
Thermal Comfort and market niches for apartment buildings: Impact of the current Thermal Regulation in the private real estate market in Santiago de Chile

Felipe Encinas¹, André De Herde¹, Carlos Marmolejo², Carlos Aguirre²

- 1 Architecture et Climat Université Catholique de Louvain Louvain-la-Neuve, Belgium
- 2 Centro de Política de Suelo y Valoraciones Universidad Politécnica de Cataluña Barcelona, Spain

01. CONTEXT National Thermal Regulation [TR] and their stages

Tunala	aioo		permits,		Bu	ilding po	ermits, n	ew dwel	llings, 20	006
Typologies 		new dwellings, 1994-1998			NATIO	ONAL	SANT	IAGO	REG	IONS
	number	number	%		number	%	number	%	number	%
Houses	10	389,540	79.9%	Houses	106,054	65.0%	30,638	42.7%	75,416	82,5%
Apartments	5	98,070	20.1%	Apartments	57,182	35.0%	41,156	57.3%	16,026	17,5%
TOTAL*	15	487,610	100%	TOTAL	163,236	100%	71,794	100%	91,422	100%

* Equivalent to 73,9% of total building permits

Source: Own elaboration based on IC (2001)

Source: Own elaboration based on INE (2007)

01. CONTEXT 2nd Stage of the National Thermal Regulation [TR]

	BUILDING ENVELOPE							
		OPAQUE ELEMENTS			GLAZING SURFACES			
	THERMAL ZONES	Maximum allowable U-value			Maximum allowable glazing percentage regarding vertical building envelope			
N°	EXAMPLES OF CITIES	ROOFS	WALLS	VENTILATED FLOORS	SINGLE GLAZING	DOUBLE G	LAZING	
		[W/m²K]	[W/m²K]	[W/m ² K]		3.6 W/m²K ≥ U > 2.4 W/m²K	U ≤ 2.4 W/m²K	
1	Iquique (20°32'S)	0.84	4.0	3.60	50%	60%	80%	
2	Calama <mark>(22°28'S)</mark>	0.60	3.0	0.87	40%	60%	80%	
3	Santiago <mark>(33°27'S)</mark>	0.47	1.9	0.70	25%	60%	80%	
4	Concepción (36°47'S)	0.38	1.7	0.60	21%	60%	75%	
5	Temuco <mark>(38°46'S)</mark>	0.33	1.6	0.50	18%	51%	70%	
6	Puerto Montt (41°28'S)	0.28	1.1	0.39	14%	37%	55%	
7	Punta Arenas <mark>(53°80'S)</mark>	0.25	0.6	0.32	12%	28%	37%	

Source: Own elaboration based on Diario Oficial (4th January 2007)

01. CONTEXT 2nd Stage of the National Thermal Regulation [TR]

		BUILDING ENVELOPE							
		OF	PAQUE ELEN	IENTS	GLAZING SURFACES				
THERMAL ZONES		Maximum allowable U-value			Maximum allowable glazing percentage regarding vertical building envelope				
N°	EXAMPLES OF CITIES	ROOFS	WALLS	VENTILATED FLOORS	SINGLE GLAZING	DOUBLE G	LAZING		
		[W/m²K]	[W/m²K]	[W/m ² K]		3.6 W/m²K ≥ U > 2.4 W/m²K	U ≤ 2.4 W/m²K		
1	Iquique (20°32'S)	0.84	4.0	3.60	50%	60%	80%		
2	Calama <mark>(22°28'S)</mark>	0.60	3.0	0.87	40%	60%	80%		
3	Santiago (33°27'S)	0.47	1.9	0.70	25%	60%	80%		
4	Concepción (36°47'S)	0.38	1.7	0.60	21%	60%	75%		
5	Temuco <mark>(38°46'S)</mark>	0.33	1.6	0.50	18%	51%	70%		
6	Puerto Montt (41°28'S)	0.28	1.1	0.39	14%	37%	55%		
7	Punta Arenas <mark>(53°80'S)</mark>	0.25	0.6	0.32	12%	28%	37%		

Source: Own elaboration based on Diario Oficial (4th January 2007)

01. CONTEXT How to give compliance to the regulation in Santiago?

Unifamiliar Houses

Apartment buildings

			U-VALUE*		
TRADE NAME	MATERIAL	LARGE	WIDTH	HIGH	
		[mm]	[mm]	[mm]	[W/m ² K]
Extra Titán Reforzado Estructural	Brick	290	140	94	1.90
* Source: MINVU, IC (200	6)			'	•

	COMPONENTS							
TRADE	MATERIAL	THICKNESS	DENSITY	THERMAL CONDUCTIVITY	U-VALUE*			
NAME		[mm]	[kg/m ³]	[W/mK]	[W/m ² K]			
	Gypsum board	10	700	0.26				
Polyplak Knauf	Expanded polystyrene foam	10	10	0.043	1.88			
Knauf	Reinforced 150		2400	1.63				
* ~		050 06 04	- '		-			

* Calculated by means of NCh 853 Of. 91

SET 2009 - 8th International Conference on Sustainable Energy Technologies

01. CONTEXT

Impact of the National Thermal Regulation in the private real estate market in Santiago

THREE FACTS:

- a) The assumptions considered during the elaboration of the 2nd stage of the TR related to the participation of apartment building in the real estate market – nowadays are not completely valid, especially when the focus is Santiago.
- **b)** The application of the 2nd stage of the TR practically have not impact in the houses market, since the requirement could be satisfied using only bricks (without thermal insulation) in the building envelope. On the contrary, in apartment buildings, it is necessary to incorporate al least 10 mm of thermal insulation in external walls to give compliance to the regulation.
- c) The National Thermal Regulation was designed exclusively based on winter comfort criteria (monthly heating degree-hours). Overheating phenomena for cooling season were not considered.

01. CONTEXT

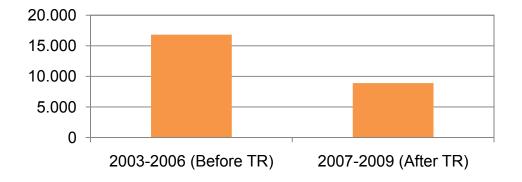
Impact of the National Thermal Regulation in the private real estate market in Santiago

THREE QUESTIONS:

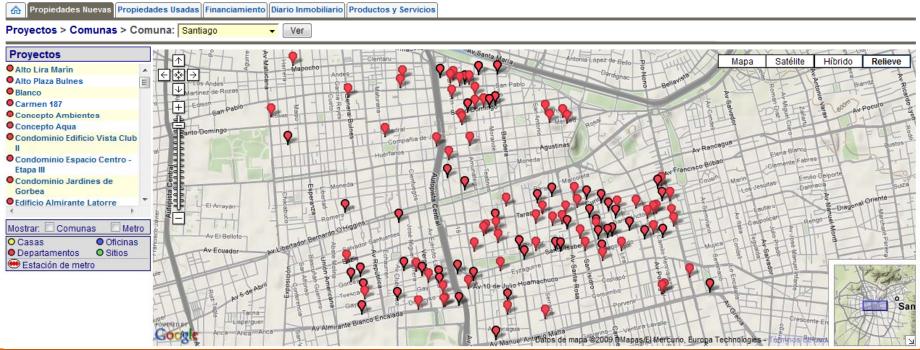
a) Is it possible to generate more representative building typologies, regarding the private real estate market in Santiago?

*"Energy Lord Cochrane" Building*30.35 m² useful surface
3.42 m² terrace surface
1,105 UF

"Estocolmo" Building 128.84 m² useful surface 46.84 m² terrace surface 7,500 UF


- b) What has been the impact of the Thermal Regulation in the thermal behaviour of new apartment buildings in Santiago?
- c) How the summer comfort of new apartment buildings in Santiago has been affected by the introduction of a Thermal Regulation, designed exclusively for the heating season?

02. MARKET NICHES DEFINITION BY MEANS OF A MODEL-BASED CLUSTERING *Description of the database*


Portal Inmobiliario.com Database,

corresponding to 25,711 apartments for sale in Santiago, during the period 2003-2008.

<u>Important</u>: 2nd Stage of the TR comes into force on 4th January 2007

SET 2009 - 8th International Conference on Sustainable Energy Technologies

02. MARKET NICHES DEFINITION BY MEANS OF A MODEL-BASED CLUSTERING Description of the database

Average values to apartments for sale in Santiago for the period 2003-2009

CASES NUMBER	8,898					
	MIN	MAX	MEAN	STANDARD DEVIATION		
Useful surface [m ²]	18.41	309.22	59.44	28.73		
Terrace surface [m ²]	0	181.39	6.79	8.36		
Total Surface [m ²]	18.41	354.16	66.23	35.21		
Number of floors	1	26	9.03	6.09		
Number of rooms	1	5	2.25	0.85		
Number of bathrooms	1	5	1.73	0.70		
Price [UF]*	567	22,500	2,464	1,773		
Price [UF/m ²]*	15.23	90.93	39.79	9.95		

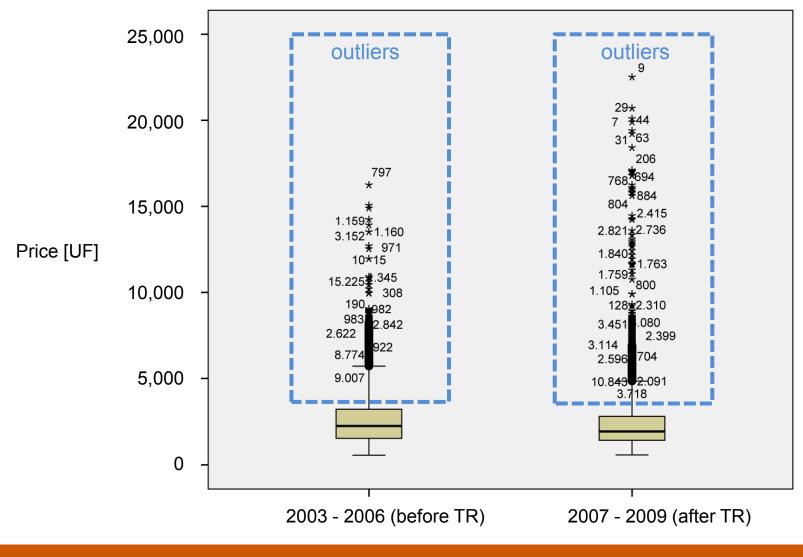
 * 1 UF = EUR 27.3 according to Central Bank of Chile (http://bcentral.cl), 15th June 2009

	MIN	MAX	MODE
Main central hall	1	4	2
Security	1	3	2
Loft or duplex	0	1	0
Green areas	0	1	1
Additional parking facilities	0	1	0
Quality finish for kitchen	1	4	2
Service rooms	0	4	0
Central heating	0	1	1
Loggia	0	1	0
Floating floor	0	1	1
Carpet floor	0	1	1
Quality finish	1	4	3
Parking and storage rooms	0	1	0

02. MARKET NICHES DEFINITION BY MEANS OF A MODEL-BASED CLUSTERING Comparison of both periods

Variance Analysis (ANOVA)

		ANALYSIS BET	WEEN GROUPS	
Variable	Groups	F - test	Statistical Significance	
Drice [LE/m ²]	2003 – 2006 (before TR)	36.48	1.56 E-09	
Price [UF/m ²]	2007 – 2007 (after TR)	30.40	1.50 E-09	


Levene Test for Equality of Variances

	M-ESTIMATORS						
Variable	Groups	Huber's M-Estimator	Tukey's Biweight	Hampel's M-Estimator	Andrews' Wave		
$Drive [L] [m^2]$	2003 – 2006 (before TR)	39.5393	39,2211	39.6484	39.2128		
Price [UF/m ²]	2007 – 2007 (after TR)	39.4805	39.3062	39.5344	39.3004		

- a) There is not a significant change in the real estate values and products with the introduction of the Thermal Regulation.
- b) Probably, the extra cost for incorporating Thermal Regulation improvements was absorbed in the profit margin of real estate developers.

02. MARKET NICHES DEFINITION BY MEANS OF A MODEL-BASED CLUSTERING *Comparison of both periods*

Box plots for both periods

02. MARKET NICHES DEFINITION BY MEANS OF A MODEL-BASED CLUSTERING Niches market definition for apartments in Santiago

CLUSTER	NUMBER OF APARTMENTS	PERCENTAGE OF TOTAL
I	4,975	19.3%
II	4,255	16.5%
III	7,563	29.4%
IV	8,918	34.7%
Total	25,711	100.0%

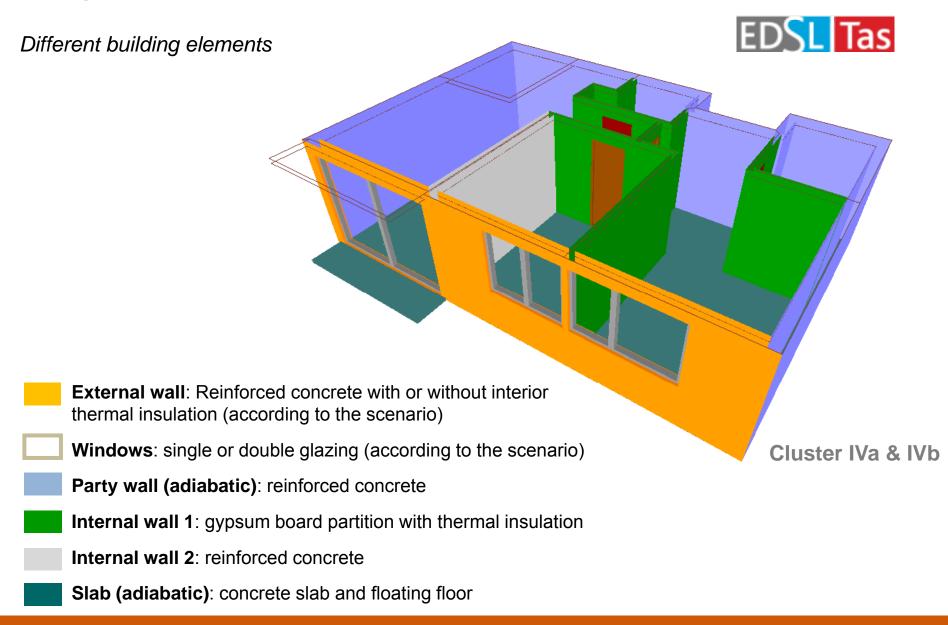
Number of apartments and percentage of the total for each cluster

Centroids of clusters

	USEFUL	SURFACE	TERRACE	SURFACE	PRICE		
CLUSTER	MEAN	STANDARD DEVIATION	MEAN	STANDARD DEVIATION	MEAN	STANDARD DEVIATION	
	[m²]	[m²]	[m²]	[m²]	[UF]	[UF]	
I	55.07	19.36	6.24	5.23	2,272.19	1,040.06	
II	104.09	32.03	16.63	13.11	4,958.65	2,112.43	
III	49.22	16.16	4.96	3.86	1,961.70	812.70	
IV	56.01	18.23	5.68	4.77	2,045.63	896.10	
Total	61.78	28.23	7.39	7.94	2,546.86	1,607.96	

SET 2009 - 8th International Conference on Sustainable Energy Technologies

03. THERMAL BEHAVIOUR OF CLUSTERS Description of the models used in the thermal simulations


SET 2009 - 8th International Conference on Sustainable Energy Technologies

03. THERMAL BEHAVIOUR OF CLUSTERS Description of the models used in the thermal simulations

Three scenarios regarding Thermal Regulation [TR]

	BUILDING ELEMENTS										
		WIND	ows	EXTERNAL WALLS							
	SCENARIOS				COMPONEN	тѕ					
SCENARIOS		MATERIAL	U-VALUE	MATERIAL	THICKNESS	DENSITY	THERMAL CONDUCTIVITY	U-VALUE			
			[W/m²K]		[mm]	[kg/m³]	[W/mK]	[W/m²K]			
S1	Before 2 nd stage of TR	Single glazing	5,8	Reinforced concrete	200	2400	1,63	3,41			
				Gypsum board	10	700	0,26				
S2	After 2 nd stage of TR	Single glazing	-	5,8	5,8	5,8	Expanded polystyrene foam	20	10	0,043	1,25
				Reinforced concrete	200	2400	1,63				
	After 2 nd			Gypsum board	10	700	0,26				
S 3	S3 stage of TR and double glazing	nd double glazing	2,8	Expanded polystyrene foam	20	10	0,043	1,25			
				Reinforced concrete	200	2400	1,63				
SE	T 2009 - 8 th Internatio	nal Conference	on Sustaina	ble Energy Technologies		Aachen, 31s	^t August to 3 rd Sept	ember 2009			

03. THERMAL BEHAVIOUR OF CLUSTERS Description of the models used in the thermal simulations

03. THERMAL BEHAVIOUR OF CLUSTERS *Results in terms of winter and summer thermal comfort*

Impact of the Thermal Regulation (extra-insulation of the scenarios S2 & S3) How can I reduce this overheating (as consequence of the insulation increase)?

CLUSTERS	SCENARIOS	HEATING DEGREE HOURS (WINTER COMFORT)		OVERHEATING DEGREE HOURS (SUMMER COMFORT)	
		Degree-hours below 20°C	% reduction compared to S1	Degree-hours over 26°C	% reduction compared to S1
I	S1	63,972		23,346	
	S2	52,853	17%	31,694	- 36%
	S3	41,191	36%	47,474	- 103%
II	S1	73,008		17,948	
	S2	63,677	13%	24,402	- 36%
	S3	48,925	33%	35,419	- 97%
	S1	90,513		20,569	
Ш	S2	86,860	4%	22,744	- 11%
	S3	69,431	23%	37,171	- 81%
IVa	S1	80,430		30,459	
	S2	73,769	8%	37,418	- 23%
	S3	58,809	27%	57,351	- 88%
IVb	S1	69,515		52,188	
	S2	62,972	9%	61,233	- 17%
	S3	48,263	31%	87,009	- 67%

SET 2009 - 8th International Conference on Sustainable Energy Technologies

03. THERMAL BEHAVIOUR OF CLUSTERS Different ventilation strategies used in the thermal simulations

DESCRIPTION		WINTER		SUMMER		
		ACH	OPERATION	ACH	OPERATION	
V1	Steady ventilation	1	24 hours	1	24 hours	
V2	V2 Operable windows (managed by users)		Windows are closed	Free	<i>Windows are open</i> : when T° interior > T° exterior; T° interior ≥ 26°C and T° exterior ≥ 16°C	
				1	Windows are closed (rest of the time)	
V3	Night ventilation*	1	24 hours, from May to October	1	Daytime (between 07:00 and 24:00), from November to April	
				4	Night (between 24:00 and 07:00), from November to April	

* Ventilation regimen used by the CCTEv2.0 software, to give compliance to the procedures of the new official energy certification rating system for buildings

SET 2009 - 8th International Conference on Sustainable Energy Technologies

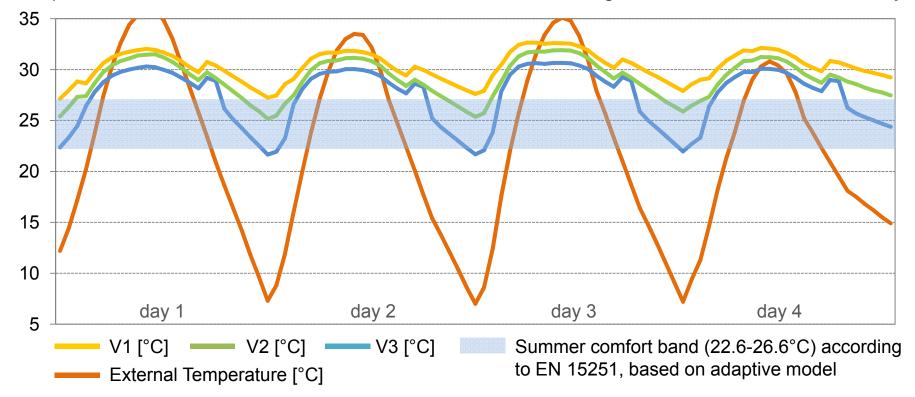
03. THERMAL BEHAVIOUR OF CLUSTERS

Results of the simulations considering ventilation strategies

CLUSTER	SCENARIOS	VENTILATION STRATEGIES	OVERHEATING DEGREE HOURS (SUMMER COMFORT)		
			Degree-hours over 26°C	% reduction compared to V1	
I	S1	V1	23,346		
		V2	15,922	32%	
		V3	10,673	54%	
	S2	V1	31,694		
		V2	19,685	37%	
		V3	13,307	58%	
	S3	V1	47,475		
		V2	26,179	45%	
		V3	17,657	63%	

- a) The percentage of reduction both V2 and V3 in comparison to V1 is more effective when the envelope is insulated, such as in the S2 and S3 scenarios.
- b) With intensive night ventilation (V3), overheating due to application of Thermal Regulation and double glazing (S3) could be importantly reduced in comparison with the naturally ventilated initial scenario (S1-V2)
- c) V3 is much more effective in absolute terms, but due to this corresponds typically to a normative approach, could be much less real than V2.

SET 2009 - 8th International Conference on Sustainable Energy Technologies


03. THERMAL BEHAVIOUR OF CLUSTERS *Results of the simulations considering ventilation strategies*

c) V3 is much more effective in absolute terms, but due to this corresponds typically to a normative approach, could be much less real than V2.

SET 2009 - 8th International Conference on Sustainable Energy Technologies

03. THERMAL BEHAVIOUR OF CLUSTERS *Results of the simulations considering ventilation strategies*

Temperature variation of Cluster I for different ventilation strategies and S3 in four summer days

- d) Neither of the ventilation strategies is able to reduce completely overheating during daytime (reaching the summer comfort band).
- e) Could be interesting to identify which clusters can reach summer comfort using just passive cooling techniques. For that, it is clear that it is necessary to integrate other measures in the study, such as solar protection and thermal inertia.

03. THERMAL BEHAVIOUR OF CLUSTERS *Results of the simulations considering ventilation strategies*

CONCLUSIONS

- a) The decision of the current TR of incorporating thermal insulation in the external envelope of apartments in Santiago appears as appropriate to improve winter comfort conditions. However, overheating could be an important problem, if users are not aware of the role of natural ventilation in the thermal behaviour of apartments in summer.
- b) Due to the achieved improvements related to the 2nd stage of TR are still limited, there is an important future challenge to introduce most restrictive requirements in the regulation and encouraging the use of double glazing.

FURTHER RESEARCH

- c) The incorporation of other passive cooling techniques in the study, such as solar protection and thermal inertia (combined to the studied ventilation strategies), to define how it is possible reach summer comfort without the use of air conditioning.
- d) A survey study of ventilation habits for apartments in Santiago is proposed as further research. The ventilation strategies used in this article just are boundary models (which define optimum and minimum performances related to ventilation), which should be compared to a most realistic behaviour.

Thermal Comfort and market niches for apartment buildings: *Impact of the current Thermal Regulation in the private real estate market in Santiago de Chile*

Felipe Encinas Pino MSc Architect PhD Student Université Catholique de Louvain Architecture et Climat Louvain-la-Neuve, Belgium encinas.felipe@gmail.com

SET 2009 - 8th International Conference on Sustainable Energy Technologies