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1 Introduction

Let F2 be the field of order 2 and x = (x0, . . . , xn−1) ∈ Fn
2 a binary sequence of

length n. The derivate of x is the sequence ∂x = (x0 +x1, x1+x2, . . . , xn−2+
xn−1). We define ∂0x = x, ∂1x = ∂x and, for 2 ≤ i ≤ n − 1, ∂ix = ∂∂i−1x.
The Steinhaus triangle of the sequence x is the sequence S(x) formed by x
and its derivatives: S(x) = (x, ∂x, . . . , ∂n−1x). Figure 1 shows a graphical
representation of S(x) for the sequence x = (0, 0, 1, 0, 1, 0, 0). The black and
white circles represent ones and zeroes respectively; the first row corresponds
to x and the following rows to the iterated derivatives. Each entry of the
triangle is the binary sum of the two values immediately above it.

In 1958, H. Steinhaus [13] asked for which sequences x = (x0, . . . , xn−1)
the triangle S(x) is balanced, that is, S(x) has as many zeroes as ones. He
observed that no sequence of length n ≡ 1, 2 (mod 4) produces a balanced tri-
angle, so the problem was to decide if they exist for lengths n ≡ 0, 3 (mod 4).
H. Harborth [9] answered the question in the affirmative by constructing ex-
amples of such sequences. S. Eliahou et al. studied binary sequences generating
balanced triangles with some additional condition: sequences of length n, all
of whose initial segments of length n − 4t for 0 ≤ t ≤ n/4 generate balanced
triangles [5], symmetric and antisymmetric sequences [6], and sequences with
zero sum [7]. F.M. Malyshev and E.V. Kutyreva [11] estimated the number of
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Fig. 1. On the left, Steinhaus triangle S(x) for the sequence x = (0, 0, 1, 0, 1, 0, 0).
On the right, the Pascal triangle P (u,v) for the sequences u = (0, 1, 0, 1, 1, 0, 0)
and v = (0, 0, 0, 0, 1, 1, 0).

Steinhaus triangles (which they call Boolean Pascal triangles) of sufficiently
large size n containing a given number ω ≤ kn (k > 0) of ones. More recently,
J. Chappelon [4] considered a generalization by J. C. Molluzo [12] to sequences
with entries in Zm, with the condition that every element in Zm has the same
multiplicity in the triangle. Here, we focus on the symmetry of the graphical
representation of Steinhaus triangles.

Let u = (u0, . . . , uℓ) and v = (v0, . . . , vℓ) be two binary sequences in Fℓ+1
2

with u0 = v0. The general binary Pascal triangle, or Pascal triangle for short,
P (u,v), is the double indexed sequence z(r, c) defined by the initial conditions

z(r, 0) = ur, z(r, r) = vr, (0 ≤ r ≤ ℓ) (1)

and the recurrence

z(r, c) = z(r − 1, c− 1) + z(r − 1, c) (1 ≤ r ≤ ℓ, 1 ≤ c ≤ r − 1) (2)

The Pascal triangle P (u,v) is similar to the ordinary Pascal triangle, but the
left and right sides are not filled with ones, but with the given values u0, . . . , uℓ

on the left side and v0, . . . , vℓ on the right side. Recurrence (2) is the usual
recurrence of binomial numbers, but here the initial conditions are those in (1)
and the sum is done in F2. Figure 1 shows a graphic representation of a Pascal
triangle.

The particular case u0 = · · · = uℓ = v0 = · · · = vℓ = 1 is the ordinary
Pascal triangle modulo 2, which is known to be related to the Sierpiński
sieve [8,14]. H. Harborth and G. Hurlbert [10] showed that for every natural n
there exists a natural ℓ and binary sequences of u and v of length ℓ+1 such that
the Pascal triangle P (u,v) has exactly n ones. Moreover, they determine the
minimum possible value of ℓ. As for Steinhaus triangles, here we are interested
in the symmetry of Pascal triangles.

Both Steinhaus and Pascal triangles appear in the context of cellular au-
tomata, particularly in a bidimensional cellular automaton following the local
rule represented in Figure 2, see [1,2,3].

In this context, A. Barbé [3] has studied symmetries in Steinhaus and Pas-
cal triangles (which he called binary difference pattern and∆-binary difference
pattern, respectively) as patterns in such a bidimensional cellular automaton.
A Steinhaus or Pascal triangle is said to have rotational symmetry if its graph-
ical representation is invariant under rotations of 120 and 240 degrees, and
it is said to have dihedral symmetry if it has rotational symmetry and the
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Fig. 2. Local rule of a cellular automaton that generates Steinhaus and Pascal tri-
angles

graphical representation is invariant by axial symmetry with respect to the
height of the triangle. Besides enumeration results counting the number of
Steinhaus and Pascal triangles with rotational and dihedral symmetries, for
example, he characterizes by matrix properties the sequences which produce
Steinhaus and Pascal triangles with rotational and dihedral symmetry. Our
goal here is to give formulae for explicitly obtaining such sequences.

In Sections 2 and 3, we give formulae for obtaining the sequences x ∈ Fn
2

such that S(x) has rotational and dihedral symmetry, respectively.
If u = (u0, . . . , uℓ) and v = (v0, . . . , vℓ), and the Pascal triangle P (u,v)

has rotational symmetry, then obviously vi = uℓ−i for 0 ≤ i ≤ ℓ, so the triangle
is determined by u. In Sections 4 and 5 we give formulae for obtaining the
sequences u such that the corresponding Pascal triangle has rotational and
dihedral symmetry, respectively.

Finally, Section 6 deals with the possibility of changing F2 to an arbitrary
group throughout the discussion.

2 Rotational symmetry in Steinhaus triangles

Consider the Steinhaus triangle S(x) of the sequence x = (x0, . . . , xn−1). The
coordinates of ∂rx will be indexed from 0 to n− 1− r and denoted by x(r, c),
that is, ∂rx = (x(r, 0), x(r, 1), . . . , x(r, n− 1− r)). In particular, x(0, i) = xi

for 0 ≤ i ≤ n− 1. It is known (and easily proved by induction) that the entry
x(r, c) of the triangle is

x(r, c) =

r∑

i=0

(
r

i

)
xc+i. (3)

The set S(n) = {S(x) : x ∈ Fn
2} is a F2-vector space of dimension n. Let

SR(n) be the set of Steinhaus triangles of size n with rotational symmetry. In
terms of coordinates, the condition of S(x) being rotationally symmetric is

x(r, c) = x(c, n − r − c− 1), (0 ≤ r ≤ n− 1, 0 ≤ c ≤ n− r − 1),

or, equivalently,

x(r, c) = x(n − r − c− 1, r), (0 ≤ r ≤ n− 1, 0 ≤ c ≤ n− r − 1).

In a natural way SR(n) is a vector subspace of S(n). Define ǫ3(n) = 1 if
n ≡ 1 (mod 3) and 0 otherwise; A. Barbé ([3], Property 7) shows that the



162 J. M. Brunat and M. Maureso

Fig. 3. Rotationally symmetric Steinhaus triangles of size n ≤ 3

SR(1) SR(2) SR(3)

dimension of SR(n) is d(n) = dimSR(n) = ⌊n/3⌋+ ǫ3(n). We shall show that
the d(n) central coordinates in x = (x0, . . . , xn−1) can be given arbitrary
values determining a Steinhaus triangle with rotational symmetry. Note that
the d central coordinates are

xq = x(0, q), . . . , x2q = x(0, 2q), if n = 3q + 1;
xq+1 = x(0, q + 1), . . . , x2q = x(0, 2q), if n = 3q + 2;
xq = x(0, q), . . . , x2q−1 = x(0, 2q − 1), if n = 3q.

(4)

Consider first the smallest values of n, see Figure 3. For n = 1, there exist
two triangles in SR(1), which are S((0)) and S((1)); both are rotationally
symmetric, and the value of x0 determines the triangle S((x0)). For n = 2,
there exists one rotationally symmetric triangle in SR(2), which is S((0, 0)),
and no coordinate can be chosen. For n ≥ 3, there exist two rotationally
symmetric triangles in SR(3), which are S((0, 0, 0)) and S((0, 1, 0)), and the
central coordinate x1 determines the triangle S(0, x1, 0).

Theorem 1. Let n ≥ 4 be an integer, and d = dimSR(n). For each vector
x ∈ Fn

2 , let x̂ be the vector formed by the d central coordinates of x. Then, the
mapping f : SR(n)→ Fd

2 defined by S(x) 7→ x̂ is an isomorphism.

Proof. The mapping f is clearly linear and both vector spaces have the same
dimension. Then, it suffices to prove that f is exhaustive.

Consider first the case n = 3q + 1, see Figure 4.
Let x = (x0, . . . , xn−1) ∈ Fn

2 be such that S(x) ∈ SR(n). In this case x̂ =
(xq, . . . , x2q). Because of formula (3), in S(x), all the entries in the triangle
of vertices xq = x(0, q), x2q = x(0, 2q) and x(q, q) are linearly determined by
x̂ = (xq, . . . , x2q), and, in particular, those in the lines from xq = x(0, q) to
x(q, q) and from x2q = x(0, 2q) to x(q, q). Because of the rotational symmetry,
the values in the line from x2q = x(0, 2q) to x(q, q) are the same as those in
the line from x(2q, q) to x(q, q), that is,

x(q + s, q) = x(q − s, q + s), (0 ≤ s ≤ q).

Thus, we have all the entries in column q, that is, x(0, q), . . . ,x(2q, q), as a
linear combination of xq, . . . , x2q. Column q determines linearly all the values
in the triangle of vertices xq = x(0, q), x(2q, q) and x3q = x(0, 3q). Then, there
exists a linear combination of xq, . . . , x2q for any x2q+1, . . . , x3q. The values of
x3q = x(0, 3q), x(1, 3q − 1), . . . ,x(q − 1, 2q + 1) are also determinated by the
values in column q. Because of rotational symmetry, we have x0 = x(0, 0) =
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Fig. 4. Case n = 3q + 1
x̂

x0 xq−1 xq x2q x2q+1 x3q

x(1, q)

x(q − 1, q)

x(q, q)

x(q + s, q)

x(2q, q)

x(3q, 0)

x(q + s, q)

x(q − s, q + s)

x(0, 3q), . . . , xq−1 = x(0, q − 1) = x(q − 1, 2q + 1). Also, there is a linear
combination of xq, . . . , x2q for any x0, . . . , xq−1 Therefore, given z ∈ Fd

2, there
is a triangle in S(x) ∈ SR(n) such that f(S(x)) = z.

Consider now the case n = 3q + 2. Let x = (x0, . . . , xn−1) be such that
S(x) ∈ SR(n). As in the previous case, the entries in column q can be written
in terms of xq+1, . . . , x2q, and, by using rotational symmetry, x0, . . . , xq and
x2q+1, . . . , xn−1 are a linear combination of xq+1, . . . , x2q. However, the trian-
gle formed by the three entries x(q, q), x(q, q+ 1) and x(q+ 1, q) is a triangle
of size 2 rotationally symmetric because it is concentric to the triangle S(x).
Then, x(q, q) = x(q, q + 1) = x(q + 1, q) = 0. We have the equalities

0 = x(q, q) =

q∑

i=0

(
q

i

)
xq+i and 0 = x(q, q + 1) =

q∑

i=0

(
q

i

)
xq+1+i,

which give the expression of xq and x2q+1 as a linear combination of the
coordinates of x̂ = (xq+1, . . . , x2q). By using symmetry as in the previous
case, the sequence x̂ = (xq+1, . . . , x2q) determines the triangle S(x).

Finally, let n = 3q. The argument begins now with xq−1, . . . , x2q, and
the column q − 1 is used instead of column q. As before, every entry can be
written in terms of xq−1, . . . , x2q. Now, the triangle with vertices x(q−1, q−1),
x(q− 1, q+ 1) and x(q+ 1, q− 1) is a triangle of size 3 rotationally symmetric
because it is concentric to the triangle S(x). Then, we have
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0 = x(q − 1, q − 1) =

q−1∑

i=0

(
q − 1

i

)
xq−1+i,

0 = x(q − 1, q + 1) =

q−1∑

i=0

(
q − 1

i

)
xq+1+i.

Thus, xq−1 and x2q are also a linear combination of xq, . . . , x2q−1. Hence,
x̂ = (xq, . . . , x2q−1) determines the triangle S(x). ⊓⊔

Following the method of the proof, we next obtain explicit formulae for x
in terms of the central coordinates x̂.

Assume n = 3q + 1. For 0 ≤ r ≤ q, we have

x(r, q) =

r∑

i=0

(
r

i

)
xq+i, (0 ≤ r ≤ q),

and, for q + 1 ≤ r ≤ 2q, if s = r − q, we have

x(r, q) = x(q + s, q) = x(q − s, q + s) =

q−s∑

j=0

(
q − s
j

)
xq+s+j .

Now, for 0 ≤ e ≤ q − 1, we have

xe = x(e, 3q − e)

=

2q−e∑

j=0

(
2q − e
j

)
x(2q − j, q) =

2q∑

r=e

(
2q − e
2q − r

)
x(r, q)

=

2q∑

r=e

(
2q − e
r − e

)
x(r, q) =

q∑

r=e

(
2q − e
r − e

)
x(r, q) +

2q∑

r=q+1

(
2q − e
r − e

)
x(r, q).

The first summand is

q∑

r=e

(
2q − e
r − e

)
x(r, q) =

q∑

r=e

(
2q − e
r − e

) r∑

i=0

(
r

i

)
xq+i =

q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r

i

))
xq+i.

The second is, with s = r − q,
2q∑

r=q+1

(
2q − e
r − e

)
x(r, q) =

q∑

s=1

(
2q − e
q − s

) q−s∑

j=0

(
q − s
j

)
xq+s+j

=

q∑

s=1

(
2q − e
q − s

) q∑

i=s

(
q − s
i− s

)
xq+i

=

q∑

i=1

(
q∑

s=1

(
2q − e
q − s

)(
q − s
i− s

))
xq+i.

Putting it all together, we have
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xe =

q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r

i

)
+

i∑

r=1

(
2q − e
q − r

)(
q − r
i− r

))
xq+i.

The expressions of x2q+e for 1 ≤ e ≤ q are obtained in an analogous way.
Simple but cumbersome calculations lead to the formulae for the cases n =
3q + 2 and n = 3q. Next we resume such formulae. In each case we give the
free coordinates x̂ and the formulae for the remaining.

Case n = 3q + 1. x̂ = (xq, . . . , x2q).

(0 ≤ e ≤ q − 1) xe =

q∑

i=0

(
q∑

r=e

(
2q − e
r − e

)(
r

i

)
+

i∑

r=1

(
2q − e
q − r

)(
q − r
i− r

))
xq+i

(1 ≤ e ≤ q) x2q+e =

q∑

i=0

(
q∑

r=0

(
q + e

r

)(
r

i

)
+

e∑

r=1

(
q + e

q + r

)(
q − r
i− r

))
xq+i

Case n = 3q + 2. x̂ = (xq+1, . . . , x2q).

(0 ≤ e ≤ q − 1) xe =

q∑

i=1

(
q−1∑

r=e

(
2q + 1− e
r − e

)((
q

i

)
+

(
r

i

))

+

q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
i− r

)
+

(
q

i− 1

)))
xq+i

xq =

q∑

i=1

(
q

i

)
xq+i

x2q+1 =

q∑

i=1

(
q

i− 1

)
xq+i

(1 ≤ e ≤ q) x2q+1+e =

q∑

i=1

(
q−1∑

r=0

(
q + 1 + e

r

)((
q

i

)
+

(
r

i

))

+
e−1∑

r=0

(
q + 1 + e

q + 2 + r

)((
q − 1− r
i− 2− r

)
+

(
q

i− 1

)))
xq+i

Case n = 3q. x̂ = (xq, . . . , x2q−1).

(0 ≤ e ≤ q − 2) xe =

q∑

i=1

(
q∑

r=e

(
2q − e
r − e

)((
q − 1

i

)
+

(
r

i

))

+

q−2∑

r=0

(
2q − e
q − 2− r

)((
q − 2− r
i− 3− r

)
+

(
q − 1

i− 2

)))
xq−1+i

xq−1 =

q−1∑

i=1

(
q − 1

i

)
xq−1+i x2q =

q∑

i=2

(
q − 1

i− 2

)
xq−1+i
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(1 ≤ e ≤ q − 1) x2q+e =

q∑

i=1

(
q∑

r=0

(
q + 1 + e

r

)((
q − 1

i

)
+

(
r

i

))

+
e−1∑

r=0

(
q + 1 + e

q + 2 + r

)((
q − 2− r
i− 3− r

)
+

(
q − 1

i− 2

)))
xq−1+i

For example, all triangles in SR(7) are formed by giving values x2, x3, x4 ∈
F2 to obtain the first row, and this is (x2 + x4, x4, x2, x3, x4, x2, x2 + x4).
Figure 5 shows all triangles in SR(7); each triangle is labeled by (x2, x3, x4).
The first three triangles form a basis of SR(7).

Fig. 5. The eight Steinhaus triangles of size 7 with rotational symmetry.

(1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

3 Dihedral symmetry in Steinhaus triangles

Let SD(n) be the vector space of the dihedrally symmetric Steinhaus triangles
of size n. All rotationally symmetric Steinhaus triangles of size n ≤ 3 are
also dihedrally symmetric, see Figure 3. Thus, we have SD(n) = SR(n) for
1 ≤ n ≤ 3. Let ǫ6(n) = 1 if n ≡ 1 (mod 6) and ǫ6(n) = 0 otherwise. It is
known ([3] Corollary 2) that the dimension of SD(n) is

d̃(n) = dimSD(n) =

⌊
n+ 3

6

⌋
+ ǫ6(n) =

⌈
d(n)

2

⌉
,

where d(n) = dimSR(n). Also, if x = (x0, . . . , xn−1) and S(x) is rotationally
symmetric, then S(x) is dihedrally symmetric if, and only if, xi = xn−1−i for
all i ∈ {0, . . . , n − 1}.

Theorem 2. Let n ≥ 4 be an integer, d = dimSR(n) and d̃ = dimSD(n).
For x ∈ Fn

2 , let x̂ be the vector formed by the d central coordinates of x
and x̃ the vector formed by the first d̃ coordinates of x̂. Then, the mapping
f : SD(n)→ Fd̃

2 defined by S(x) 7→ x̃ is an isomorphism.
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Proof. The mapping f is clearly linear, and both vector spaces have the same
dimension. Then, it suffices to prove that f is exhaustive.

Let x = (x0, . . . , xn−1) be such that S(x) is dihedrally symmetric, and let
x̃ = (xq1, . . . , xq1+d̃−1). Since S(x) is rotationally symmetric, the x̂ determine

x. Since S(x) is dihedrally symmetric, the first d̃ coordinates in x̂ determine
the remaining. Thus, every coordinate in x depends linearly on the coordinates
in x̃. Therefore, given z ∈ Fd̃

2, there exists a triangle S(x) ∈ SD(n) such that
f(S(x)) = z. ⊓⊔

The argument in the proof leads to the following formulae. In each of the
three cases n = 3q + 1, n = 3q + 2 and n = 3q we must distinguish the cases
q odd and q even. As before, we give the free coordinates x̃ and the formulae
for the remaining.

Case n = 3q + 1. Define

A(i, q, e) =

q∑

r=e

(
2q − e
r − e

)((
r

i

)
+

(
r

q − i

))
+

q∑

r=1

(
2q − e
q − r

)((
q − r
q − i

)
+

(
q − r
i

))

• q = 2t+ 1. x̃ = (xq , . . . , xq+t)

(0 ≤ e ≤ q − 1) xe =
t∑

i=0

A(i, q, e)xq+i

(1 ≤ e ≤ q + t+ 1) xq+t+e = xq+t+1−e

• q = 2t. x̃ = (xq , . . . , xq+t).

(0 ≤ e ≤ q − 1) xe =
t−1∑

i=0

A(i, q, e)xq+i

+

(
q∑

r=e

(
2q − e
r − e

)(
r

t

)
+

q∑

r=1

(
2q − e
q − r

)(
q − r
t− r

))
xq+t

(1 ≤ e ≤ q + t) xq+t+e = xq+t−e

Case n = 3q + 2. Define

A(i, q, e) =

q−1∑

r=e

(
2q + 1− e
r − e

)((
q + 1

i

)
+

(
r

i

)
+

(
r

q + 1− i

))

+

q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1

i

)
+

(
q + 1− r
i− r

)
+

(
q + 1− r

i

))
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• q = 2t+ 1. x̃ = (xq+1, . . . , xq+t+1).

(0 ≤ e ≤ q − 1) xe =
t∑

i=1

A(i, q, e)xq+i

+

(
q−1∑

r=e

(
2q + 1− e
r − e

)((
q

t+ 1

)
+

(
r

t+ 1

))

+

q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
t+ 1− r

)
+

(
q

t

)))
xq+t+1

xq =

t∑

i=1

(
q + 1

i

)
xq+i +

(
q

t+ 1

)
xq+t+1

(0 ≤ e ≤ q + t) x3q+1−e = xe

• q = 2t. x̃ = (xq+1, . . . , xq+t).

(0 ≤ e ≤ q − 1) xe =

t∑

i=1

A(i, q, e)xq+i, xq =

t∑

i=1

(
q + 1

i

)
xq+i

(0 ≤ e ≤ q + t) x3q+1−e = xe

Case n = 3q. Define

A(i, q, e) =

q∑

r=e

(
2q − e
r − e

)((
q + 1

i+ 1

)
+

(
r

i+ 1

)
+

(
r

q − i

))

+

q−2∑

r=0

(
2q − e
q − 2− r

)((
q − 2− r
i− 2− r

)
+

(
q − 2− r
i+ 1

)
+

(
q − 1

i− 1

)
+

(
q − 1

i+ 1

))

• q = 2t+ 1. x̃ = (xq , . . . , xq+t).

(0 ≤ e ≤ q − 2) xe =

t−1∑

i=0

A(i, q, e)xq+i

+

(
q∑

r=e

(
2q − e
r − e

)((
q

t+ 1

)
+

(
r

t+ 1

))

+

q−2∑

r=0

(
2q − e
q − 2− r

)((
q − 2− r
t− 2− r

)
+

(
q − 1

t− 1

)))
xq+t

xq−1 =

t−1∑

i=0

((
q − 1

i+ 1

)
+

(
q − 1

i− 1

))
xq+i +

(
q − 1

t+ 1

)
xq+t

(0 ≤ e ≤ 3t+ 1) xq+t+e = xq+t−e
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• q = 2t. x̃ = (xq , . . . , xq+t−1).

(0 ≤ e ≤ q − 2) xe =

t−1∑

i=0

A(i, q, e)xq+i

xq−1 =

t−1∑

i=0

((
q − 1

i+ 1

)
+

(
q − 1

i− 1

))
xq+i

(0 ≤ e ≤ 3t) xq+t+e = xq+t−1−e

For instance, the sequences x such that S(x) has dihedral symmetry for n =
7 are the sequences of the form x = (0, x2, x2, x3, x2, x2, 0), with x2, x3 ∈ F2.
Here, x̃ = (x2, x3) and x̂ = (x2, x3, x2). Therefore, in Figure 5, the triangles
labeled (0, 0, 0), (0, 1, 0), (1, 0, 1) and (1, 1, 1) form SD(7).

4 Rotational symmetry in Pascal triangles

The results about rotational and dihedral symmetry in Pascal triangles will
be deduced from the corresponding formulae in Steinhaus triangles following a
technique introduced by A. Barbé [3], consisting in associating to each Pascal
triangle of size k an Steinhaus triangle of size 2k preserving the properties of
symmetry.

Let u = (u0, . . . , uℓ) and v = (v0, . . . , vℓ) vectors of Fℓ
2 with u0 = v0,

and consider the Pascal triangle P (u, v). If P (u, v) has rotational symmetry,
then vi = uℓ−i for 0 ≤ i ≤ ℓ. It follows: (i) the triangle is determined by
u; (ii) the three vertices of the triangle are equal: u0 = v0 = uℓ = vℓ, and
(iii) neither the values of the vertices have influence on the remaining entries
of the triangle, nor are the vertices influenced by them. It follows that we
can consider Pascal triangles with the vertices removed. For instance, the
rotational symmetry of the picture on the left in Figure 6 is equivalent to the
rotational symmetry of two the triangles obtained by adding to it the three
vertices, all of them with the same value, as shown in the two illustrations on
the right. So, in the following, we consider vertex-less Pascal triangles, though
they will be still called Pascal triangles. A rotationally symmetric (vertex-
less) Pascal triangle is determined by the left side, which will be indexed from

Fig. 6. The rotational symmetry of the illustration on the left is equivalent to the
rotational symmetry of the two Pascal triangles on the right.
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Fig. 7. Left: extension of a rotationally symmetric Pascal triangle of size 5 to a
rotationally Steinhaus triangle of size 10. Right: sketch of the general case.

x̂

a

a′ a′′

bottom to top. Thus, for example, if a = (1, 0, 1, 1, 1), the triangle P (a) is
that on the left in Figure 6. The length of a is the size of P (a). Our goal
is to determine explicitly which sequences a produce Pascal triangles with
rotational and dihedral symmetry. We denote by PR(k) the vector space of
Pascal triangles of size k with rotational symmetry, and by PD(k) the vector
space of Pascal triangles of size k with dihedral symmetry.

Let P (a) be a Pascal triangle of size k rotationally symmetric. Then, by
using the local rule (Figure 2), P (a) can be extended to a unique Steinhaus
triangle S(x) of size 2k which has P (a) as its inscribed and central triangle
of size k, see Figure 7.

The triangle S(x) is the extended Steinhaus triangle of the Pascal triangle
P (a). Explicitly, if a = (a0, . . . , ak−1), then x = (x0, . . . , x2k−1) is given by

xk−i =

i−1∑

j=0

(
i− 1

j

)
ak−1−j, (1 ≤ i ≤ k), (5)

xk+i =
i∑

j=0

(
i

j

)
aj, (0 ≤ i ≤ k − 1). (6)

As P (a) is rotationally symmetric, it follows that S(x) is rotationally sym-
metric. Then, we have

Lemma 1. For each integer k ≥ 3, the mapping f which sends each Pascal
triangle P (a) ∈ PR(k) to its extended Steinhaus triangle S(x) is an isomor-
phisms f : PR(k)→ SR(2k).

As a consequence, the dimension δ(k) of PR(k) is

δ(k) = dimPR(k) = dimSR(2k) =

⌊
2k

3

⌋
+ ǫ3(2k) = 2

⌊
k − 1

3

⌋
.

Theorem 3. Let k ≥ 2 an integer and δ = dimPR(k). For each a ∈ Fk
2, let

a′ be the vector formed by the first δ/2 coordinates of a and a′′ the vector
formed by the last δ/2 coordinates of a. Then, the mapping f : PR(k) → Fδ

2

defined by P (a) 7→ (a′,a′′) is an isomorphism.
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Proof. Clearly the mapping f is linear and both spaces have the same dimen-
sion δ. Thus, it suffices to show that f is exhaustive.

Let a ∈ Fk
2 such that P (a) ∈ PR(k). As P (a) is rotationally symmetric,

the same property holds for its extended Steinhaus triangle S(x), which, by
Theorem 1, is completely determined by the vector x̂ formed by the δ central
coordinates of x. By Formulae (5), the first half of the coordinates of x̂ depend
linearly on a′′, and the second half on a′. We conclude that x depends linearly
on (a′,a′′). As the k − δ central coordinates of a depend linearly on x, we
conclude that, for some ci,j ∈ F2,

aδ/2+i =

δ/2−1∑

j=0

ci,jaj +

δ/2−1∑

j=0

ci,jak−1−j , (0 ≤ i ≤ k − δ − 1). (7)

The set P (a) with a ∈ Fk
2 satisfying (7) is a vector space of dimension δ

containing PR(k). Hence, it is PR(k). Therefore, given (a′,a′′), formulae (7)
allows us to find a such that f(P (a)) = (a′,a′′). ⊓⊔

Next, we give the results obtained by following the method of the previ-
ous proof with explicit calculations. As before, the formulae depend on the
remainder of the division of k by 3. In each case, we give a′ and a′′ and the
formula for obtaining the k − δ central coordinates of a.

Case k = 3s+ 1. a′ = (a0, . . . , as−1), a′′ = (ak−s−1, . . . , ak−1).
Define

q = 2s

A(i, q, e) =

q−1∑

r=e

(
2q + 1− e
r − e

)((
q

i

)
+

(
r

i

))

+

q+1∑

r=2

(
2q + 1− e
q + 1− r

)((
q + 1− r
i− r

)
+

(
q

i− 1

))

B(i, q, e, s) =

(
q − e
s

)(
q

i

)
+

s−1−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t)

Then,

(0 ≤ e ≤ s) as+e =

s−1∑

j=0




q∑

i=s+1+j

(
i− 1− s

j

)
B(i, q, e, s)


 aj

+

s−1∑

j=0

(
s−j∑

i=1

(
s− i
j

)
B(i, q, e, s)

+

q−e−j∑

t=s−e+1

(
q − e
t

)(
q − e− t

j

))
ak−1−j



172 J. M. Brunat and M. Maureso

Case k = 3s+ 2. a′ = (a0, . . . , as), a′′ = (ak−s−1, . . . , ak−1).
Define

q = 2s+ 1

A(i, q, e) =

q∑

r=e

(
2q − e
r − e

)(
r

i

)
+

q∑

r=1

(
2q − e
q − r

)(
q − r
i− r

)

Then,

(1 ≤ e ≤ s) as+e =

s∑

j=0

(
s−e∑

t=0

(
q − e
t

) q∑

i=s+1

(
i− s− 1

j

)
A(i, q, s+ e+ t)

)
aj

+

s∑

j=0

(
s∑

i=0

(
s− i
j

)((
q − e
s− i

)
+

s−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t)

))
ak−1−j

Case k = 3s. a′ = (a0, . . . , as−1), a′′ = (ak−s, . . . , ak−1).
Define

q = 2s

A(i, q, e) =

q∑

r=e

(
2q − e
r − e

)((
q − 1

i

)
+

(
r

i

))

+

q−2∑

r=0

(
2q − e
q − 2− r

)((
q − 2− r
i− 3− r

)
+

(
q − 1

i− 2

))

B(i, q, e, s) =
s−2−e∑

t=0

(
q − e− 1

t

)
A(i, q, s+ e+ t)

Then,

(0 ≤ e ≤ s− 1) as+e =

s−2∑

j=0

(
q∑

i=s+1

(
i− 1− s

j

)
B(i, q, e, s)

+

q−1∑

i=s+1

(
q − e− 1

s

)(
q − 1

i

)(
i− 1− s

j

))
aj

+

(
q∑

i=s+1

(
i− 1− s
s− 1

)
B(i, q, e, s)

)
as−1

+

s−1∑

j=0

(
s∑

i=1

(
s− i
j

)
B(i, q, e, s)

+

(
q − e− 1

s

) s∑

i=1

(
q − 1

i

)(
s− i
j

)

+

q−e−1∑

t=s−e

(
q − e− 1

t

)(
q − e− t− 1

j

))
ak−1−j
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Figure 8 shows all rotationally symmetric Pascal triangles of size 5. They
are formed by giving values a0, a1, a3, a4 ∈ F2 to form the left sides of the
Pascal triangles, these are (a0, a1, a1 + a3, a3, a4). The four triangles in the
first row form a base of PR(5).

Fig. 8. Rotationally symmetric Pascal triangles of size 5.

5 Dihedral symmetry in Pascal triangles

The arguments in the previous section are easily extended to dihedral symme-
try. In fact, it is easy to see that the mapping f sending each Pascal triangle
to its extended Steinhaus triangle, when restricted to dihedrally symmetric
Pascal triangles, also gives an isomorphism:

Lemma 2. For each integer k ≥ 3, the mapping f which sends each Pascal
triangle P (a) ∈ PD(k) to its extended Steinhaus triangle S(x) is an isomor-
phism f : PD(k)→ SD(2k).

As noticed by Barbé ([3], Property 15), if a = (a0, . . . , ak−1), the Pascal
triangle P (a) is symmetric respect to the height of the triangle if, and only
if, ak−1−i = ai for 1 ≤ i ≤ k − 1. This property and Theorem 3 imply the
following.

Theorem 4. Let k ≥ 2 an integer and δ = dimPR(k). For each a ∈ Fk
2, let

a′ be the vector formed by the first δ/2 coordinates of a. Then, the mapping

f : PR(k)→ F
δ/2
2 defined by P (a) 7→ a′ is an isomorphism.
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As before, we give the vector a′ of the first δ/2 coordinates and the formulae
for the remaining coordinates. The functions S(i, q, e) and SS(i, q, e, s) are
defined in each case as in the rotational symmetry.

Case k = 3s+ 1. a′ = (a0, . . . , as−1), q = 2s.

(0 ≤ e ≤ s) as+e =

s−1∑

j=0




q∑

i=s+1+j

(
i− 1− s

j

)
B(i, q, e, s)

+

s−j∑

i=1

(
s− i
j

)
B(i, q, e, s)

+

q−e−j∑

t=s−e+1

(
q − e
t

)(
q − e− t

j

))
aj

(1 ≤ e ≤ s+ 1) aq+e = as−e

Case k = 3s+ 2. a′ = (a0, . . . , as), q = 2s + 1.

(1 ≤ e ≤ s) as+e =

s∑

j=0

(
s−e∑

t=0

(
q − e
t

) q∑

i=s+1

(
i− s− 1

j

)
A(i, q, s+ e+ t)

+

s∑

i=0

(
s− i
j

)((
q − e
s− i

)
+

s−e∑

t=0

(
q − e
t

)
A(i, q, s+ e+ t)

))
aj

(1 ≤ e ≤ s+ 1) aq+e = as+1−e

Case k = 3s. a′ = (a0, . . . , as−1), q = 2s.

(0 ≤ e ≤ s− 1) as+e =

s−1∑

j=0

(
q∑

i=s+1

(
i− 1− s

j

)
B(i, q, e, s)

+

⌊
q − j
s+ 2

⌋(
q − e− 1

s

) q−1∑

i=s+1

(
q − 1

i

)(
i− 1− s

j

)

+

s∑

i=1

(
s− i
j

)((
q − e− 1

s

)(
q − 1

i

)
+B(i, q, e, s)

)

+

q−e−1∑

t=s−e

(
q − e− 1

t

)(
q − e− t− 1

j

))
aj

(0 ≤ e ≤ s− 1) aq+e = as−1−e
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For instance, for size k = 5 there exist 4 Pascal triangles with dihedral
symmetry, with the left row equals (a0, a1, 0, a1, a0), a0, a1 ∈ F2. They are the
triangles in the last row in Figure 8.

6 Generalization to arbitrary abelian groups

The construction of Steinhaus and Pascal triangles can be generalized by using
an arbitrary abelian group instead of F2.

Let G be an abelian group and x = (x0, . . . , xn−1) ∈ Gn. Define ∂0x = x,
∂1x = ∂x = (x0 + x1, . . . , xn−2 + xn−1), and for 2 ≤ i ≤ n − 1, ∂ix = ∂∂ix.
The Steinhaus triangle of x is the sequence S(x) = (x, ∂x, . . . , ∂n−1x). As
before, we can represent S(x) as a triangle, but now each position can take
values in G. Next, we see that rotational symmetry is a strong condition on
the orders of the entries of S(x).

Proposition 1. Let G be an abelian group, n ≥ 2 an integer, and x ∈ Gn

such that S(x) is rotationally symmetric. Then each entry in S(x) has order
two.

Proof. Consider three entries u = x(r−1, c−1), v = x(r−1, c) and w = x(r, c).
We have w = u + v. If S(x) has rotational symmetry, then the rotation of
120 degrees produces the relation v = w + u. Thus, we have w = u + v =
u+ (w + u) = w + u+ u. Hence u+ u = 0. Analogously, v + v = w + w = 0.
We conclude that each entry in S(x) has order two. ⊓⊔

By Proposition 1, we can assume that G is a group such that each element
has order two. Therefore, G can be given a structure of F2-vector space and,
as an additive group, G is a direct sum of copies of F2. Thus, the condition
of a Steinhaus triangle S(x) with x ∈ Gn being rotationally symmetric is
equivalent to the condition that each component is a rotationally symmetric
Steinhaus triangle on F2.

The generalization to Steinhaus triangles to abelian groups can be done
by using alternative definitions of ∂x. For instance, we can define

∂x = (x1 − x0, . . . , xn−1 − xn−2) or ∂x = (x0 − x1, . . . , xn−2 − xn−1),

and then define ∂ix, Steinhaus triangles and rotationally symmetric Stein-
haus triangles as before. Nevertheless, the above arguments can be applied in
a similar way to obtain that all elements in a rotationally symmetric Steinhaus
triangle have order two, and conclude that a rotationally symmetric Steinhaus
triangle on an arbitrary abelian group consists in a direct sum of rotation-
ally symmetric Steinhaus triangles on F2. The same is true about Steinhaus
triangles with dihedral symmetry.

So far, in this section we have considered only Steinhaus triangles, but
it is clear that the same considerations can be applied to Pascal triangles
rotationally and dihedrally symmetric.



176 J. M. Brunat and M. Maureso

References
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mial coefficients. Integers, 7(2):A14 19 pp, 2007.

[9] H. Harborth. Solution os Steinhaus’s problem with plus and minus signs. J.
Combinatorial Theory Ser.A, 12:253–259, 1972.

[10] H. Harborth and G. Hurlbert. On the number of ones in general binary Pascal
triangles. J. Combin. Math. Combin. Comput., 54:99–110, 2005.

[11] F. M. Malyshev and E. V. Kutyreva. On the distribution of the number of ones
in a Boolean Pascal’s triangle. Discrete Math. Appl., 16(3):271–279, 2006.

[12] J. C. Molluzzo. Steinhaus graphs. In Theory ans Applications of Graphs (Proc.
Internat. Conf. Western Mich. Univ. Kalamazoo, Mich, 1976), number 642 in
Lecture Notes in Math., pages 394–402. Springer, 1978.

[13] H. Steinhaus. One Hundred Problems in Elementary Mathematics. Pergamon,
Elinsford, 1963. (Original in Polish, STO ZADAN, Warshau, 1958).

[14] S. Wolfram. Geometry of Binomial Coefficients. Amer. Math. Monthly,
91(9):566–571, November 1984.


