
A comparative analysis of hardware and software

improvements of volume splatting

E. Vergés , S. Grau and D. Tost

May 18, 2006

Abstract

This paper compares different hardware-based accelerations of the

three classical splatting strategies: composite-every-sample, object-space

sheet-buffer and image-space sheet-buffer. Specifically, we analyze the use

of point sprites and 2D textures for the splat’s projection, the use of

frame-buffer objects for the buffer composition and the use of GPGPU

techniques for the transformation of voxels. We compare the efficiency of

the hardware-accelerated splatting with 3D-texture mapping. In addition,

we compare the rendering speed-up provided by hardware accelerations

with two software-based space-leaping techniques: run-length encoding of

labeled voxel models and voxel arrays.

1 INTRODUCTION

The development of the last generations of graphics hardware has dramatically
changed computer graphics research. Scientific visualization have gained many
benefits from these advances, because they provide significant accelerations of
rendering. Besides, in visualization, the ever-growing size of the datasets yields
to a permanent demand of more computing power as well as hardware-based
and software-based optimizations. A good example of the influence of graphics
hardware technology in visualization is the current popularity of 3D-texture
slicing for volume rendering. This technique consists basically of loading the
entire volume in video memory and resampling it onto parallel proxy-geometry
planes that are composed back-to-front to create the final image. Its speed is
due to its use of the embedded trilinear interpolation hardware. Since this idea
was first proposed in 1993 [CN93], the 3D-texture slicing technique has evolved
and now, it incorporates volume shading [GK96], surface shading [WE98] and
interactive classification [MHS99]. This evolution has been done in parallel and
thanks to the graphics hardware improvements.

The classical volume ray-casting can also be improved by a clever use of hard-
ware capabilities. As an example, Mitsubishi’s VolumePro is a special purpose
ray-casting implementation [PHK∗99]. UltraVis [Kni00] is an assembler ray-
casting implementation for specific types of CPUs. Finally, Kruger and Wester-

1



man [KW03] have proposed a multipass ray-casting with early ray-termination
that takes profit from 3D-textures, z-test and fragment shaders.

In the last five years, splatting, originally designed to render volume datasets,
has gained popularity because its use has been extended to render point-based
surface representations [PZBG00]. Splatting considers the volume or the surface
as an array of overlapping kernels that are projected onto the screen plane in
order to compose the image. Many attempts have been done to accelerate this
technique using the GPU capabilities for both surface [RPZ02] and volume splat-
ting [XC04]. Most of the research in this area focuses on the acceleration of the
kernels projection using texture maps [CM93], 1D and 2D look-up tables (fast-
Splats) [HMSC00] and point sprites [BK03]. The acceleration of other stages of
the splatting pipeline such as the use of hardware-assisted opacity convolution
[MSHC99], plane composition [NM05] and voxels geometrical transformation
have been less addressed and restricted to image-space sheet-buffer splatting.
Moreover, several software-based accelerations of splatting have been proposed,
such as run-length encoding [KM01] and computation of render lists [MH01].
These techniques are primarily aimed at reducing the number of processed vox-
els. They have proved to greatly reduce the computational cost of splatting.
However, the acceleration provided by these techniques in comparison with that
provided by hardware is not very well known. In this paper, we address splatting
of volume models. We analyze and compare different hardware-driven splatting
accelerations for three different voxel model traversal schemes. We implement
them and compare the results with software accelerations and 3D-texture map-
ping.

2 PREVIOUS WORK

The splatting algorithm was proposed by Lee Westover [Wes89]. This algorithm
gains its speed by exploiting the similarity of the kernel’s projection. In ortho-
graphic views, all the kernels have the same projection or footprint. Thus, the
footprint can be computed once, in a pre-process, stored as a look-up-table and
used for the projection of all the voxels. In perspective views, the footprints
must be distorted according to the distance of the voxels to the observer. In
the original approach of the algorithm, all the voxels are splatted directly in the
image. This is why the algorithm is known as composite-every-sample. How-
ever, this method may cause color bleeding and sparkling artifacts because the
visibility ordering of splats is imperfect. To correct this error, Westover [Wes90]
proposed the object-space sheet-buffer splatting that splats the voxels slice-by-
slice into sheet planes of the voxel model most parallel to the image plane and
composites each sheet to the final image. This approach corrects color bleed-
ing but it introduces noticeable popping up artifacts when the camera moves
around the volume, because the sheet planes chosen change abruptly. Mueller
and Crawfis [MC98] provided a solution to this problem that also enhances the
approximation of the light transport inside voxels: the image-space sheet-buffer
splatting. In this approach, the sheet-buffers are parallel to the image plane.

2



Therefore, voxels can contribute to more than one sheet. Different footprints
corresponding to different intersections of the voxels with the sheet slab must be
computed. This algorithm is composed of two main steps. In the first one, the
voxel model is traversed, the voxels to be rendered are first transformed accord-
ing to the viewing matrix, then depth-sorted and finally inserted into buckets
such that each bucket covers the distance between suceesive sheet buffers. In
the second stage, the sheets are processed in Front-to-Back (FTB) order. For
each voxel in a sheet, the proper footprint is chosen according to a fast index-
ing scheme. In the image-space sheet-buffer splatting [MSHC99], early splat
elimination is possible in FTB composition by subdividing the image into small
tiles and avoiding to splat voxels that cover tiles that have already reached the
maximum opacity. The detection of opaque tiles is efficiently performed using
a hardware-assisted opacity convolution filter.

One of the major advantages of splatting is that only relevant voxels must
be splatted and empty and non-selected voxels can be skipped. This idea was
first suggested by Yagel et al. [YESK95] for rendering Computational Fluid
Dynamics (CFD). They suggested to construct a fuzzy set composed by an array
of planes of the model and, for each plane, a list of voxels with their associated
coordinates in the plane and their values. Crawfis [Cra96] introduced the idea
of the ListSplat, a list of isosurface voxels that can be splatted directly without
depth sorting because they are supposed to all be a homogeneous color. A
similar idea is exploited in the RTVR system [MH01] that uses an intermediate
array of slice-sorted RenderLists for each structure of the volume that store
the voxels of the slices that are relevant for rendering. This structure is also
used in the Two-level rendering proposed by Hauser et al. [HMBG01] [HBH03].
Mueller at al. [MSHC99] enhanced the efficiency of the view-aligned sheet-buffer
splatting by organizing the selected voxels into buckets, each one corresponding
to a sheet-buffer. The selection of the voxels for their insertion in the buckets
is fast, based on a binary search in a per-value ordered list of voxels similarly
to the work of Ihm at al. [IL95]. More recently, Orchard and Möller [OM01],
proposed to use a list of adjacency data structure in which each non-empty voxel
in a scan list is linked to the next non empty voxel in the scan-line. Finally,
Kilthau and Möller [KM01] proposed to use run-length encoding (RLE) in order
to skip empty voxels. They construct 24 RLE replications of the volume, which
allows them to orderly traverse the volume according to any of the 48 orders.
The main drawback to these two last approaches is their storage overhead.

Many efforts have been done in accelerating splatting using hardware. One
of the first proposed methods [LH91] [WG91] consists of approximating the splat
by a collection of polygons, thus taking profit of the hardware-supported polygon
rendering pipeline. Crawfis and Max [CM93] replaced the polygons by a 2D
texture map. These approaches were tested in composite-every-sample traversals
and orthographic projections in which only one footprint is necessary. Huang
et al. [HMSC00] argued that image-space sheet-buffer splatting requires at least
128 footprint sections, which supposes over than 8MB texture maps storage.
For radially symmetric splats, they propose to use a less-memory consuming
one-dimensional table that holds the values of the splat along a radial line from

3



the splat center. Moreover, they explore directly copying into the image the
block of pixels of a 2D footprint using BitBLT, but conclude that the image
quality of this strategy is low. More recently, Xue and Crawfis [XC04] proposed
two splatting strategies that work on the GPU. The first strategy consists of
using a vertex shader program to generate and render quadrilaterals centered
around the voxels center. This strategy works on previous generation hardware.
In addition, it requires sorting the voxels along the viewing direction and it has
high memory requirements. The second strategy, point-convolution rendering,
first projects all the voxels as point primitives into an off-screen PBuffer with
additive blending. Next, the GL convolution flag is activated and a texture
is copied from the PBuffer using glTexSubImage2D such that each texel is a
convolution between the PBuffer pixel and the kernel filter. This strategy is very
efficient in terms of computational cost but it only renders x-ray style images for
orthographic views, i.e images that do not provide depth clues, because opacity
is simply accumulated without alpha-blending. Very recently, Vega-Figueroa
et al. [VHFG05] propose to use Point Sprites to render neurovascular data.
This reduces to one point per voxel the geometric processing tasks instead of
the four-points needed for the quadrilaterals. This idea is also exploited in the
GPU-based implementation of the image-space sheet-buffer splatting proposed
by Neophitou and Mueller [NM05]. In addition, this paper proposes to use an
OpenGL PBuffer object to store the buffers. It first splats onto an auxiliary
buffer the density value of all the voxels of a slice using textured point sprites.
Then, it classifies and shades all the pixels of the buffer using a fragment shader
that computes the gradient vectors at the pixels on the basis of their density
central difference. Finally, it composes the buffer into the final image. The
authors use the early z-rejection test to eliminate empty-space pixels and those
that are already opaque before the fragment processing.

3 HARDWARE ACCELERATIONS

We have developed hardware-based accelerations for the three main splatting
strategies: Composite-Every-Sample (CES), Object-space Sheet-buffer Splat-
ting (OSS) and Image-space Sheet-buffer Splatting (ISS). Six main operations
can be identified in the rendering pipelines of these three strategies:

• Access to the voxel Value (V)

• Object-space Gradient computation (G)

• Shading (S)

• Viewing geometrical Transformation of a voxel (T)

• Voxel Splatting with or without α-blending (SP)

• Bucket insertion (BI)

• Buffer Composition (BC)

4



Figure 1: Rendering pipelines of the three splatting strategies from top to
down: Composite-Every-Sample (CES), Object-space Sheet-buffer Splatting
(OSS) and Image-space sheet-buffer Splatting (ISS). p is the point in world
coordinates and p′ in viewing coordinates, g is the gradient, v the voxel value,
c the resulting color and Ii the i-th bucket and IF the frame-buffer image.

8cm
The rendering pipelines that we have implemented for these three strategies

are depicted in Figure 1. The ISS pipeline is split into two-steps: the creation of
the buckets and the splatting itself. In the second step, the point’s coordinates
and color are fetched directly from their associated buckets. Observe that in
order to get comparable results, the ISS pipeline that we have implemented
is the classical one that shades in object-space and not the one suggested by
[NM05], that computes pixel gradients and applies shading in the sheet-buffers.
The 3D texture-mapping that we have used in the comparisons uses pre-shaded
RGBα texture loaded into the GPU memory. For splatting, the voxel access
and gradient computations are done in the CPU. We have designed and tested
hardware-based accelerations of the geometrical transformations (T), shading
(S), splatting (SP) and buffer-composition (BC).

3.1 Splats projection

Software-based splatting consists of rasterizing one point per voxel and com-
positing all the pixels of the footprint in the image buffer or the sheet-buffer
around the rasterized point. We have analyzed two hardware-based splatting
alternatives. First, the splat can be loaded as a 2D texture and a four vertices
textured quad can be projected. If the splat is defined in object-space, the
texture needs only to be loaded once, but the computation of the quad must
be done in object space, which is computationally expensive. Alternatively,
the splat can be computed in image-space, for each camera position and, thus,
the textured quad can be defined directly in image space setting a 2D ortho

5



camera before its projection. An intermediate possibility between these two is
to precompute the splat textures for a set of pre-defined cameras. However,
this increases considerably the memory requirements. It is not even feasible in
the case of ISS that requires at least eight footprints per camera. The second
hardware based strategy is to use the glPointSprite.

3.2 Buffers composition

One of the bottlenecks of the OSS and ISS strategies is the sheets composition
with α-blending into the image buffer. We have substituted this step by using
the Frame Buffer Objects extension (FBO). We splat the voxels using FBOs
as offscreen render targets. Next, we activate α-blending; we define a 2D quad
of the size of the frame-buffer; we associate to it the texture of the FBO and
we render it in the frame-buffer. In this way, the sheet is composed with the
frame-buffer using hardware acceleration.

3.3 Shading

We have implemented three shading of increasing computational cost:

• Per-value shading that simply uses the property value as a gray or RGB
color RGB color

• Volume shading that gets the emission and opacity from a Look-Up-Table
(LUT) implementation of the transfer function

• Surface shading that gets a material identifier from LUTs, and then applies
the Phong model.

Per-value shading is the simplest one. If voxel property values are stored
as 1 byte (gray) or 3 bytes (RGB), it requires no computations. In order to
accelerate volume shading, we have implemented the LUT as a 1D texture. The
voxel property value is used as an index to this texture. In order to combine this
shading with the texture-based and point-sprite splat projection, a multitextur-
ing context must be set. The 1D texture is activated first and its corresponding
color is blended to all the pixels of the 2D texture. Surface shading can also be
handled using a hardware-driven LUT, for a pre-defined set of scalar product
between the lighting direction and the gradient vectors. The computational cost
of surface shading is, in this case, the same as volume shading without taking
into account the table construction. Alternatively, the voxel property value is
used as an index to a software-based materials LUT. The optical properties of
the surface are set using glMaterial, the gradient vector is used to set glNormal
and, if OpenGL lighting is on, Phong’s model is applied. The main drawback
of this approach is that, even if only the surface color is set for each voxel, con-
sidering constant the specular color and exponent, it requires, for each surface
voxel, at least either one glMaterial instruction or one glColorMaterial causing
the material color to track the current color. per surface voxel. Other shading

6



models than Phong could be applied using vertex shaders, but we believe that
this would not further enhance the speed of shading.

3.4 Viewing transformations

In CES, the viewing transformations can be done using OpenGL hardware-
supported matrix operations if voxels are treated as quad or glPointSprite, as
described in Section 3.1. In OSS, the viewing transformation is handled during
the rendering of the Frame Buffer Objects (FBO) into the frame-buffers. How-
ever, in ISS, the viewing transformation is done in the CPU during the creation
of the buckets. As an alternative, we have implemented a General Purpose
Computation on the GPU (GPGPU) to load the selected voxels into the GPU
as a floating point texture, transform them into the viewing coordinate system
and generate a transformed list of voxels that can be used to insert each voxel
in the proper bucket.

4 SOFTWARE ACCELERATION

We have implemented two software accelerations to cull non-selected voxels. In
the first strategy, we first traverse the full voxel model and compute a run-
length encoding of the classification values of the model, such that each code is
composed of a material identifier and the number of consecutive voxels sharing
this material. During rendering, users select a set of materials for rendering; the
run-length encoding is traversed but only the voxels corresponding to selected
codes are processed. In order to allow any camera position, three run-length
encoding are computed, one for each of the coordinate planes. Therefore,this
model is suitable for OSS splatting or to create the buckets in ISS. It could
be extended to CES, but with the drawback that 26 codifications should be
computed in this case.

The second strategy is used to accelerate ISS. Once the selection is done,
the selected voxels are stored in a array that keeps the voxel coordinates and
their value. For each camera position, instead of traversing all the voxels, only
those of the array are processed.

5 RESULTS

We have implemented and tested the different algorithms in our software plat-
form Hipo. Table 1 indicates the abbreviations used for the seven different
algorithms analyzed.

To test the algorithms we have used six datasets that differ in various aspects:
their size, that varies from the smallest 643 digitized dinosaur (dino) to the
larger micro-CT scanned rabbit femur (femur); their property value type 1
byte o 4 bytes (RGB α); their occupancy ratio measured as the number of

7



Abbreviation Algorithm

CES Composite-Every-Sample
H-CES Hardware-based Composite-Every-Sample
OSS Object-space Sheet-buffer

H-OSS Hardware-based Object-space Sheet-buffer
ISS Image-space Sheet-buffer

H-ISS Hardware-based Image-space Sheet-buffer
H-TM Hardware-based 3D Texture Mapping

Table 1: Algorithm names and abbreviations.

non-empty voxels divided by the total number of voxels; being or not voxelized
isosurfaces such as dino and prostate. Table 2 summarizes the characteristics of
the different datasets. Figure 2 shows a rendered image of each of the datasets.

All the simulation results have been taken on a Pentium IV PC at 3.2 GHz
with 3.5 GB of memory and an ATI Radeon X800 Pro graphics card. We have
used the OpenGL library on a GNU/Linux operating system. Time is measured
in seconds.

Dataset Dimensions Size Type Oc.ratio

Dino 87*39*62 210366 bool 9.04%
Prostate 194*202*256 10032128 float[4] 11.97%
Aneurism 256*256*256 16777216 char 0.37%

Skull 256*256*256 16777216 char 5.70%
Engine 256*256*128 8388608 char 20.17%
Femur 485*509*633 156265545 char 32.40%

Table 2: Characteristics of the datasets, from left to right: name, size, property
value type and occupancy ratio (OR).

Table 3 shows the rendering cost of the splat projection of 16 millions of
voxels using the CPU-based strategy, the 2D image-space textured quad and
the glPointSprite for the different datasets (see Section 3.1). For the two latter
strategies, the costs include the texture construction. As it can be observed,
the hardware assisted modes are far more efficient than the CPU-based mode
whose efficiency slows down as the splat size increases. The textured quad and
glPointSprites have similar costs although the textured quad is more efficient.
This difference is due to the fact that the implementation of sprites in our Linux
operating system is not very efficient on Radeon cards. The same simulations
on a NVidia card showed a reduction in the cost of of the glPointSprite to
approximatively the same value as the textured quad.

Table 4 shows the cost of the CPU-Based buffer composition in comparison
to the use of FBOs, for three different image sizes (see Section 3.2). As expected,
the larger are the images, the more the FBO accelerates the buffer composition.
A drawback of the FBOs is that they require the image dimensions to be powers
of 2. The larger image that we have been able to process as a whole in our PC
is 1024x512.

8



Figure 2: Rendered image of the datasets. Left column from top to bottom:
dino, skull and femur. Right column from top to bottom: prostate, engine and
aneurysm.

The first row of Table 5 shows the shading cost based on a LUT for volume
shading or quantized pre-processed surface shading using software-based LUTs
in comparison to 1D-texture LUTs. The LUT have a size of 256. Shading has
been applied to 16 millions of voxels. The results are of the same order of mag-
nitude and the CPU-based mode is even slightly better. In the second raw of
the table, we show the cost of surface Gouraud shading with pre-computed gra-
dients and one light source, implemented via CPU and with GL lighting. Again,
the differences are not very significative, because the geometrical computations
(one scalar product and four multiplications) are not very intensive.

Finally, Table 6 shows the cost of applying the viewing transformation to
100.000 vertices using the GPGPU program described in Section 3.4. The overall
CPU-based process cost is 1.69 10−2 seconds. As it can be seen, the geometrical
transformation cost is far more efficient in the GPU but the read-pixel operation
needed to insert the voxels the buckets are a bottleneck, that globally makes
the GPU assisted process slower than the CPU-based one.

9



Splat size CPU-based Quad Sprite

3x3 19.3 5.07 6.01
20x20 411 6.06 12.44

Table 3: Costs in seconds of the splat projection: CPU-based, 2D image-space
textured quad and glPointSprite for two different splat size for 16M voxels.

Image size CPU-based FBO

256x256 0.54 0.11
512x512 2.50 0.34
1024x512 4.90 0.64

Table 4: Cost in seconds of the buffer composition: CPU-Based and based on
the FBO

The run-times in seconds of the different algorithms with different datasets
are summarized in Tables 7 and 8. They all correspond to an image size of
1000x500. The values in Table 7 correspond to the plain non-optimized version
of the algorithms. All the voxels be they empty or not, are processed in the
rendering pipeline. Obviously, for all strategies, the more voxels, the higher the
computational cost. ISS costs are comparable to OSS, but without taking into
account the bucket constructions, which constitutes, indeed, a non negligible
overhead. CES costs are lower than those of OSS and ISS because there is no
plane composition in that method. Table 8 shows the run-time of the hardware
accelerated versions of these algorithms using point-sprite, multi-texturing and
FBOs. The hardware optimizations reduce between one half and two thirds the
computational cost for the small and regular sized models. The Femur dataset
rendering is not accelerated, because, being that big, the splat size is very
small, thus the textured quad is not faster than the CPU-based access to the
image buffer. These costs can be compared with hardware-assisted 3D texture-
mapping. To construct the textures, we first perform a per-voxel traversal of the
datasets, compute the rendered color associated to each voxel and store it in the
3D texture. Once the texture is constructed, the rendering time is very fast, at
interactive framerates. This is much faster in all cases than the three hardware-
assisted splatting methods, that actually perform a per-voxel classification and
shading. However, the texture should be recomputed if the transfer-function
or the lighting conditions change. Moreover, zoomed images from 3D-texture

Shading CPU-based GL

LUT 13.8 14.2
Gouraud 14.9 15.15

Table 5: Cost in seconds of the LUT-based shading in comparison to 1D-textures
for a varying number of voxels.

10



Set-up Transformation Read Pixel

0.015 0.0041 0.46

Table 6: Viewing transformation using the GPGPU for 100.000 vertices: set-up,
transformation and read pixels. Units are seconds

mapping exhibit a pixelized aspect whereas splatting images are smoother. The
Femur dataset could not be rendered directly with texture mapping because of
its huge size.

Dataset CES OSS ISS

Dino 0.11 1.6 0.1+1.72
Prostate 3.31 7.2 5.4+7.2
Aneurism 6.99 10.1 9.5+10.2

Skull 11.21 10.8 9.3+9.7
Engine 11.30 12.5 4.5+6.5
Femur 84.30 72.4 74+59.6

Table 7: Rendering times in seconds using the different software-based splatting
strategies. ISS times are split into buckets construction and splatting itself

Dataset H-CES H-OSS H-ISS H-TM

Dino 0.06 0.07 0.15+0.06 0.23+∼ 0
Prostate 2.7 2.7 5.2+1.6 5.38+∼ 0
Aneurism 4.8 4.8 9.3+3.7 9.45+∼ 0

Skull 4.1 4.1 9.1+4.2 9.45+∼ 0
Engine 3.7 3.7 4.5+2.5 4.97+∼ 0.

Femur 77.0 75.5 74+54 ERR

Table 8: Rendering times in seconds using the different hardware-assisted splat-
ting strategies and 3D texture mapping.

Tables 9 and 10 show the importance of software-based optimizations. In
Table 9, we show the differences in the rendering time OSS without optimiza-
tions, with run-length encoding of non-empty voxels, hardware-accelerated and
hardware accelerated with run-length. Table 10 shows the results of the same
simulations for CES using a voxel array of selected voxels instead of run-length
encoding as a software enhancement. The software improvements in relation to
the plain non-optimized splatting depend on the occupancy ratio. The larger is
the occupancy ratio, the less improvements the voxel array and the run-length
provide. In general, the run-length reduces to one half the computational cost,
very similarly to the hardware-based accelerations. The combination of hard-
ware and run-length impressively reduces the cost to one tenth. The voxel array
provides even better results. It is in all cases faster than the run-length. This
is because the run-length has the extra cost of traversing the run-length codes.

11



The voxels array provides also a better speed-up than hardware accelerations,
specially in the prostate and aneurism datasets, because of their low occupancy.
Obviously, the maximum speed-up is obtained if the voxels array and hardware
enhancements are both used. The drawback of the voxel arrays is that it re-
quires a very large amount of memory, since it codifies the voxel coordinates,
whereas this information is implicit in the run-length codification. The femur
dataset gives the poorest results in all cases. This is because it is the larger and
the one with the larger occupancy.

Dataset OSS OSS+RL H-OSS H-OSS+RL

Dino 1.6 1.54 0.07 0.03
Prostate 7.2 2.33 2.7 1.40
Aneurism 10.1 4.49 4.8 0.11

Skull 10.8 6.16 4.1 1.08
Engine 12.5 6.55 3.7 1.36
Femur 72.4 92.44 75.5 50.36

Table 9: Rendering time in seconds of OSS: basic method, with run-length
encoding, hardware accelerated and hardware accelerated with run-length

Dataset CES CES+SEL H-CES H-CES+SEL

Dino 0.11 0.02 0.06 0.02
Prostate 3.31 0.7 2.7 0.65
Aneurism 6.99 0.08 4.8 0.05

Skull 11.21 1.16 4.1 0.84
Engine 11.30 1.69 3.7 1.35
Femur 84.30 61.9 77.0 48.6

Table 10: Rendering time in seconds of CES: basic method, with pre-selected
voxel arrays, hardware accelerated and hardware accelerated with pre-selected
voxel arrays.

6 CONCLUSIONS

In this paper, we have proposed, implemented and compared software and
hardware-driven improvements of three volume splatting strategies: composite-
every-sample (CES), object-space sheet-buffer (OSS) and image-space sheet-
buffer (ISS). The analysis of the empirical results show that the three techniques
have a similar processing cost, but that ISS has the overhead of the bucket com-
putations. This is the price to pay for a better image quality and a smoother
transition between successive camera positions. It should be noted, however,
that ISS can be further enhanced with early splat termination. Among the
hardware-based accelerations analyzed, those providing a better acceleration
are the use of frame-buffer objects for image composition and textured quads

12



for splatting. The speed-ups are approximatively the same for CES, OSS and
ISS. The creation of the buckets in ISS could also be accelerated using GPGPU
if the read pixel operation is avoided. This would require storing the buckets in
the GPU. We are currently investigating this possibility.

A question that is often a debate object in Visualization is that it is worth
designing software accelerations for rendering, taking into account that the evo-
lution of hardware is so fast. The results obtained in this paper show that,
currently, software accelerations as those explored in this paper, provide speed-
up comparable to those given by hardware-based implementations. Moreover,
the combination of both types of technique can reduce dramatically the cost of
rendering. Therefore, our future research focuses at designing new acceleration
techniques that could be further enhanced using hardware.

Finally, software-based and hardware-based strategies still do not reduce
enough the cost of rendering huge datasets. A factor that surely worsens the
rendering cost of this type of datasets is how data are managed into memory.
We believe that out-of-core methods specifically designed for splatting could
help solving this problem.

References

[BK03] Botsh M., Kobbelt L.: High-quality point-based rendering on
modern gpus. In Pacific Graphics 2003 (2003), pp. 335–343.

[CM93] Crawfis R., Max N.: Texture splats for 3D scalar and vector
field visualization. In IEEE Visualization’93 (1993), pp. 261–266.

[CN93] Cullip T. J., Neumann U.: Accelerating Volume Reconstruction
with 3D Texture Mapping Hardware. Tech. rep., University of North
Carolina at Chapel Hill, 1993.

[Cra96] Crawfis R.: Real-time slicing of data space. In IEEE Visualiza-
tion’96 (1996), IEEE Computer Society Press, pp. 271–277.

[GK96] Gelder A. V., Kim K.: Direct volume rendering with shading
via 3D textures. In ACM Symposium on Visualization’96 (1996),
Crawfis R., C.Hansen, (Eds.), pp. 23–30.

[HBH03] Hadwiger M., Berger C., Hauser H.: High-quality two-level
volume rendering of segmented data sets on consumer graphics
Hardware. In IEEE Visualization ’03 (2003), IEEE Computer So-
ciety Press, pp. 40–45.

[HMBG01] Hauser H., Mroz L., Bischi G., Gröller M.: Two-level vol-
ume rendering. IEEE Trans. on Visualization and Computer Graph-
ics 7, 3 (2001), 242–252.

13



[HMSC00] Huang J., Mueller K., Shareef N., Crawfis R.: Fastsplats:
optimized splatting on rectilinear grids. In IEEE Visualization’00
(2000), IEEE Computer Society Press, pp. 219–226.

[IL95] Ihm I., Lee R.: On enhancing the speed of splatting with indexing.
In IEEE Visualization ’95 (1995), IEEE Computer Society Press,
pp. 69–76.

[KM01] Kilthau S., Möller T.: Splatting optimizations. Tech. rep.,
Simon Fraser University, 2001.

[Kni00] Knittel G.: The ultravis system. In IEEE Symposium on Volume
Visualization (2000), pp. 71–79.

[KW03] Krüger J., Westerman R.: Acceleration techniques for GPU-
based volume rendering. In IEEE Visualization’03 (2003), pp. 287–
292.

[LH91] Laur D., Hanrahan P.: Hierarchical splatting: A progressive re-
finement algorithm for volume rendering. ACM Computer Graphics
25, 4 (July 1991), 285–318.

[MC98] Mueller H., Crawfis R.: Eliminating popping artifacts in sheet
buffer-based splatting. IEEE Visualization’98 (1998), 239–246.

[MH01] Mroz L., Hauser H.: RTVR: a flexible java library for inter-
active volume rendering. In IEEE Visualization’01 (2001), IEEE
Computer Society Press, pp. 279–286.

[MHS99] Meissner M., Hoffmann U., Straßer W.: Enabling classifi-
cation and shading for 3D texture mapping based volume rendering
using OpenGL and extensions. IEEE Visualization’99 (1999), 207–
214.

[MSHC99] Mueller K., Shareef N., Huang J., Crawfis R.: High-quality
splatting on rectilinear grids with efficient culling of occluded voxels.
IEEE Trans. on Visualization and Computer Graphics 5, 2 (1999),
116–134.

[NM05] Neophytou N., Mueller K.: GPU accelerated image aligned
splatting. In Volume Graphics (2005), Fujishiro I., Gröller E.,
(Eds.), pp. 197–205.

[OM01] Orchard J., Möller T.: Accelerated splatting using a 3D adja-
cency data structure. In Graphics Interface’01 (2001), pp. 191–200.

[PHK∗99] Pfister H., Hardenbergh J., Knittel J., Lauer H., Seiler

L.: The volumepro real-time ray-casting system. In ACM SIG-
GRAPH’99 (1999), ACM Press/Addison-Wesley Publishing Co.,
pp. 251–260.

14



[PZBG00] Pfister H., Zwicker M., Baar J., Gross M.: Surfels: surface
elements as rendering primitives. In ACM SIGGRAPH’00 (New
York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co.,
pp. 335–342.

[RPZ02] Ren L., Pfister H., Zwicker M.: A Hardware accelerated ap-
proach to high quality point rendering. Computer Graphics Forum
21 (2002), 461–470.

[VHFG05] Vega F., Hastreiter P., Fahlbusch R., Greiner G.: High
performance volume splatting for visualization of neurovascular
data. In IEEE Visualization’05 (2005), IEEE Computer Society
Press, pp. 271–278.

[WE98] Westermann B., Ertl T.: Efficiently using graphics Hardware in
volume rendering applications. ACM SIGGRAPH’98 (1998), 169–
178.

[Wes89] Westover L.: Interactive volume rendering. In Chapel Hill Vol-
ume Visualization Workshop (1989), pp. 9–16.

[Wes90] Westover L.: Footprint evaluation for volume rendering. ACM
Computer Graphics 24, 4 (July 1990), 367–376.

[WG91] Wilhems J., Gelder A. V.: A coherent projection approach
for direct volume rendering. ACM Computer Graphics 25, 4 (July
1991), 275–284.

[XC04] Xu D., Crawfis R.: Efficient splatting using modern graphics
hardware. Journal of graphics tools 8, 4 (2004), 1–21.

[YESK95] Yagel R., Ebert D. S., Scott J. N., Kurzion Y.: Grouping
volume renderers for enhanced visualization in computational fluid
dynamics. IEEE Trans. on Visualization and Computer Graphics
1, 2 (1995), 117–132.

15


