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2 P. DÍEZ, J.J. RÓDENAS AND O.C. ZIENKIEWICZ

upper and lower bounds of the energy norm of the error is especially desirable in the context
of goal-oriented adaptivity.

The idea of enforcing equilibrium in the recovery procedure has been used by several authors
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Originally, the equilibrium was imposed
locally to enhance the least-squares fitting and improve the nodal values of the recovered
stresses. The resulting smoothed stresses are however not equilibrated and therefore the upper
bound property is not ensured. The idea of producing a statically admissible (equilibrated
and continuous) stress field using a recovery technique was used also by Kvamsdal and Oksad
in [22]. However, the error estimate presented there is not a rigorous upper bound. On the
one hand, due to the process used to ensure continuity, the resulting recovered stresses no
longer satisfy the internal equilibrium equation (Kvamsdal and Oksad assume in [22] that
the effects on the estimate of the lack of equilibrium introduced when enforcing continuity
are negligible). On the other hand, these authors only obtained a low quality approximate
satisfaction of the natural boundary conditions as they simply considered the minimization
of the residual of the boundary equilibrium equation. In the present work the equilibrium is
enforced following a different approach. The local recovery introduces the exact satisfaction of
the imposed tractions along the Neumann boundary and the interior pointwise equilibrium via
the Lagrange multipliers technique, see [24, 25]. In order to improve the quality of the recovered
stress field, the compatibility conditions are also enforced in the least-squares projections as
an additional linear restriction. Moreover, a new strategy is developed that allows to obtain
true upper bounds of the error, accounting for the equilibrium defects introduced when the
stress continuity is enforced and without any further assumption. This requires computing
the L2 norm of the error. In a first attempt, the error L2 norm is bounded from the energy
norm using the solution of an eigenvalue problem. This gives a pessimistic L2 norm assessment
and, consequently, the corresponding guaranteed bounds for the energy norm are not sharp. A
more accurate assessment of the error L2 norm is performed using an extrapolation technique.
Theoretically, the estimates provided are no longer guaranteed upper bounds. However, the
L2 estimates are in this case very accurate and the associated energy norm estimates are, in
practice, upper bounds. The numerical tests corroborate this claim.

The remainder of the paper is organized as follows. Section 2 briefly introduces the model
problem. The error equations and bounds are stated in section 3. Then, section 4 is devoted to
describe a recovery technique enforcing equilibrium and a postprocessing enforcing continuity.
This generates nearly Statically Admissible recovered stresses. The strict upper bounds are
then computed accounting for the lack of equilibrium introduced when enforcing continuity.
The numerical examples included in section 5 demonstrate that the proposed strategy furnishes
sharp and reliable practical upper bound error estimates.
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EQUILIBRATED PATCH RECOVERY ESTIMATES 3

2. Problem statement

Let us consider the linear elasticity problem. The unknown displacement field u, taking values
in Ω ⊂ Rd (with d the number of spatial dimensions, d = 1, 2 or 3 ), is the solution of the
boundary value problem

−∇ · σ(u) = b in Ω (1a)

σ(u) · n = t on ΓN (1b)
u = 0 on ΓD (1c)

where ΓN and ΓD, with ∂Ω = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅ , are the Neumann and Dirichlet
parts of the boundary. The Dirichlet boundary condition (1c) is taken homogeneous in the
developments for the sake of simplicity.

The weak form of the problem reads: find u ∈ V such that

a
(
u,v

)
= l

(
v
)
, for all v ∈ V, (2)

where V is the standard test space for the elasticity problem, V =
[
H1

ΓD
(Ω)

]d.
The forms in (2) are given by

a
(
u,v

)
:=

∫
Ω

σ(u) : ε(v) dΩ =
∫

Ω

σ(u) :D−1 :σ(v) dΩ, (3)

where D stands for the Hooke tensor, σ and ε denote the stress and strain operators, and

l
(
v
)

:=
∫

Ω

b · v dΩ +
∫

ΓN

t · v dΓ. (4)

The energy bilinear form a
(
·, ·

)
is expressed also in terms of stresses instead of displacements

by formally introducing ā
(
·, ·

)
such that

ā
(
σ, τ

)
:=

∫
Ω

σ :D−1 : τ dΩ. (5)

Note that, with this definition, a
(
u,v

)
= ā

(
σ(u),σ(v)

)
.

3. Discrete approximation and error bounding

Let uH be a finite element approximation to u. The solution uH lies in a functional space
VH ⊂ V, associated with a mesh of isoparametric finite elements of characteristic size H, and
it is such that

a
(
uH ,v

)
= l

(
v
)
, for all v ∈ VH . (6)

Note that the mesh is not necessarily conforming. Non-conforming meshes are used for the
examples in section 5 and the continuity required by the condition VH ⊂ V is enforced using
local constraints, often called multi-point constraints(MPC’s) [26, 27], at the non-conforming
(hanging) nodes.
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3.1. Error assessment

We focus on assessing the error e := u− uH measured in the energy norm, induced by a
(
·, ·

)
and denoted by ‖·‖. That is, the quantity to be assessed is ‖e‖2 = a

(
e,e

)
= ā

(
σe,σe

)
, where

σe := σ(u)− σ(uH).
Each component of the approximate stress field σ(uH) lies in the functional space of the

derivatives of the displacements in VH . Consequently, σ(uH) is generally discontinuous across
element edges but smooth inside the elements. A recovered stress field σ? is sought in a richer
functional space S. The original approaches to recovery-type error estimates select S equal
to VH , in the sense that each component of the stresses in S lies in the same space of each
component of the displacements in VH . Then σ? is determined as a least-squares fitting of
σ(uH) in S.

Once σ? is computed, the error estimate is readily obtained by assuming that σ? is a good
approximation to σ(u):

σ?
e = σ? − σ(uH). (7)

Then σ?
e is a good approximation of σe and hence the corresponding energy norm estimate is

ā
(
σ?

e,σ
?
e

)
≈ ‖e‖2. This is the main rationale for the recovery-type error estimates introduced

by Zienkiewicz and Zhu [3, 4, 5, 6].
On the other hand, implicit residual-type error estimators [28] are based on solving the

residual error equation, approximately and locally. The equation for e is derived by replacing
u = uH + e in (2), that is

a
(
e,v

)
= l

(
v
)
− a

(
uH ,v

)
, for all v ∈ V. (8)

In order to obtain a computable assessment of the error, this equation has to be stated locally,
typically element-wise, introducing the proper local boundary conditions and then solved.

3.2. Statically admissible stresses and error upper bound

The residual-type error estimators build up an statically admissible (locally equilibrated and
continuous) stress field and furnish upper bounds of the energy norm of the error [1, 22]. This
property is also obtained if the statically admissible stresses are obtained after a recovery
procedure by properly imposing the equilibrium restrictions.

Proposition 1. Let Ω be an open bounded domain and let Ωk, k = 1, . . . , nelem, be the elements
of a finite element mesh of characteristic size H discretizing Ω. Let σ? be a statically admissible
stress field, that is, continuous and locally equilibrated:

−∇ · σ? = b in Ωk for k = 1, . . . , nelem (9a)
σ? · n = t on ΓN ∩ ∂Ωk if non-empty (9b)

Then σ? is such that
ā
(
σ?,σ(v)

)
= l

(
v
)
, for all v ∈ V. (10)

Proof. The proof uses the classical weighted residuals technique locally in each Ωk and then
continuity of σ? in order to cancel the stress jumps resulting in assembling all elementary
contributions. �
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EQUILIBRATED PATCH RECOVERY ESTIMATES 5

Proposition 2. Let σ? be a statically admissible stress field, then the associated energy
measure is larger than the energy norm of the exact solution of the elasticity problem, u.
That is

‖u‖2 = ā
(
σ(u),σ(u)

)
≤ ā

(
σ?,σ?

)
.

Proof. Taking v = u in (10) and using (2),

ā
(
σ?,σ(u)

)
= l

(
u

)
= ā

(
σ(u),σ(u)

)
= ‖u‖2.

Then, the proof is completed using the Cauchy-Schwartz inequality√
ā
(
σ?,σ?

)
‖u‖ ≥ ‖u‖2. �

The next proposition states that the upper bound property holds also for the error estimate
when the recovered stress field σ? is statically admissible.

Proposition 3. Let σ?
e := σ? − σ(uH) be a stress error estimate such that the recovery

stresses σ? are statically admissible. Then, the associated energy error estimate is an upper
bound of the actual energy error. That is

‖e‖2 = ā
(
σ(u)− σ(uH),σ(u)− σ(uH)

)
= ā

(
σe,σe

)
≤ ā

(
σ?

e,σ
?
e

)
.

Proof. First, taking v = u and v = uH in (10) and using (2) and Galerkin orthogonality, one
gets

ā
(
σ?,σ(u)

)
= ā

(
σ(u),σ(u)

)
and ā

(
σ?,σ(uH)

)
= ā

(
σ(u),σ(uH)

)
.

Thus, it is easily found that
ā
(
σe,σe

)
= ā

(
σ?

e,σe

)
Then, the rest of the proof is analogous to the previous one. �

3.3. Nearly statically admissible stresses and related upper bounds

Assume that σ? is a nearly statically admissible stress field. This means that either the
continuity or the equilibrium are not strictly fulfilled.

In the first case, σ? verifies (9) but the traction jump across the set of all internal edges
Γint, Jσ? · nKΓint

does not vanish. The jump Jσ? · nKΓint
is formally defined as

Jσ? · nKΓint
= (σ?|Ω1 − σ?|Ω2) · n

where Ω1 and Ω2 are the two elements separated by Γint (that is Γint = Ω1∩Ω2) and such that
n is pointing from Ω1 to Ω2 (outward normal to Ω1). Note that this definition is independent
of the choice of Ω1 and Ω2, that is, of the sign of n.

The second case refers to a continuous stress field σ? verifying (9b) and a (slightly) modified
version of (9a), that is

−∇ · σ? = b + s. (11)

In both cases the equilibrium defects are assumed to be small compared with the
corresponding quantities, that is ‖s‖ ≪ ‖b‖ and Jσ? ·nKΓint

small compared with the average
values of σ?.

The upper bound properties have to be modified to include these equilibrium defects.
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Proposition 4. Let σ? be a locally equilibrated stress field, that is verifying (9), not
continuous across the interelement edges Γint. The jump of the traction across Γint is denoted
by Jσ? · nKΓint

.
Then σ? is such that

ā
(
σ?,σ(v)

)
= l

(
v
)

+
∫

Γint

v · Jσ? · nKΓint
dΓ, for all v ∈ V. (12)

Moreover, the energy norm of σ? is such that

‖u‖2 ≤ ā
(
σ?,σ?

)
− 2

∫
Γint

u · Jσ? · nKΓint
dΓ (13)

and the corresponding error estimate, computed from σ?
e := σ? − σ(uH), is such that

‖e‖2 ≤ ā
(
σ?

e,σ
?
e

)
− 2

∫
Γint

e · Jσ? · nKΓint
dΓ. (14)

Proof. (12) is the standard weak form for discontinuous stresses. The expressions for the
upper bounds (13) and (14) follow in the same fashion as for propositions 2 and 3 �

The following result is the analogous to the previous one for σ? continuous but non-
equilibrated.

Proposition 5. Let σ? be a continuous stress field, verifying (9b) and a modified version of
(9a), that is, such that (11) holds for some s.

Then σ? is such that

ā
(
σ?,σ(v)

)
= l

(
v
)

+
∫

Ω

v · s dΩ, for all v ∈ V. (15)

Moreover, the energy norm of σ? is such that

‖u‖2 ≤ ā
(
σ?,σ?

)
− 2

∫
Ω

u · s dΩ (16)

and the corresponding error estimate, computed from σ?
e := σ? − σ(uH) is such that

‖e‖2 ≤ ā
(
σ?

e,σ
?
e

)
− 2

∫
Ω

e · s dΩ. (17)

Proof. (15) is standard, then the proof is practically identical to proposition 4 �

Remark 1. Note that the upper bounds given by (13), (14), (16) and (17) are not computable
because the integral terms in the r.h.s. involve the unknowns u and e.

In the following, the result given in proposition 5 is exploited to obtain a strict upper
bound of the energy error from recovered stresses that are not exactly statically admissible.
An analogous procedure using proposition 4 is not included in this paper.
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EQUILIBRATED PATCH RECOVERY ESTIMATES 7

4. A nearly statically admissible stress recovery technique

In order to obtain an upper bound of the error, it suffices that the recovery technique yields a
statically admissible recovered stress field σ?. As stated above, this requires the stress field to
be locally equilibrated and continuous. It has been also noted in the previous section that if
these conditions are not strictly fulfilled the resulting expressions must account for either the
continuity or the equilibrium defects, see (14) and (17).

This section introduces practical recovery techniques that meet these conditions and
therefore are used to produce upper bound error estimates.

4.1. Locally equilibrated stress recovery

The nodal points of the mesh are denoted by Pi (i = 1, . . . , npoin, with npoin the number of
nodal vertices in the mesh). The patch of elements surrounding Pi is denoted by ωi and Ni

stands for the lineal shape function associated with the vertex node. Note that ωi is precisely
the support of Ni.

Remark 2. If the elements are of order larger than one, the linear shape functions Ni and
the actual shape functions used in the functional approximation do not coincide.

The stress recovery approach consists on selecting a polynomial stress field σ?
i in patch ωi

such that it is the least-squares approximation of σ(uH) in the space of polynomial stresses.
The recovery estimators provide sharp estimates if σ?

i approximates the actual stress σ(u) in
ωi much better than σ(uH). In practice, this is related to superconvergence phenomena and
means that the norm of the error of σ?

i is, at least, one order higher than the error of σ(uH),
i.e. ‖σ(u)− σ?

i ‖ ≤ H‖σ(u)− σ(uH)‖ (here, the norm is restricted to ωi).
The recovery is improved by imposing to σ?

i additional conditions that are fulfilled by the
exact solution σ(u), e.g. verify the equilibrium equation (9), or the compatibility equation.

Here the recovered stresses are sought such that they are statically admissible or nearly
statically admissible in order to derive upper bound error estimates.

Imposing the equilibrium condition (9) to the polynomial stress field σ?
i results on adding

linear constraints to the local least-squares fitting. This is easily done by using the SPR-C
technique [25], which is a modification of the standard SPR technique. In the SPR-C technique,
the equilibrium condition (9) is imposed to the polynomial stress field σ?

i by applying a set of
linear constraints via the Lagrange multiplier technique.

Thus, the local recovered stresses σ?
i are computed imposing the additional condition (9),

that is
−∇ · σ?

i = b in ωi and σ?
i · n = t on ΓN ∩ ∂ωi if non-empty. (18)

Moreover, in order to further improve the quality of the recovered stress filed, the
compatibility condition may also be imposed. The compatibility condition relates the
derivatives of the stress components and ensures that the stress tensor corresponds to a
kinematically admissible displacement field via the linear elastic constitutive relation. For
instance, in the case of the plane stress state it reads (see [29])

∂2

∂y2
(σx − νσy) +

∂2

∂x2
(σy − νσx) = 2(1 + ν)

∂2τxy

∂x∂y
,

which is an additional linear constraint to the least-squares projection.

©
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4.2. Continuous recovered stresses

In order to impose continuity in the representation of the recovered stresses, the following
expression is used:

σ? =
npoin∑
i=1

Niσ
?
i . (19)

Consequently, the proposed representation for σ? is automatically continuous and due to the
δ property of the shape functions (Ni(Pj) = δij) it is found that σ?(Pi) = σ?

i (Pi) for every
i = 1, . . . , npoin.

Remark 3. Note that the fitted polynomial stresses σ? are used in all the points of the patch
ωi. This contrasts with the original SPR techniques (equilibrated or not) where only the value
of σ?

i in Pi is used. In fact, equation (19) must be read as

σ?(x) =
npoin∑
i=1

Ni(x)σ?
i (x),

where x stands for the spatial coordinate, while the expression for the classical SPR techniques
is

σ?(x) =
npoin∑
i=1

Ni(x)σ?
i (Pi). (20)

The divergence of the continuous recovered stresses is derived using the expression for σ?

given in (19),

−∇ · σ? = −
npoin∑
i=1

Ni∇ · σ?
i −

npoin∑
i=1

σ?
i ·∇Ni = b−

npoin∑
i=1

σ?
i ·∇Ni, (21)

using (18) and the fact that
∑npoin

i=1 Ni = 1. Note that the recovered stress σ? is not equilibrated
because of the term

∑npoin
i=1 σ?

i ·∇Ni.
As already mentioned, the hypothesis behind the SPR philosophy is that σ?

i ≈ σ(u)|ωi
. In

every element Ωk, k = 1, . . . , nelem, there are nnode (with nnode the number of element vertex
nodes, 3 for triangles, 4 for quadrilaterals...) different stress fields that are supposed to be good
approximations of σ(u)|Ωk

. Thus, the average recovered stress σ?
A is introduced by defining

its restriction to Ωk

σ?
A|Ωk

=
1

nnode

∑
Pi∈Ωk

σ?
i |Ωk

, for k = 1, 2, . . . , nelem. (22)

Note that σ?
A is defined almost everywhere (except on the interelement edges) in Ω, it is

continuous inside the elements and globally discontinuous. Thus, equation (21) results on

−∇ · σ? = b +
npoin∑
i=1

(σ?
A − σ?

i ) ·∇Ni −
npoin∑
i=1

σ?
A ·∇Ni︸ ︷︷ ︸
=0

,

©



EQUILIBRATED PATCH RECOVERY ESTIMATES 9

where the last term of the r.h.s. vanishes because σ?
A does not depend on i and

∑npoin
i=1 ∇Ni = 0.

The term

s =
npoin∑
i=1

(σ?
A − σ?

i ) ·∇Ni (23)

is the equilibrium defect introduced by the continuity requirement. If the recovered stresses
are indeed very similar in the overlapping patches, s must be small. In fact, Kvamsdal and
Okstad [22] claim that this term is negligible and they consider σ? to be statically admissible.

In the following, the equilibrium defect s is accounted for in a strict upper bound estimate.

4.3. Upper bound estimate from the continuous recovered stresses

The global continuous recovered stress introduced in (20) verifies (17) for s defined by (23)
and therefore, using the Cauchy-Schwartz inequality,

‖e‖2 ≤ ā
(
σ?

e,σ
?
e

)
+ 2|

∫
Ω

e · s dΩ| ≤ ā
(
σ?

e,σ
?
e

)
+ 2‖e‖L2‖s‖L2 . (24)

where ‖·‖L2 stands for the standard L2 norm in Ω.
Moreover, the L2 norm is bounded from above by the energy norm affected by a constant,

that is for any v

‖v‖ ≥
√

λmin‖v‖L2 (25)

The constant λmin is the lower eigenvalue of the following problem:

−∇ · σ(w) = λw in Ω (26a)

σ(w) · n = 0 on ΓN (26b)
w = 0 on ΓD (26c)

The weak form of the eigenvalue problem problem reads: find λ ∈ R and w ∈ V such that

a
(
w,v

)
= λ

(
w,v

)
, for all v ∈ V, (27)

where
(
·, ·

)
is the standard inner product in L2. The inequality (25) follows from (27) taking

w = v and considering that the eigenvalues are all positive.
Substituting (25) with v = e in (24), one gets

‖e‖2 ≤ ā
(
σ?

e,σ
?
e

)
+

2‖s‖L2√
λmin

‖e‖. (28)

The scalar coefficient α = 2‖s‖L2/
√

λmin has the dimensions of the energy norm. A strict
upper bound of ‖e‖ is easily derived from (28):

‖e‖ ≤ Eλmin
UB

:=
√

ā
(
σ?

e,σ
?
e

)
+ α2 + α. (29)

Note that for small s, α is close to zero and consequently the estimate

Eest :=
√

ā
(
σ?

e,σ
?
e

)
(30)

is expected to be a good approximation of ‖e‖.

©
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The value of Eλmin
UB

is easily computed from the local recovered stresses σ?
i , i = 1, . . . , npoin,

except for the value of λmin. Note, however, that
√

λmin is precisely the natural frequency of
the structure and it happens to be approximated very accurately even with a coarse mesh.
In fact,

√
λmin depends on the geometry of Ω, the essential boundary conditions (1c) and the

material properties. The value of
√

λmin is used as a reliable lower bound of ‖e‖/‖e‖L2 , see
(25). This value is nevertheless pessimistic (it is a lower bound for every v) and leads to values
of α that may be much larger than the actual value of 2‖s‖L2‖e‖L2/‖e‖.

4.4. Estimation of ‖e‖L2

The numerical experiments show that the use of (25) in the evaluation of an upper bound of
‖e‖L2 produces extremely large overestimations of the error in energy norm. Therefore, these
values cannot be considered as accurate upper bounds.

The adaptive refinement process is driven by the estimate given in (30). Thus, the sequence
of meshes is designed without using the upper bound estimates. A sequence of solutions uH

(i),
i = 1 . . . N , of increasing accuracy is obtained corresponding to a series of nested meshes. All
this information may be used to properly assess the value of ‖e‖L2 .

Instead of using the true upper bound of ‖e‖L2 that would be given by (25), a sharp
estimation of this value is used in (24) to obtain an accurate upper bound of the error in
energy norm.

The displacements field uH
(N) obtained in the last mesh of the sequence can be considered

as an approximation to the exact solution, uH
(N) ≈ u. An approximation to the exact error of

the displacement field for the first N − 1 meshes of the sequence is given by

e(i) := u− uH
(i) ≈ uH

(N) − uH
(i) (31)

The use of (31) in the evaluation of e(i), for i = 1 . . . N − 1, requires the projection of the
displacement field corresponding to the ith mesh over the last mesh of the sequence. This is
a standard data interpolation technique, especially simple and efficient if nested meshes are
used.

Once the estimation of the error of the displacement field has been obtained and the
corresponding ‖e(i)‖L2 are computed for i = 1 . . . N − 1, the value of ‖e(N)‖L2 is evaluated by
extrapolation from the value of ‖e(N−1)‖L2 . This is done taking into account the number of
degrees of freedom corresponding to meshes N − 1 and N and the rate of convergence of the
error in the L2 norm.

Note that the rate of convergence in the L2 norm is larger than in the energy norm. In
practice the estimate for ‖e‖L2 is very accurate. It can be considered almost exact, although
it cannot be taken as a guaranteed upper bound.

4.5. Proposed error estimation procedures

The error estimation procedures introduced above are summarized in figures 1 and 2. The
ideas introduced in sections 4.3 and 4.4 differ in the way of evaluating the influence of the
equilibrium defects and, in particular, in the assessment of ‖e‖L2 , see equation (24).

The first strategy, introduced in section 4.3 and illustrated in figure 1, uses the value of
λmin to obtain a pessimistic bound for ‖e‖L2 . This strategy yields upper bounds with a large
overestimation. The alternative approach described in section 4.4 is illustrated in figure 2. The
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EQUILIBRATED PATCH RECOVERY ESTIMATES 11

Step 1.– Compute uH ∈ VH .

Step 2.– Local recovery: compute σ?
i in every ωi, i = 1, . . . , npoin, as a local least-squares

projection of σ(uH), enforcing equilibrium and compatibility

Step 3.– Compute continuous stress field σ? =
npoin∑
i=1

Niσ
?
i

Step 4.– Compute equilibrium defects introduced in Step 3: s =
npoin∑
i=1

(σ?
A − σ?

i ) ·∇Ni

Step 5.– Compute the eigenvalue λmin and α = 2‖s‖L2/
√

λmin

Step 6.– Compute Eest :=
√

ā
(
σ?

e,σ
?
e

)
(sharp but not guaranteed upper bound) and

Eλmin
UB

:=
√

ā
(
σ?

e,σ
?
e

)
+ α2 + α (guaranteed upper bound, not sharp)

Figure 1. Computing error bounds using λmin

Step 1.– Compute sequence of adaptive solutions uH
(j), j = 1 . . . N (using Eest (Step 5) to

adapt)

Step 2.– Local recovery: for every adaptive step (for j = 1 . . . N) compute σ?
i in every ωi,

i = 1, . . . , npoin, as a local least-squares projection of σ(uH
(j)), enforcing equilibrium and

compatibility

Step 3.– Compute continuous stress field: σ? =
npoin∑
i=1

Niσ
?
i

Step 4.– Compute equilibrium defects introduced in Step 3: s =
npoin∑
i=1

(σ?
A − σ?

i ) ·∇Ni

Step 5.– Compute Eest :=
√

ā
(
σ?

e,σ
?
e

)
(sharp but not guaranteed upper bound)

Step 6.– Estimate ‖e(j)‖L2 from the adaptive sequence

Step 7.– Compute the sharp and practical upper bound

E
UB

=
√

ā
(
σ?

e,σ
?
e

)
+ 2‖e(j)‖L2‖s‖L2

Figure 2. Computing error bounds using the estimate for ‖e(i)‖L2 in a sequence of adapted solutions

idea is to build up a sequence of adapted meshes and then estimating ‖e‖L2 by simply using
an extrapolation technique. The adaptivity is performed using the estimate Eest, which is not
a guaranteed upper bound of the error but it is a good approximation of the error. Thus, a
sharp upper bound is computed.

The numerical results presented in the next section show the accuracy of the proposed
procedure.
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Thus, the body forces ensuring equilibrium are

bx(x, y) =
−E

1 + ν
(1 + y)

by(x, y) =
−E

1 + ν
(1− x)

Note that due to the simplicity of the expressions corresponding to body forces b and
imposed tractions t, the recovered stress field σ? obtained by using the SPR-C technique [25]
is statically admissible and exactly satisfies equations (9).

A sequence of 4 uniformly-refined meshes (Figure 4) and a sequence of 4 h-adapted meshes
(Figure 5) are used in the analyses.

Figure 4. Example 1: Sequence of uniformly refined meshes

Figure 5. Example 1: Sequence of h-adapted meshes.

Tables I and II show the numerical results corresponding to the cases of uniform and h-
adaptive refinements. The data displayed in these tables include:

• the number of degrees of freedom in each mesh, dof,

• the FE energy norm, U =
√

a
(
uH ,uH

)
,

• the estimate of the error energy norm, Eest :=
√

ā
(
σ?,σ?

)
,

• the exact error energy norm, E :=
√

a
(
e,e

)
,

• the effectivity index, θ := Eest/E,
• the estimate of the error L2 norm, EL2

est,
• the value of ‖s‖L2 ,
• the computed upper bound for the error energy norm, E

UB
,

©
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only at nodal points. Along the rest of the boundary this equation is only approximately
satisfied because the stress recovery functions considered in each patch are 2nd order
polynomials and the boundary traction is a trigonometric function. Thus, the SPR-C technique
giving σ? prescribes (9b) approximating t by a 2nd order Taylor’s expansion around the patch
assembly nodes. The results obtained using this approximation are found to be very accurate.

Figure 11 shows the sequence of h-adapted meshes obtained during the analysis of this
problem. Table V displays the numerical results of the analysis showing the high accuracy of
Eest even for this singular problem. Note, however, that E is underestimated by Eest in the
last mesh of the sequence. This is because, in this case, the presence of the singularity produces
an increase of ‖s‖L2 with the refinement of the model, resulting in an inaccurate value of E

UB
.

Figure 11. Example 2: Sequence of h-adapted meshes

dof U Eest E θ EL2
est ‖s‖L2 EUB θUB

39 0.0865196 0.040676 0.026063 1.5607 0.00133454 2.836 0.09604 3.6851
223 0.0904952 0.013913 0.012323 1.1290 0.00042122 10.474 0.09496 7.7060
741 0.0910440 0.004951 0.004830 1.0251 0.00010816 37.575 0.09029 18.6940
2605 0.0911413 0.001599 0.001591 1.0047 0.00002256 133.823 0.07772 48.8373
8983 0.0911531 0.000463 0.000463 1.0013 0.00000382 473.861 0.06021 130.1740
31461 0.0911541 0.000130 0.000131 0.9984 0.00000058 1680.164 0.04428 339.2138

Table V. Example 2: h-adaptive refinement. Numerical results

5.3. Example 3: Thick-walled cylinder subjected to an internal pressure

The geometry and loads of the problem are displayed in Figure 12. The exact solution is
available and its expression in polar coordinates is the following:

ur =
p(1 + ν)

E(k2 − 1)

[
(1− 2ν)r +

b2

r

]
(radial displacement)

©
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a
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Figure 12. Example 3: Cylinder subjected to internal pressure. Model.

The exact stresses are given both in polar (cylindrical) and Cartesian coordinates:

σr =
p

k2 − 1

(
1− b2

r2

)
σxx = σr cos2(φ) + σt sin2(φ)

σt =
p

k2 − 1

(
1 +

b2

r2

)
σyy = σr sin2(φ) + σt cos2(φ)

σxy = (σr − σt) sin(φ) cos(φ)

As in the previous example, the SPR-C technique [25] builds-up σ? such that equation (9a) is
exactly satisfied. However, equation (9b) is only approximately satisfied. Here, the presence of
curved boundaries is an additional source of error because in this kind of contours the SPR-C
technique can only impose the boundary equilibrium at the nodal points.

A sequence of 4 uniformly-refined meshes (Figure 13) and a sequence of 5 h-adapted meshes
(Figure 14) have been analyzed. The results of these analyses are shown in Tables VI and VII.
The evolution of the effectivity indices θ and θUB in these tables is also represented in Figures
15 and 16. Figure 17 shows the local distribution of ‖s‖L2 . The results show a behavior similar
to Example 1.

Figure 13. Example 3: Sequence of uniformly refined meshes
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7. I. Babuška, T. Strouboulis, and C.S. Upadhyay. A model study of the quality of a posteriori error
estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of
triangles. Computer Methods in Applied Mechanics and Engineering, 114:307–378, 1994.
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