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SUMMARY

This paper introduces a new recovery-type error estimator ensuring local equilibrium and yielding a
guaranteed upper bound of the error. The upper bound property requires the recovered solution to
be both statically equilibrated and continuous. The equilibrium is obtained locally (patch by patch)
and the continuity is enforced by a postprocessing based on the partition of the unity concept. This
postprocess is expected to preserve the features of the locally equilibrated stress field. Nevertheless, the
postprocess phase modifies the equilibrium, which is no longer exactly fulfilled. A new methodology
is introduced that yields upper bound estimates by taking into account this lack of equilibrium. This
requires computing the £2 norm of the error or relating it with the energy norm.

The guaranteed upper bounds are obtained by using a pessimistic bound of the error £ norm,
derived from an eigenvalue problem. Nevertheless, these bounds are not sharp. An additional strategy
based on a more accurate assessment of the error £5 norm is introduced, providing sharp estimates
which are practical upper bounds as it is demonstrated in the numerical tests.
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1. Introduction

The error assessment tools for Finite Element analysis are classified into two families: residual-
type error estimators and recovery-based error estimators. This classification is widely accepted
and already used in textbooks on error estimation [1, 2].

The recovery-based estimates, based on the ideas of Zienkiewicz and Zhu [3, 4, 5, 6], are
often preferred by practitioners, due to their simple implementation and robustness (7, 8, 9].

On the other hand, the a posteriori implicit residual-type estimators have a sounder
mathematical basis and produce estimates that are guaranteed upper or lower bounds of the
error [1, 10, 11]. In particular, the upper bound property is a consequence of the equilibrated
stress field resulting from the implicit residual approach. The ability to produce guaranteed
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upper and lower bounds of the energy norm of the error is especially desirable in the context
of goal-oriented adaptivity.

The idea of enforcing equilibrium in the recovery procedure has been used by several authors
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Originally, the equilibrium was imposed
locally to enhance the least-squares fitting and improve the nodal values of the recovered
stresses. The resulting smoothed stresses are however not equilibrated and therefore the upper
bound property is not ensured. The idea of producing a statically admissible (equilibrated
and continuous) stress field using a recovery technique was used also by Kvamsdal and Oksad
in [22]. However, the error estimate presented there is not a rigorous upper bound. On the
one hand, due to the process used to ensure continuity, the resulting recovered stresses no
longer satisfy the internal equilibrium equation (Kvamsdal and Oksad assume in [22] that
the effects on the estimate of the lack of equilibrium introduced when enforcing continuity
are negligible). On the other hand, these authors only obtained a low quality approximate
satisfaction of the natural boundary conditions as they simply considered the minimization
of the residual of the boundary equilibrium equation. In the present work the equilibrium is
enforced following a different approach. The local recovery introduces the exact satisfaction of
the imposed tractions along the Neumann boundary and the interior pointwise equilibrium via
the Lagrange multipliers technique, see [24, 25]. In order to improve the quality of the recovered
stress field, the compatibility conditions are also enforced in the least-squares projections as
an additional linear restriction. Moreover, a new strategy is developed that allows to obtain
true upper bounds of the error, accounting for the equilibrium defects introduced when the
stress continuity is enforced and without any further assumption. This requires computing
the L5 norm of the error. In a first attempt, the error £, norm is bounded from the energy
norm using the solution of an eigenvalue problem. This gives a pessimistic £ norm assessment
and, consequently, the corresponding guaranteed bounds for the energy norm are not sharp. A
more accurate assessment of the error L5 norm is performed using an extrapolation technique.
Theoretically, the estimates provided are no longer guaranteed upper bounds. However, the
Lo estimates are in this case very accurate and the associated energy norm estimates are, in
practice, upper bounds. The numerical tests corroborate this claim.

The remainder of the paper is organized as follows. Section 2 briefly introduces the model
problem. The error equations and bounds are stated in section 3. Then, section 4 is devoted to
describe a recovery technique enforcing equilibrium and a postprocessing enforcing continuity.
This generates nearly Statically Admissible recovered stresses. The strict upper bounds are
then computed accounting for the lack of equilibrium introduced when enforcing continuity.
The numerical examples included in section 5 demonstrate that the proposed strategy furnishes
sharp and reliable practical upper bound error estimates.
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2. Problem statement

Let us consider the linear elasticity problem. The unknown displacement field u, taking values
in Q ¢ R? (with d the number of spatial dimensions, d = 1,2 or 3 ), is the solution of the
boundary value problem

—V.o(u)="> in (1a)
o(u) - n=t on I'y (1b)
u=0 onT'p (1c)

where I'y and T'p, with 00 =Ty UTp and 'y NT'p = 0 , are the Neumann and Dirichlet
parts of the boundary. The Dirichlet boundary condition (1c) is taken homogeneous in the
developments for the sake of simplicity.

The weak form of the problem reads: find w € V such that

a(u, v) = l(v), forallv eV, (2)

where V is the standard test space for the elasticity problem, V = [H%D (Q)}d.
The forms in (2) are given by

a(u,v) ::/Qa(u):e(v)dQ:/QU(u):D* 1o (v)dQ, (3)

where D stands for the Hooke tensor, o and € denote the stress and strain operators, and

[(v) ::/Qb-udsH/F t-vdl. (4)

The energy bilinear form a(~, ) is expressed also in terms of stresses instead of displacements
by formally introducing &(~, ) such that

a(o,T) ZZ/QO':D_I:TCZQ. (5)

Note that, with this definition, a(u,v) = a(o(u), o (v)).

3. Discrete approximation and error bounding

Let u” be a finite element approximation to w. The solution u? lies in a functional space
VH C VY, associated with a mesh of isoparametric finite elements of characteristic size H, and
it is such that

a(uH,v) = l(v), for all v € V. (6)

Note that the mesh is not necessarily conforming. Non-conforming meshes are used for the
examples in section 5 and the continuity required by the condition VH C V is enforced using
local constraints, often called multi-point constraints(MPC’s) [26, 27], at the non-conforming
(hanging) nodes.
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3.1. Error assessment

H measured in the energy norm, induced by a(~, )

We focus on assessing the error e := u — u
and denoted by ||-||. That is, the quantity to be assessed is |le||* = a(e, e) = &(Ue, 0'6), where
o.:=o(u) —o(u').

Each component of the approximate stress field o(u’?) lies in the functional space of the
derivatives of the displacements in V¥ . Consequently, o (u’?) is generally discontinuous across
element edges but smooth inside the elements. A recovered stress field o* is sought in a richer
functional space §. The original approaches to recovery-type error estimates select S equal
to VH | in the sense that each component of the stresses in S lies in the same space of each
component of the displacements in V. Then o* is determined as a least-squares fitting of
o(ufl)in S.

Once o* is computed, the error estimate is readily obtained by assuming that o* is a good
approximation to o(u):

of =o* —o(u”). (7)

Then o} is a good approximation of o, and hence the corresponding energy norm estimate is
a(o},0}) ~ |le]|?. This is the main rationale for the recovery-type error estimates introduced
by Zienkiewicz and Zhu [3, 4, 5, 6].

On the other hand, implicit residual-type error estimators [28] are based on solving the
residual error equation, approximately and locally. The equation for e is derived by replacing
u = u' + e in (2), that is

a(ew) = l(v) - a(uH,v), for all v € V. (8)

In order to obtain a computable assessment of the error, this equation has to be stated locally,
typically element-wise, introducing the proper local boundary conditions and then solved.

8.2. Statically admissible stresses and error upper bound

The residual-type error estimators build up an statically admissible (locally equilibrated and
continuous) stress field and furnish upper bounds of the energy norm of the error [1, 22]. This
property is also obtained if the statically admissible stresses are obtained after a recovery
procedure by properly imposing the equilibrium restrictions.

Proposition 1. Let 2 be an open bounded domain and let Qp, k = 1,. .., Ne1en, be the elements
of a finite element mesh of characteristic size H discretizing 2. Let o* be a statically admissible
stress field, that is, continuous and locally equilibrated:

-V-o0"=b m Qg fork=1,... Delen (9a)
ot -n=t on 'y NOQy if non-empty (9b)

Then o* is such that
a(o*, o)) =1(v), forallve V. (10)

Proof. The proof uses the classical weighted residuals technique locally in each € and then
continuity of o* in order to cancel the stress jumps resulting in assembling all elementary
contributions. |
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Proposition 2. Let o* be a statically admissible stress field, then the associated energy
measure is larger than the energy morm of the exact solution of the elasticity problem, w.
That is

|u® = a(o(u),o(u) <a(c*,o*).

Proof. Taking v = w in (10) and using (2),
a(o*,o(u)) =l(u) = a(o(u), o(u)) = |jul*
Then, the proof is completed using the Cauchy-Schwartz inequality
a(o*,a*)|lull = [full*. u
The next proposition states that the upper bound property holds also for the error estimate
when the recovered stress field o* is statically admissible.

Proposition 3. Let 0% := o* — a(ul) be a stress error estimate such that the recovery
stresses o* are statically admissible. Then, the associated energy error estimate is an upper
bound of the actual energy error. That is

lel? = d(a(u) — O'(uH),O'(u) - O'(uH)) = @(06,0'6) < d(az,az).

Proof. First, taking v = uw and v = u’!

gets

in (10) and using (2) and Galerkin orthogonality, one

a(o*,0(u)) = a(o(u),o(u)) and a(c*,o(u")) = a(o(u), o(u)).

Thus, it is easily found that
&(o’e,ae) = a(az,o'e)

Then, the rest of the proof is analogous to the previous one. |

3.3. Nearly statically admissible stresses and related upper bounds

Assume that o* is a nearly statically admissible stress field. This means that either the
continuity or the equilibrium are not strictly fulfilled.

In the first case, o* verifies (9) but the traction jump across the set of all internal edges
Ding, [0* -m].  does not vanish. The jump [o* - n].  is formally defined as

[[O'* ' n]]rint = (a*|Ql - 0-*‘92) 'n

where 1 and Q5 are the two elements separated by Ty (that is iy = Q5 NQs) and such that
n is pointing from Q; to Qs (outward normal to ;). Note that this definition is independent
of the choice of £2; and €5, that is, of the sign of n.
The second case refers to a continuous stress field o* verifying (9b) and a (slightly) modified
version of (9a), that is
-V.0*=b+s. (11)

In both cases the equilibrium defects are assumed to be small compared with the
corresponding quantities, that is ||s|| << [|b]| and [o* - n],. =~ small compared with the average
values of o*.

The upper bound properties have to be modified to include these equilibrium defects.
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Proposition 4. Let o* be a locally equilibrated stress field, that is verifying (9), not
continuous across the interelement edges I'jn:. The jump of the traction across I is denoted

by [o* - n]]rm.
Then o* is such that

a(o*, o)) =1(v) —&—/F v-[o*-n]. dT, foralveV. (12)

int

Moreover, the energy norm of o* is such that

|ul® <a(o*, 0*) — 2/ u-[o*-n]. dI (13)
Tint
and the corresponding error estimate, computed from o := o* — o(u'?), is such that
el < d(az,az) — 2/ e [o* 'n]}mm dr. (14)
Dint

Proof. (12) is the standard weak form for discontinuous stresses. The expressions for the
upper bounds (13) and (14) follow in the same fashion as for propositions 2 and 3 |

The following result is the analogous to the previous one for o* continuous but non-
equilibrated.

Proposition 5. Let o* be a continuous stress field, verifying (9b) and a modified version of
(9a), that is, such that (11) holds for some s.
Then o* is such that

a(o*,o(v)) =1(v) +/ v-8dQ, foralveV. (15)
Q
Moreover, the energy norm of o* is such that

|ul? < a(o*,0*) — Q/qu - 5dQ2 (16)

and the corresponding error estimate, computed from o := o* — o(u'?) is such that

le|* < a(o}, o) —2/ e - sdf. (17)
Q
Proof. (15) is standard, then the proof is practically identical to proposition 4 |

Remark 1. Note that the upper bounds given by (13), (14), (16) and (17) are not computable
because the integral terms in the r.h.s. involve the unknowns u and e.

In the following, the result given in proposition 5 is exploited to obtain a strict upper
bound of the energy error from recovered stresses that are not exactly statically admissible.
An analogous procedure using proposition 4 is not included in this paper.
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4. A nearly statically admissible stress recovery technique

In order to obtain an upper bound of the error, it suffices that the recovery technique yields a
statically admissible recovered stress field o*. As stated above, this requires the stress field to
be locally equilibrated and continuous. It has been also noted in the previous section that if
these conditions are not strictly fulfilled the resulting expressions must account for either the
continuity or the equilibrium defects, see (14) and (17).

This section introduces practical recovery techniques that meet these conditions and
therefore are used to produce upper bound error estimates.

4.1. Locally equilibrated stress recovery

The nodal points of the mesh are denoted by P; (i = 1,... yDpoin, With npesn the number of
nodal vertices in the mesh). The patch of elements surrounding P; is denoted by w; and N;
stands for the lineal shape function associated with the vertex node. Note that w; is precisely
the support of NV;.

Remark 2. If the elements are of order larger than one, the linear shape functions N; and
the actual shape functions used in the functional approzimation do not coincide.

The stress recovery approach consists on selecting a polynomial stress field o} in patch w;
such that it is the least-squares approximation of o(uf) in the space of polynomial stresses.
The recovery estimators provide sharp estimates if o approximates the actual stress o(u) in
w; much better than o (uf!). In practice, this is related to superconvergence phenomena and
means that the norm of the error of o is, at least, one order higher than the error of o (uf?),
ie. |o(u) — 7| < H|o(u) — o(u?)| (here, the norm is restricted to w;).

The recovery is improved by imposing to o} additional conditions that are fulfilled by the
exact solution o (u), e.g. verify the equilibrium equation (9), or the compatibility equation.

Here the recovered stresses are sought such that they are statically admissible or nearly
statically admissible in order to derive upper bound error estimates.

Imposing the equilibrium condition (9) to the polynomial stress field o} results on adding
linear constraints to the local least-squares fitting. This is easily done by using the SPR-C
technique [25], which is a modification of the standard SPR technique. In the SPR-C technique,
the equilibrium condition (9) is imposed to the polynomial stress field o} by applying a set of
linear constraints via the Lagrange multiplier technique.

Thus, the local recovered stresses o are computed imposing the additional condition (9),
that is

—V-o;=b inuw and of-n=t on 'y NOw; if non-empty. (18)

Moreover, in order to further improve the quality of the recovered stress filed, the
compatibility condition may also be imposed. The compatibility condition relates the
derivatives of the stress components and ensures that the stress tensor corresponds to a
kinematically admissible displacement field via the linear elastic constitutive relation. For
instance, in the case of the plane stress state it reads (see [29])

2 2 2.,
53T = V) a0y~ vo) =21 k) S,

which is an additional linear constraint to the least-squares projection.
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4.2. Continuous recovered stresses

In order to impose continuity in the representation of the recovered stresses, the following
expression is used:

Npoin

o = ZNZ'O':. (19)
i=1

Consequently, the proposed representation for o* is automatically continuous and due to the
0 property of the shape functions (N;(P;) = §;;) it is found that o*(P;) = o} (P;) for every
1= 13-~-anpoin~

Remark 3. Note that the fitted polynomial stresses o* are used in all the points of the patch
wi. This contrasts with the original SPR techniques (equilibrated or not) where only the value
of oF in P; is used. In fact, equation (19) must be read as

DNpoin

o* () =) Ni(x)o}(z),
i=1

where x stands for the spatial coordinate, while the expression for the classical SPR techniques
18

Dpoin

o’ (x) = Z Ni(z)o; (B). (20)

The divergence of the continuous recovered stresses is derived using the expression for o*
given in (19),

fv.,,*:ffmv.o;—ina;oVM:bfinaf-VNi, (21)
i=1 i=1 i=1

using (18) and the fact that Y ;1" N; = 1. Note that the recovered stress o* is not equilibrated
because of the term Y .=} o7 - VN;.

As already mentioned, the hypothesis behind the SPR philosophy is that o} ~ o(u)|y,. In
every element Qp, k = 1,...,De1en, there are npoge (With nyege the number of element vertex
nodes, 3 for triangles, 4 for quadrilaterals...) different stress fields that are supposed to be good
approximations of o (u)|q,. Thus, the average recovered stress o% is introduced by defining
its restriction to €y

1

Z 0‘:|S2k’ for k = ]"27"'?nelem' (22)
PeQy,

* _
UA|Qk B DNnode

Note that o% is defined almost everywhere (except on the interelement edges) in €, it is
continuous inside the elements and globally discontinuous. Thus, equation (21) results on

Dpoin Npoin

-V.o* = b+Z(0'f4 —o})-VN, — ZU}-VNZ-,
i=1 i=1

=0
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where the last term of the r.h.s. vanishes because 0% does not depend on i and > ;) VN; = 0.
The term

DNpoin

s=)» (oh—0})- VN, (23)

i=1
is the equilibrium defect introduced by the continuity requirement. If the recovered stresses
are indeed very similar in the overlapping patches, s must be small. In fact, Kvamsdal and
Okstad [22] claim that this term is negligible and they consider o* to be statically admissible.
In the following, the equilibrium defect s is accounted for in a strict upper bound estimate.

4.8. Upper bound estimate from the continuous recovered stresses

The global continuous recovered stress introduced in (20) verifies (17) for s defined by (23)
and therefore, using the Cauchy-Schwartz inequality,

lel* <a(os, o) + 2I/Q e sdQ < a(o7, 07) +2|ellz, sl (24)

where |||z, stands for the standard £5 norm in .
Moreover, the L5 norm is bounded from above by the energy norm affected by a constant,

that is for any v
vl = vV Amin V]2, (25)

The constant A, is the lower eigenvalue of the following problem:

-V .-o(w) = \w in (26a)
o(w)-n=0 on I'y (26b)
w=0 onI'p (26¢)

The weak form of the eigenvalue problem problem reads: find A € R and w € V such that
a(w,v) = Aw,v), forallv e, (27)

where (~, ) is the standard inner product in £y. The inequality (25) follows from (27) taking
w = v and considering that the eigenvalues are all positive.
Substituting (25) with v = e in (24), one gets

2||sllc,
\/)\rnin

The scalar coefficient a = 2||s||z,/vAmin has the dimensions of the energy norm. A strict
upper bound of ||e|| is easily derived from (28):

le|| < E[?B = \/&(U;,ag) +a? +a. (29)

Note that for small s, « is close to zero and consequently the estimate

lel* <a(o?, o) + lle]l- (28)

FEest = d(ag, ag) (30)

is expected to be a good approximation of ||e]|.
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The value of E(’}gi“ is easily computed from the local recovered stresses o}, ¢ = 1,...,Dpoin,
except for the value of A\i,. Note, however, that v/Ani, is precisely the natural frequency of
the structure and it happens to be approximated very accurately even with a coarse mesh.
In fact, v/ Amin depends on the geometry of €2, the essential boundary conditions (1c) and the
material properties. The value of v/Apmin is used as a reliable lower bound of |e]|/|le||z,, see
(25). This value is nevertheless pessimistic (it is a lower bound for every v) and leads to values
of a that may be much larger than the actual value of 2||s||z,|lellz,/]l€]l-

4.4. Estimation of ||e]| .,

The numerical experiments show that the use of (25) in the evaluation of an upper bound of
llell z, produces extremely large overestimations of the error in energy norm. Therefore, these
values cannot be considered as accurate upper bounds.

The adaptive refinement process is driven by the estimate given in (30). Thus, the sequence
of meshes is designed without using the upper bound estimates. A sequence of solutions uff ,
1=1...N, of increasing accuracy is obtained corresponding to a series of nested meshes. All
this information may be used to properly assess the value of ||e||z,.

Instead of using the true upper bound of |e||z, that would be given by (25), a sharp
estimation of this value is used in (24) to obtain an accurate upper bound of the error in
energy norm.

The displacements field ug\,) obtained in the last mesh of the sequence can be considered

as an approximation to the exact solution, ulfv) ~ u. An approximation to the exact error of
the displacement field for the first N — 1 meshes of the sequence is given by

€ = u— ug) ~ ug\,) - ug) (31)

The use of (31) in the evaluation of e(;), for i = 1... N — 1, requires the projection of the
displacement field corresponding to the i*" mesh over the last mesh of the sequence. This is
a standard data interpolation technique, especially simple and efficient if nested meshes are
used.

Once the estimation of the error of the displacement field has been obtained and the
corresponding ||e(; ||, are computed for i = 1... N —1, the value of ||e(n)| z, is evaluated by
extrapolation from the value of ||ey_1)|/z,. This is done taking into account the number of
degrees of freedom corresponding to meshes NV — 1 and N and the rate of convergence of the
error in the £9 norm.

Note that the rate of convergence in the Lo norm is larger than in the energy norm. In
practice the estimate for ||e||z, is very accurate. It can be considered almost exact, although
it cannot be taken as a guaranteed upper bound.

4.5. Proposed error estimation procedures

The error estimation procedures introduced above are summarized in figures 1 and 2. The
ideas introduced in sections 4.3 and 4.4 differ in the way of evaluating the influence of the
equilibrium defects and, in particular, in the assessment of ||e||z,, see equation (24).

The first strategy, introduced in section 4.3 and illustrated in figure 1, uses the value of
Amin t0 obtain a pessimistic bound for ||e||z,. This strategy yields upper bounds with a large
overestimation. The alternative approach described in section 4.4 is illustrated in figure 2. The
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Step 1.— Compute u € VH.

Step 2.— Local recovery: compute o

7 in every w;, © = 1,...,np0in, as a local least-squares
projection of a(uf?), enforcing equilibrium and compatibility

DNpoin

Step 3.— Compute continuous stress field o* = Z N;o}
i=1

Step 4.— Compute equilibrium defects introduced in Step 3: s = Z(aj‘ —0o7)-VN;
i=1
Step 5.— Compute the eigenvalue Apnin and o = 28|z, /v Amin

Step 6.— Compute E.q := d(a"g, o"cf) (sharp but not guaranteed upper bound) and
Eé*g‘“ = Et(a'g, 0';) + a2 4+ « (guaranteed upper bound, not sharp)

Figure 1. Computing error bounds using Amin

Step 1.— Compute sequence of adaptive solutions ug), j=1...N (using FE.s (Step 5) to

adapt)

Step 2.— Local recovery: for every adaptive step (for j = 1...N) compute o in every w;,
1 =1,...,Npoin, as a local least-squares projection of a(ug)), enforcing equilibrium and
compatibility

DNpoin

Step 3.— Compute continuous stress field: o* = Z N;o}
i=1

DNpoin
Step 4.— Compute equilibrium defects introduced in Step 3: s = Z(U’A —0o7)-VN;
i=1

Step 5.— Compute E s := Zz(o”g, o'g) (sharp but not guaranteed upper bound)

Step 6.~ Estimate [|e(;||c, from the adaptive sequence

Step 7.— Compute the sharp and practical upper bound
EUB = \/@(0';(, 0'§) + 2||e(j) ”ﬁQ ”S”ﬁz

Figure 2. Computing error bounds using the estimate for ||e(;|/c, in a sequence of adapted solutions

idea is to build up a sequence of adapted meshes and then estimating ||e||z, by simply using
an extrapolation technique. The adaptivity is performed using the estimate F.s;, which is not
a guaranteed upper bound of the error but it is a good approximation of the error. Thus, a
sharp upper bound is computed.

The numerical results presented in the next section show the accuracy of the proposed
procedure.



12 P. DIEZ, J.J. RODENAS AND O.C. ZIENKIEWICZ

5. Numerical examples

The proposed technique has been implemented in an h-adaptive analysis FE code based on
element splitting. Non-conforming meshes are allowed (with hanging nodes) and C° continuity
is enforced using multi-point constraints (MPC’s). Six-noded quadratic triangular elements
are used in the numerical analyses of the following test problems: 1) 2x2 square with 3™
order polynomial solution, 2) L-shaped domain under Mode I loads, 3) Thick-walled cylinder
subjected to an internal pressure and 4) Gravity dam.

In the cases where an h-adapted sequence of meshes has been used in the numerical
analysis, the h-adaptive process has been guided by the estimate of the error energy norm

E.st = &(a*, 0'*) (the upper bound estimate is not used in the h-adaptive remeshing).

5.1. Ezxample 1: 2x 2 square with with 3" order polynomial solution

The 2x2 square specimen depicted in Figure 3 is analyzed. The problem setup is such that
the exact solution (displacement field) is given by
u(z,y) =z + 22 — 22y + 2> — 3zy? + 2%y
v(z,y) = —y — 22y +y° — 32’y +y° — 2

The exact values of boundary traction are imposed along the edges marked with a dashed line.

Plane strain
E=1000
v=03

Figure 3. Example 1: 2x2 square model

The exact expressions for the components of the stress tensor are the following (in plane
strain):

E
Ozz(T,Y) = m(l +22 — 2y + 32% — 3y® + 22y)

-E
Oyy(z,y) = m(l +22 — 2y + 32% — 3y® + 22y)

2 2

x
oyt L o)

azy(mv y) = m
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Thus, the body forces ensuring equilibrium are

be(z,y) = m(l +9)
(1-2)

1+v
Note that due to the simplicity of the expressions corresponding to body forces b and
imposed tractions ¢, the recovered stress field o* obtained by using the SPR-C technique [25]
is statically admissible and exactly satisfies equations (9).
A sequence of 4 uniformly-refined meshes (Figure 4) and a sequence of 4 h-adapted meshes
(Figure 5) are used in the analyses.
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Figure 5. Example 1: Sequence of h-adapted meshes.

Tables I and II show the numerical results corresponding to the cases of uniform and h-
adaptive refinements. The data displayed in these tables include:

e the number of degrees of freedom in each mesh, dof,

e the FE energy norm, U = a(uH,uH)7

e the estimate of the error energy norm, Feg := (0'*, 0'*),

the exact error energy norm, F := a(e, e),
the effectivity index, 6 := F.q/FE,
the estimate of the error Lo norm, E
the value of ||s||z,,

the computed upper bound for the error energy norm, F, .,

Lo

est?
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dof U Ees: E 0 Eé?r. IIs]l 22 Eyp Oy

366 253.2187 4.14201 4.12488 1.0042 0.0098498 71.0026 4.30754 1.0443
1374  253.2501 1.06844 1.06338 1.0048 0.0012215 24.9431 1.09659 1.0312
5310 253.2522 0.27201 0.27056 1.0054 0.0001429 8.9209 0.27666 1.0225
20862 253.2523 0.06865 0.06826 1.0056 0.0000183 3.4437 0.06956 1.0190

Table I. Example 1: Uniform refinement. Numerical results

dof U Eest E 0 E.2 |||l o E,p 0,5

366 253.21875 4.142010 4.124888 1.0042 0.0098496 71.0026 4.307545 1.0443
1228  253.24963 1.176203 1.172519 1.0031 0.0014005 38.7167 1.221433 1.0417
4658  253.25217 0.305669 0.304719 1.0031 0.0001729 19.7589 0.316650 1.0392
18092  253.25234 0.078248 0.077971 1.0035 0.0000226  9.0089  0.080807 1.0364

Table II. Example 1: h-adaptive refinement. Numerical results

e the upper bound effectivity index, 6,,, :==E,,/E

The evolution of the effectivity indices 6 and 6, , is graphically represented in Figures 6 and
7. The results of the analyses show the high accuracy of both the proposed error estimator

1.4
L )

1.3 -0,

1.2

1.1

h—.¥
1.0 A———— |
0.9
100 1000 10000 100000
dof

Figure 6. Example 1: Uniform refinement. Effectivity indices 6§ and 6,,,

in energy norm FE.,; and the corresponding error bound E,, ;. Moreover, the accuracy of the
estimates is preserved at the local level. The local effectivity is represented in Figure 8 by the
quantity D defined element by element as
D=¢6¢°-1 ifg°>1 (35a)
D=1-1/6° if 0° < 1, (35b)

where 6° is the local counterpart (associated with element e) of 6. Index D is particulary
well suited for the local representation of the effectivity index because it fairly compares the
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Figure 7. Example 1: h-adaptive refinement. Effectivity indices 6 and 0, ,

underestimation of the error (D < 0) and the overestimation (D > 0). The good behavior of
the estimates results on values of D close to zero.

Figure 8 displays the distribution of D in the sequence of uniformly refined meshes. Note
that the values of D are in all the cases very small, that is the estimate is performing very
well also at the local level.

»
A
vy

.

Figure 8. Example 1: uniform refinement. Distribution of index D.

Figure 9 shows the distribution of the local contributions to ||s||z,. Recall that E.;; cannot
be proved to be an upper bound of the error unless ||s||z, is negligible. It is worth noting that
the values of ||s||z, decrease along the remeshing process but they are far from being negligible.
Moreover, the local distribution is not uniform and therefore pollutes the local behavior of the
estimate in different zones of the domain.

The results previously presented are based on the estimation of the error in the £5 norm
exposed in section 4.4. Table IIT shows the results that would be obtained if (25) was used in
the evaluation of an upper bound of ||e||z,. The data displayed in the table include:

e the number of degrees of freedom in each mesh, dof,
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Figure 9. Example 1: uniform refinement. Distribution of ||s||c,.

the estimated error in the £3 norm, E2 (see section 4.4),
the exact error in the £9 norm, E£2,

the effectivity index 0, := E-2 /E£,

the lower eigenvalue of the problem given in (26), Ayin,

the exact value of |e|?/|le]|Z,, Aeza;
the upper bound of the error in the £ norm obtained using Ay, Ef"’
the effectivity index 0;_\:“" = Ef2 gL

/\min

min’

e the upper bound of the error in energy norm obtained using E ‘::m, Eﬁfg"‘
e the upper bound effectivity index, 9:\,';‘“ = E;}’;i" /E
dof Eﬁ,’i EE£2 oc., Amin Aeza EfQ - 02;““ Ei‘z?“‘ 0i‘llgin

366 0.009850 0.009138 1.078 262.23 2.0x10° 299%54 32726.3  17.7715  4.308
1374  0.001222 0.001137 1.074 217.79 8.7x10° 102.205 89897.7 6.9152 6.503
5310 0.000143 0.000139 1.028 185.99 3.8x10° 36.065 259275.1 2.7166  10.041
20862 0.000018 0.000017 1.070 162.17 1.6x107 13.830  806210.3  1.1418  16.725

Table III. Example 1: uniform refinement. Numerical results with upper bound of ||e||z, computed
from )\mln-

The comparison of the upper bound effectivity indices 8,,,, (see Table I) and 0;}3"‘ (see Table
ITI) clearly shows that the performance of E,, is superior to the performance of El)l‘gi“. The

reason behind this difference is that the values of EX3 used in the evaluation of E,,, are quite

est
accurate whereas the values of Efl:m used in the evaluation of E)=» would even increase their
inaccuracy as the mesh is refined (see values of f¢, and #2== in Table III).

In the two examples previously presented, the values of E.,; are very sharp overestimations
of E, however, under some circumstances the value of E.; can underestimate the true error.
Table IV shows the results obtained with another h-adaptive refinement. The only difference
between this new refinement and the previous one is the amount of error reduction requested
for the generation of the new meshes. Note that in the 3"¢ mesh (values represented in italics)
E 44 slightly underestimates the value of E. Notwithstanding, the value of E, , is always above
E.
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dOf U Eest E 0 Eé:s?t "3”52 EUB 0UB

366 253.218754  4.142010 4.124888 1.0042  0.00984940 71.0026  4.307541  1.0443
1088 253.248492  1.401329 1.397618 1.0027 0.00186969  58.7963 1.477696  1.0573
3298  253.251822 0.516379 0.516523  0.9997 0.00038181 42.4774 0.5,6886 1.0588
8418 253.252266  0.205664 0.205288  1.0018 0.00007531 229018 0.213886  1.0419
20126  253.252338 0.075170 0.074824 1.0046 0.00002037 10.8454 0.078054  1.0432

Table IV. Example 1: h-adaptive refinement. Numerical results

5.2. Example 2: L-shaped domain under Mode I loads

A L-shaped portion of an infinite domain has been loaded with the stress components of the
first symmetric (Mode I) term of the asymptotic expansion of the exact solution around the
vertex, see Figure 10. As in the previous example, the exact values of boundary traction over
the dashed edges are prescribed.

Plane strain
E=1000
v=0.3

Figure 10. Example 2: L-shaped domain in Mode 1. Model

Details about the exact solution in the neighborhoods of singular points, and, in particular,
the exact solution for this singular stress field problem, with body load b = 0, can be obtained
from [30]. This exact solution is given by

2z = M2 Q (A + 1)) cos (A — 1)¢) — (A — 1) cos (A - 3)9)]

Oy = A2+ Q (A +1)) cos (A — 1)¢) + (A — 1) cos (A — 3)¢)]

Tay = A1 (Q (A + 1)) sin (A — 1)) + (A — 1) sin (A — 3)9)]
where r and ¢ are the polar coordinates and, up to the accuracy required in the computations,
the parameters A and @ for this load conditions take the values A = 0.544483736782464 and
Q = 0.543075578836737.

In this case it is easy to impose equilibrium to the recovered stresses o*, that is equation (9a),
because b = 0. Nevertheless, the boundary equilibrium, see equation (9b), is exactly satisfied
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only at nodal points. Along the rest of the boundary this equation is only approximately
satisfied because the stress recovery functions considered in each patch are 2"d order
polynomials and the boundary traction is a trigonometric function. Thus, the SPR-C technique
giving o* prescribes (9b) approximating ¢ by a 2" order Taylor’s expansion around the patch
assembly nodes. The results obtained using this approximation are found to be very accurate.

Figure 11 shows the sequence of h-adapted meshes obtained during the analysis of this
problem. Table V displays the numerical results of the analysis showing the high accuracy of
FE.s even for this singular problem. Note, however, that F is underestimated by E.4 in the
last mesh of the sequence. This is because, in this case, the presence of the singularity produces
an increase of ||s||z, with the refinement of the model, resulting in an inaccurate value of E,, ,.

AN

Figure 11. Example 2: Sequence of h-adapted meshes

dOf U Eest E 6 Eﬁs%& HSH£2 EUB 6UB
39 0.0865196  0.040676 0.026063 1.5607 0.00133454 2.836 0.09604 3.6851
223 0.0904952 0.013913 0.012323 1.1290 0.00042122 10.474 0.09496 7.7060
741 0.0910440 0.004951 0.004830 1.0251 0.00010816 37.575 0.09029  18.6940
2605  0.0911413 0.001599 0.001591 1.0047 0.00002256  133.823  0.07772  48.8373
8983  0.0911531 0.000463 0.000463 1.0013 0.00000382  473.861  0.06021 130.1740
31461 0.0911541 0.000130 0.000131 0.9984 0.00000058 1680.164 0.04428 339.2138

Table V. Example 2: h-adaptive refinement. Numerical results

5.3. Example 3: Thick-walled cylinder subjected to an internal pressure

The geometry and loads of the problem are displayed in Figure 12. The exact solution is
available and its expression in polar coordinates is the following:

p(1+v)
E(k%2-1)

b2
Up = {(1 —2u)r+ ] (radial displacement)
r
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Plane strain

a=>5
b=20
P=1
E=1000
v=0.3

Figure 12. Example 3: Cylinder subjected to internal pressure. Model.

The exact stresses are given both in polar (cylindrical) and Cartesian coordinates:

D b? , .
TR 1= 2 Opz = 0pCOS~ (@) + 04 8in” (@)

D b? . ,
TR 1+r72 Oyy = 0y sin“(¢) + o4 cos™(¢)

Ogy = (Ur - Ut) Sln((b) COS(¢)

As in the previous example, the SPR-C technique [25] builds-up o* such that equation (9a) is
exactly satisfied. However, equation (9b) is only approximately satisfied. Here, the presence of

curved boundaries is an additional source of error because in this kind of contours the SPR-C
technique can only impose the boundary equilibrium at the nodal points.

A sequence of 4 uniformly-refined meshes (Figure 13) and a sequence of 5 h-adapted meshes
(Figure 14) have been analyzed. The results of these analyses are shown in Tables VI and VII.
The evolution of the effectivity indices 6 and 8y g in these tables is also represented in Figures

15 and 16. Figure 17 shows the local distribution of ||s||z,. The results show a behavior similar
to Example 1.
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Figure 13. Example 3: Sequence of uniformly refined meshes
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Figure 14. Example 3: Sequence of h-adapted meshes

dof U Eest E 0 E2 lisl| . E,, 0, .
216 236.048312 10.665979 0.721760 1.0971 0.140752279 190.8099 12.041280 1.3312
816  236.236755  2.847802 2.784362 1.0228 0.019200372 72.0128  3.207775  1.1844
3168 236252127  0.755436  0.747546 1.0106 0.002347526 23.1918  0.824361  1.1028
12480 236.253237  0.194653  0.192868 1.0093 0.000300238  7.0348  0.205218  1.0640

Table VI. Example 3: Uniform refinement. Numerical results

dof U Eeost E [ E2 sl E,, 0, .,

216 236.048312  10.665979 9.721760 1.0971 0.14067866 190.8099 12.940204 1.3311

724 236.234717  3.043306  2.958358 1.0287 0.02989259  72.8848  3.690487  1.2475
2732 236.251858  0.838411  0.830050 1.0101 0.00469713  23.7124  0.962130  1.1591
9940  236.253205  0.230239  0.228504 1.0076 0.00073652  7.4577  0.252973  1.1071
37226  236.252847  0.061748  0.061404 1.0056 0.00010162  2.5038  0.065740  1.0706

Table VII. Example 3: h-adaptive refinement. Numerical results

1.4
9 ]
1.3 \\ il Oy
12 \i.
N
L1 A \\
TN i

1.0 —— |
0.9

100 1000 10000 . 100000

Figure 15. Example 3: Uniform refinement. Effectivity indices # and 6, ,

5.4. Example 4: Gravity dam

The gravity dam represented in Figure 18 is analyzed. The loading includes both self-weight
and water pressure. The geometry has been rounded up and it does not include any sharp
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Figure 16. Example 3: h-adaptive refinement. Effectivity indices 6 and 0,5

, L LA

0 50 0 12 0 3.5 0 0.7

Figure 17. Example 3: h-adaptive refinement. Local distribution of ||s||z,

reentrant corner.

The body load b is constant and therefore the recovered stress field o* exactly satisfies
equation (9a). Nevertheless, the boundary traction, equation (9b), is only approximately
satisfied due to the presence of curved boundaries. In any case, equation (9b) is exactly satisfied
at the nodal points.

The sequence of 4 h-adapted meshes displayed in Figure 19 is analyzed. Table VIII shows
the numerical results obtained from the analysis. The new parameters 1% and 7,, , % included
in this table respectively represent the estimated relative error in energy norm and the upper
bound of the relative error. These two parameters have been represented in Figure 20.

In this example no exact solution is available and, consequently, the effectivity indices cannot
be evaluated. However, the results obtained for this problem are likely similar to those obtained
in the previous examples. For example, the estimated relative errors converge properly, see
Figure 20, both for E.s; and the upper bound E,, . Note that the only safe upper bound is
the E, ,, even if E.,; is likely a sharper estimate. It is worth mentioning that in the refined
meshes the over estimation introduced by E,, , is less and less significative, compared to E.;.
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Plane strain
p 2850 kg/nt
E 13.1x10""N/m?

0.25
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Figure 19. Example 4: Sequence of h-adapted meshes

dof Y Eest Eé;zt "3"52 EUB 77% nus%
1327  93.0138676 4.345432 1.95x10™> 1.17x10° 8.034644 4.6667 8.6060
3315 93.0625794 1.394880 3.16x10~¢ 5.43x10° 2.319066 1.4987 2.4911
11161 93.0699011 0.434861 4.18x10~7 2.58x10° 0.636241 0.4672 0.6836
37375 93.0706132 0.127222 6.82x10~% 1.04x10° 0.174210 0.1367 0.1871

Table VIII. Example 4: h-adaptive refinement. Numerical results

6. Conclusions

A new strategy to compute upper bounds of the error from equilibrated recovered stresses
has been introduced. With respect to previous works. this approach uses a different local



EQUILIBRATED PATCH RECOVERY ESTIMATES 23

10.0

J\ ==
.

BN - ca
ol NS

0.1

1000 10000 100000
dof

Figure 20. Example 4: Relative errors

recovery technique enforcing full statical admissibility (matching body loads and boundary
tractions) and compatibility (via the kinematical admissibility). Moreover, in this work the
loss of equilibrium produced when enforcing the global stress continuity is not assumed to be
negligible. This assumption is removed by taking into account the equilibrium defects in the
resulting estimate.

This opens a promising line of work based on exploiting the deficiencies of global equilibrium
in the recovered solutions. For instance, instead of enforcing continuity and computing the
equilibrium defects, an alternative approach is to use the discontinuous average equilibrated
stress, 0%, and to include the stress jumps to compute an error bound using proposition 4.
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