N ∩ ∂�i

qi · n = 0 on ∂�i\�N
.

This expanded version of the local system to be solved in each
star is here presented to describe more precisely the differ-
ent types of boundary conditions that are actually enforced.
However, for an easier reading, the rest of the paper will be
based on the equations in their reduced form (6).
The flux-free methodology provides an upper bound for

the energy norm of the error by the conjunction of Theorem 1
and the following:

Theorem 2 Let {qi }1≤i≤Nv be a family of stress tensors, in
Hdiv(�i ), where each member verifies the system (6) for a
star �i . Defining qi

�, 1 ≤ i ≤ Nv , as

qi
�(x) =

{
qi (x) ∀x ∈ �i

0 ∀x /∈ �i
,

the stress tensor q̂, constructed as

q̂ =
Nv∑

i=1
qi

�,

is then a statically admissible stress tensor, solution of the
system (5).
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Proof For any point x in the interior of an element Tk , by def-
inition of the qi

�(x), q̂(x) is obtained as the sum of the qi (x),
with an index running only on the vertices of that element.
Hence Divxq̂ = ∑

Divxqi = −∑
φi f H = −f H , because

the φi form a partition of unity. Likewise, for x ∈ �int, q̂(x)

is the sum of the qi (x), with an index running only on the
vertices of the side (segment in 2D or face in 3D), and q̂ ·n =∑

qi · n =∑
φi gH = gH . �


Remark 1 The Neumann condition imposed on the Dirichlet
boundary of the original problem means that, besides veri-
fying the system (5), the stress tensor q̂ will also verify q̂ ·
n|�D = 0. As q̂ originally aimed at representing the stresses
arising from the error σ(e), it should rather verify e|�D = 0,
and possibly σ(e) · n|�D �= 0. Hence, this condition is nec-
essary to impose the equilibrium of the local problems, but
is possibly detrimental to the quality of the estimation of the
error stress field. However, we will see, in the applications,
that it does not seem to deteriorate the quality of the error
bounds in a significant manner.

4.2 Solvability of the local problems

Provided that it can be constructed, the family of stress ten-
sors {qi }1≤i≤Nv described above provides a strict bound of
the energy norm of the error. However, the solvability of the
local problems (6) remains to be checked. It is given by the
following:

Theorem 3 Let uH be a FE solution of (3), at least qua-
dratic in the sense that the FE interpolation space VH

contains at least all element-wise quadratic polynomials over
the domain �:

VH = {v ∈ V , v|Tk ∈ [P2(Tk)]
d , 1 ≤ k ≤ Ne}.

If the loads f and g of the FE problem (3) are piecewise
polynomials, of order p f and pg, respectively,

f ∈
{
f∗ ∈ L2(�), f∗|Tk

∈ [
Pp f (Tk)

]d
, 1 ≤ k ≤ Ne

}
,

and

g ∈
{
g∗ ∈ L2(∂�), g∗|∂�k

∈ [
Ppg (∂�k)

]d
, 1 ≤ k ≤ Ne

}
,

where ∂�k = ∂�∩ ∂Tk, then, for each star �i , 1 ≤ i ≤ Nv ,
there exists at least one stress tensor qi , piecewise polyno-
mial, solution of the system (6).

This theorem is similar to the one proved in [21, Appen-
dix A], but set on stars rather than on elements. Hence, we
will base our proof on the latter, and, before proceeding, we
recall it here, along with two useful lemmas.

Lemma 1 (Theorem 1 of [21]) For any given set of forcing
functions f |Tk ∈ [Pp f (Tk)]d and g|Tk ∈ [Ppg (Tk)]d , equili-
brated in the sense that their equivalent force and moment
cancel, that is to say,

∫
Tk

fd�+
∫

∂Tk

gd� = 0, (7)

and∫
Tk

x × fd�+
∫

∂Tk

x × gd� = 0, (8)

there exists at least one dual feasible solution qk ∈ {q∗ =
{q∗i j }1≤i, j≤d |σi j ∈ L2(Tk), 1 ≤ k ≤ Ne}, verifying
{

Divxqk + f = 0, in Tk

qk · n = g, on ∂Tk
,

which is piecewise polynomial of degree p, with p ≥ pg and
p > p f .

Proof As indicated, this lemma is proved in [21, Appen-
dix A] and will not be derived here. However, it is important
to note that the proof requires the splitting of the element Tk .
A triangular element is hence split into three, a quadrilateral
is split into four triangles, and a tetrahedron into four tetrahe-
dra, each time by adding a node in the center of the original
element. Also, the proof has formally been performed only
for 2D problems and should be, in a future work, extended
to 3D. �

The two following lemmas will allow us to use the previ-

ous one to prove Theorem 3.

Lemma 2 Let uH be a FE solution of (3), at least quadratic.
Then, for any star �i of �, 1 ≤ i ≤ Nv , the system of loads
{φi f H , φi gH } is self-equilibrated in the sense that the result-
ing force and moment cancel, that is to say:∫
�i

φi f H d�+
∫
�i

φi gH d� = 0, (9)

and∫
�i

x × φi f H d�+
∫
�i

x × φi gH d� = 0, (10)

Proof We first examine the case of the resulting force. As
the functions φi are linear over each element of the mesh,
and we considered a quadratic FE interpolation space VH ,
any constant vector a would fall in VH , except that it does
not verify the Dirichlet boundary condition on �D. Hence,
a modified version of Eq. (3) is verified for v = φi a, where
a term is added to account for the condition on �D. We get,
using the fact that the support of φi is �i , φi (x /∈ �i ) = 0,∫
�i

σ (uH ) : ε(φi a) d�−
∫

�D∩∂�i

(σ (uH ) · n, φi a)d�

=
∫
�i

(f, φi a)d�+
∫

�N∩∂�i

(g, φi a)d�
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4.3 Implementation and minimization strategies

We start this section with the derivation of the matrix sys-
tem corresponding to the system (6). Since it is under-deter-
mined, we then turn to the description of two possible ways
of choosing one among the possible solutions, and finally
discuss several implementation aspects of interest.

Derivation of the matrix system Wefirst choose the order of
the polynomial used for the representation of the stress tensor,
n, and introduce, for each star, the basis pi = {pi

m}1≤m≤N0
of the (element-wise polynomial) stress tensor space {q̃i =
[q j�]1≤ j,�≤d , q j�|Tk ∈ Pn(Tk), Tk ⊂ �i }. We then introduce
the vector Q̃

i = [Q̃i
m]1≤m≤N0 of coordinates of a stress ten-

sor in that basis as

q̃i =
N0∑

m=1
Q̃i

mpi
m .

Note that the number N0 of elements in the basis depends on
the number of dimensions d of the physical space, the degree
n chosen for the representation of q̃i , as well as on the num-
ber of elements in the star. For example, for a 2D star of Ne

elements, there are n(n + 1)/2 elements in the polynomial
representation and d(d + 1)/2 independant components of
the (symmetric) stress tensor, so that N0 = nd(n + 1)(d +
1)Ne/4.
We then introduce bases for the divergence space,

that is a vectorial basis with a polynomial order n − 1, and
for the tractions on �i and �D. We denote these bases
pi

d−1 = {pi
d−1,m}1≤m≤N1 , pi

� = {pi
�,m}1≤m≤N2 , and pi

D =
{pi

D,m}1≤m≤N3 , respectively. Considering the same example
as above, we would have N1 = nd(n− 1)Ne/2, N2 = nd Ni

and N3 = nd ND , with Ni and ND the number of sides in �i

and �D, respectively. The matrix enforcing the divergence
D = [D j�], and those for the tractions N1 = [N 1j�] and
N2 = [N 2j�] are then defined as

D j�=−
∫
�i

(pi
d−1, j ,Divxpi

�)d�, 1≤ j≤N1, 1≤�≤N0,

N 1j�=−
∫
�i

(pi
�, j , [[pi

� · n]])d�, 1≤ j≤N2, 1≤� ≤ N0,

and

N 2j� = −
∫
�i

(pi
D, j , pi

� · n)d�, 1 ≤ j ≤ N3, 1 ≤ � ≤ N0.

Finally, we introduce the vectors of coordinates F and G
of φi f H and φi gH in the bases pi

d−1 and pi
� , respectively.

The system (6) can then be written in the following matrix
form

⎡
⎣ D

N1

N2

⎤
⎦[

Q
] =

⎡
⎣F

G
0

⎤
⎦

However, this system is, in general, under determined, and
a decision must be taken as to which of the possible solutions
should be selected.We study here two possibilities, both aim-
ing at minimizing the global complementary energy (associ-
ated with q̂) by minimizing the local complementary energy
(associated with the qi ). Indeed, all possible solutions of sys-
tem (6) provide a strict upper bound for the energy norm of
the error through their complementary energy (Theorem 1),
so that the ideal choice, for a given order of the polynomial
describing the qi , would therefore be that which minimizes
the complementary energyπc(q̂ =∑Nv

i=1 qi ). This q̂with the
minimum complementary energy is the one that will provide
the sharpest bound.

Minimization without accumulation The first natural pro-
posal is therefore to find theqi as the solution of the following
minimization problem:

qi = argmin
q̃i

πc(q̃i ),

under the constraint that the q̃i be solutions of the system (6).
This can be enforced through the use of a lagrangian
approach. In view of the constraints, we therefore introduce
three dual functions λ1, λ2 and λ3, and define the lagrangian
of the minimization problem as:

L = 1

2

∫
�i

q̃i : C : q̃i d�−
∫
�i

(λ1,Divxq̃i + φi f H )d�

−
∫
�i

(λ2, [[q̃i · n]]−φi gH )d�−
∫

�D∩∂�i

(λ3, q̃i · n)d�.

The matrix equations for the system are then derived by can-
celling the functional derivatives of that lagrangianL , with
respect to q̃i , λ1, λ2 and λ3, and projecting the corresponding
equations in appropriate bases.
We therefore introduce themassmatrixM=[M j�]1≤ j�≤N0 ,

as the projection in the basis pi of the complementary energy
operator,

M j� = 1

2

∫
�i

pi
j : C : pi

�d�, 1 ≤ j, � ≤ N0,

and the vectors L1, L2, and L3 of the coordinates of λ1, λ2,
and λ3 in the bases pi

d−1, pi
� , and pi

D . The matrix system that
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will be solved in each star therefore takes the form:⎡
⎢⎢⎣

M DT N1T N2T

D
N1 0
N2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Q
L1
L2
L3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
F
G
0

⎤
⎥⎥⎦ (12)

Minimization with accumulation However, although the qi

all minimize locally the complementary energy on their star
�i , there is no certainty that q̂ = ∑Nv

i=1 qi will globally
minimize the complementary energy on �. Hence, we pro-
pose an alternative approach, where all the information that
was already computed is used for the minimization. For the
first stars that are considered, this process is equivalent to
the previous one. However, towards the end of the compu-
tation, when most of the stars have been computed already,
this method will actually provide the solution that, given all
that was already computed, gives the global minimum for
the complementary energy of q̂. Note that this means that the
order in which the stars are computed will have an impact on
the result of the computation. Also, there is no security that
the results computed in this manner are better than the ones
computed with the previous one. However, we will see in the
examples in the next section, that the order variability can
actually be used to one’s advantage, and that this technique
does indeed provide very good results.
We therefore choose an order for the computation and

number the stars accordingly 1 ≤ i ≤ Nv . When considering
the star �i , the local problems on the stars � j , 1 ≤ j < i
have already been solved, and the corresponding q j com-
puted. We then change the previous minimization problem
by the following one:

qi = argmin
q̃i

πc

⎛
⎝q̃i +

i−1∑
j=1

q j

⎞
⎠, (13)

under the same constraints as earlier. The system (12) is then
modified in the following way:
⎡
⎢⎢⎣

M DT N1T N2T

D
N1 0
N2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Q
L1
L2
L3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−MQ∗

F
G
0

⎤
⎥⎥⎦

where the vectorQ∗ holds the coordinates, in the basisp(�i ),
of the stress field obtained from the stars that have already
been computed before �i .

Elements refinement In the proof of the existence of a stress
tensor verifying the system (6) (Proof of Theorem 3), each
element has to be splitted such that two sides of the original
element pertain to different elements of the newmesh. Hence
triangles are splitted into three new triangles and quadrilat-
erals into four quadrilaterals, each time by creating a new

node in the interior of the polygon. We chose here to create
the new node at the barycenter of the nodes of the element
considered. Note that this refinement can be performed at
a global level, and once only at the beginning of the com-
putation, since the same element in two different stars has
to be splitted each time in the same manner. Note also that
this refinement operation is computationally inexpensive but
that the cost of the resolution of each local problem (6) rises
because the number of elements in each star is larger.

Order of the polynomials The proof of Theorem 3 also
indicates that there is a minimal polynomial degree for the
stress tensor required to prove its existence, but any higher
order polynomial is also valid. Limited numerical experi-
ments were performed and seem to indicate that there is, in
most cases, an improvement of the effectivity index when
using higher order polynomials. However, this has a very
important cost because the number of terms in the polyno-
mial basis increases very rapidly with the polynomial order
(in 2D, the second-order basis includes the terms 1, x , y, x2,
xy and y2, while the third-order basis also includes the terms
x3, x2y, xy2 and y3; in 3D, the second-order basis includes
the terms 1, x , y, z, x2, xy, y2, xz, yz and z2, while the
third-order one is twice as large with the terms x3, x2y, xy2,
y3, x2z, xyz, y2z, xz2, yz2, z3). The computational cost of
the resolution of the systems (6) rises then very rapidly and
the improvement of the effectivity index does not seem to
balance the cost. In all the applications shown in the next
section, the minimum order (quadratic polynomials for the
stresses) is always used.

Parallelization The fact that the local problems are inde-
pendent has two advantages: firstly, the computation can be
performed very easily on several computers in parallel, and
secondly the global computational cost increases only line-
arly with the number of nodes. Indeed, using the commercial
code Cast3m [30] for the FE computations and aMatlab [31]
implementation for the error estimation (that could probably
be optimized), the tests that we ran indicate that the cost of
the error estimation is equivalent to that of the FE computa-
tion for a few thousand nodes, and becomes lower for larger
computations. Note that when running the error estimation
in parallel, either the previous minimization strategy has to
be limited to the stars that are actually computed on the local
CPU, or some communication between the nodes has to be
implemented.

5 Applications

To illustrate the accuracy of the upper bounds developed in
this paper, we chose three examples of application: a 2D per-
forated square plate in plane stress, a 2D gravity dam in plane
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In the course of this paper, we have shown how to con-
struct a stress field q̂which is statically admissible in� in the
sense that it equilibrates exactly all the loads. However, we
use here only its complementary energy to yield the desired
upper bound. A very promising alternative use of this stati-
cally admissible field is to derive strict bounds in the context
of nonlinear solid mechanics, using the works of Ladevève
and coworkers [34,35]. This will be the object of a forthcom-
ing paper.
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