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Abstract

Many environmental processes can be modelled as transient convection-diffusion-reaction
problems. This is the case, for instance, of the operation of activated-carbon filters. For
industrial applications there is a growing demand for 3D simulations, so efficient linear
solvers are a major concern. We have compared the numerical performance of two fam-
ilies of incomplete Cholesky factorizations as preconditioners of conjugate gradient iter-
ations: drop-tolerance and prescribed-memory strategies. Numerical examples show that
the former are computationally more efficient, but the latter may be preferable due to their
predictable memory requirements.
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1 Introduction

Many industrial or natural processes of environmental interest are transient convection-
diffusion-reaction problems. This is the case, for instance, of the operation of activated-
carbon filters and the dispersion of pollutants in the atmosphere. In these techno-
logical applications, there is a growing demand for 3D simulations. Due to the
transient, 3D nature of the problems, efficient finite element models are needed.
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de Camins, Edifici C2, Campus Nord, Universitat Politècnica de Catalunya, E-08034
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With computational efficiency in mind, we have chosen to stabilize the convective
term with a least-squares technique. This results in a symmetric positive definite
(SPD) system [1] to be solved at each time-step.

We solve these linear systems by means of the preconditioned conjugate gradient
method. Incomplete Cholesky factorizations [2] are used as preconditioners. We
have compared the numerical performance of two different strategies: threshold in-
complete factorizations based on a drop tolerance [3] and incomplete factorizations
with prescribed density [4]. To put the results in context, both a complete Cholesky
factorization (i.e. direct solver) and a diagonal Jacobi preconditioner have also been
used.

An outline of paper follows. A finite element model for transient convection-diffusion
problems is briefly reviewed in Section 2. Incomplete Cholesky factorizations are
discussed in Section 3. Nodal ordering and sparse storage schemes are covered in
Section 4. The computational performance of the various numerical techniques is
assessed in detail by means of numerical examples in Section 5. The concluding
remarks of Section 6 close the paper.

2 Finite Element Convection-Diffusion Equations

We start by describing briefly the mathematical model. Section 2.1 discusses the
governing equations for transient convection-diffusion-reaction and convection-
diffusion problems. The finite element discretization is treated in Section 2.2. More
details about both aspects can be found in [1].

2.1 Transient Convection-Diffusion-Reaction Problems

Transient convection-diffusion-reaction problems can be modelled as

∂c

∂t
+ vvv · ∇c−∇ · (ν∇c) + σ(c)c = f in Ω× (0, T ] (1)

c = cinput onΓD × (0, T ] (2)
∇c · nnn = 0 on∂Ω\ΓD × (0, T ] (3)
c(xxx, 0) = c0 in Ω (4)

In the partial differential equation (1),c(xxx, t) denotes the concentration at pointxxx
and instantt, vvv(xxx) the convective velocity,ν > 0 the diffusivity coefficient,σ(c)
the reaction coefficient,f(xxx, t) the source term,∇ the usual nabla operator and
T the final time of analysis. This PDE is complemented with Dirichlet and Neu-
mann boundary conditions and initial conditions, Equations (2), (3) and (4) respec-
tively. In these equations,cinput(xxx, t) is the prescribed concentration on the Dirichlet

2



boundaryΓD,nnn is the outward unit normal vector andc0(xxx) is the prescribed initial
concentration.

In the transient equation (1), the term∂c/∂t models the time variation of the con-
centration;vvv · ∇c the convection due to the motion of the ambient fluid;∇ · (ν∇c)
the diffusion,σ(c)c the (nonlinear) reaction andf the external source. The con-
stant, non-uniform velocity fieldvvv is computed a priori by means of an appropriate
flow formulation (for instance, porous media flow combined with potential flow for
active-carbon filters, see [5]).

2.2 Finite Element Formulation

2.2.1 Fractional-step methods

A very common strategy in this type of problems is to use a fractional-step method,
thus treating the various terms separately, see [6,7]. In our applications, reaction is
nonlinear, so we have chosen to write the governing PDE as

∂c

∂t
+ L1c + L2c = 0 (5)

whereL1c := vvv · ∇c − ∇ · (ν∇c) is the (linear) convection-diffusion differential
operator andL2c := σ(c)c− f is the (nonlinear) reaction operator. During numeri-
cal time-integration, each time-step∆t is subdivided into two phases: a convection-
diffusion phase, dealing withL1, and a reaction phase, dealing withL2. This second
phase concentrates all the problem linearity but, sinceL2 is not a differential op-
erator, it can be handled efficiently node by node. In the rest of this paper we will
focus on the convection-diffusion phase which leads, upon finite element spatial
discretization, to large linear systems of equations.

Note that this type of splitting is crucial for large 3D industrial applications: solv-
ing the original equation (1) with no splitting would mean (upon space and time
discretization) solving many large systems of nonlinear algebraic equations.

2.2.2 The convection-diffusion phase

With the transient nature of the problem and industrial 3D applications in mind, we
require the following features on the finite element formulation: (1) robust, standard
finite element technology; (2) appropriate stabilization of the convective term; (3)
accurate time-integration (of order 2 or higher); (4) efficient solution of resulting
linear systems of equations.

Let us consider time-integration first. Using the popularθ scheme [1] for the convec-

3



tion-diffusion phase leads to

∆c

∆t
− θ∆ct = cn

t (6)

where∆t is the time increment,∆c := cn+1− cn is the concentration increment,ct

is a compact notation for∂c/∂t and superscripts denote time stations. Forθ = 1/2,
the well-known second-order Crank-Nicolson scheme

cn+1 +
∆t

2
L1c

n+1 = cn − ∆t

2
L1c

n (7)

Higher-order schemes, like the ones proposed in [8,9], can also be applied.

We have chosen to stabilize the convective term by means of a standard least-
squares (LS) formulation. As discussed in [8,9], this approach introduces more
diffusivity that other stabilization techniques, such as SUPG, GLS or SGS.

In the LS formulation, we use the differential operatorI+ ∆t
2

L1 (with I the identity)
to write the integral equation

(
v +

∆t

2
L1v, cn+1 +

∆t

2
L1c

n+1
)

=
(
v +

∆t

2
L1v, cn − ∆t

2
L1c

n
)

(8)

wherev are test functions from a suitable space and(·, ·) is the interior product
defined as(u, v) :=

∫
Ω uvdΩ. The left-hand-side term in Equation (8) is symmetric.

This contrasts with other stabilization techniques, and leads to symmetrical linear
systems of equations, as shown next.

For spatial discretization, we will use standard linear elements (triangles in 2D and
tetrahedra in 3D) and a “displacement” formulation. After applying the divergence
theorem and the boundary conditions, and noting that∇ · (ν∇) ≡ 0 for linear
elementsΩe, the weak form of the problem is written as

(
v, cn+1

)
+

∆t

2
a

(
v, cn+1

)
+

∑
e

[
∆t

2

(
vvv · ∇v, cn+1

)
e
+

∆t2

4

(
vvv · ∇v,vvv · ∇cn+1

)
e

]

= (v, cn)− ∆t

2
a (v, cn) +

∑
e

[
∆t

2
(vvv · ∇v, cn)e −

∆t2

4
(vvv · ∇v,vvv · ∇cn)e

]

(9)

where the bilinear forma(·, ·) is defined as

a(v, c) := (v,vvv · ∇c) + (∇v, ν∇c) (10)

Finite element discretization of Equation (9) results finally in the linear system of
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algebraic equations

[
M +

∆t

2
(G + D) +

∆t

2
GT +

∆t2

4
D̂

]
cn+1 =

[
M− ∆t

2
(G + D) +

∆t

2
GT − ∆t2

4
D̂

]
cn

(11)

wherec is the nodal vector of concentrations, and matricesM (mass matrix),G
(convection matrix),D (diffusivity matrix) andD̂ are defined as

mij =
∫

Ω
NiNjdΩ ; gij =

∫

Ω
Ni (vvv · ∇Nj) dΩ

dij =
∫

Ω
ν∇Ni · ∇NjdΩ ; d̂ij =

∫

Ω
(vvv · ∇Ni) (vvv · ∇Nj) dΩ

(12)

with Ni the shape function of nodei. With the compact notationA := M +
∆t
2

(
D + G + GT

)
+ ∆t2

4
D̂ andB := M + ∆t

2
GT , the linear system (11) can

be expressed as

Acn+1 = (2B−A) cn (13)

MatricesM, D andD̂ are symmetric, whileG is non-symmetric. MatricesGT and
D̂ are associated to the least-squares stabilization; the former ensures the symmetry
of matrix A. Note also that the mass matrixM is positive definite,D andD̂ are
positive semi-definite andG + GT is indefinite. For small∆t, matrixA preserves
the positive definiteness of matrixM.

A simple way to estimate the critical time-step below whichA is SPD is to check
the positive definiteness ofM + ∆t

2

(
D + G + GT

)
, because the positive semi-

definite term∆t2

4
D̂ cannot have a negative effect. To do so, one can state the gener-

alized eigenvalue problem

Mx = −∆t

2

(
D + G + GT

)
x (14)

and look for the smallest positive eigenvalue∆t. However, this computation is
deemed not necessary in practical applications, because time-steps selected accord-
ing to accuracy and stability constraints are typically below this critical value.

To sum up: thanks to the use of a LS stabilization of the convective term,the linear
system to be solved at each time-step is symmetric positive definite (SPD). This is
very attractive from a computational viewpoint, especially for 3D industrial appli-
cations.
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3 Incomplete Cholesky Factorizations

From now we will write our linear system asAx = b, the usual notation in numer-
ical linear algebra. Since matrixA is SPD, the two basic choices are a Cholesky
direct solver or a conjugate gradient (CG) iterative solver [10].

The main advantage of the Cholesky method is that the factorization of matrixA
can be amortized over many time-steps. However, for fine finite element meshes in
3D, a significant amount of fill-in occurs, resulting in very large memory and CPU
time requirements. To avoid the computation of square roots, we will work with
the generalized version (A = LDLT ), not the standard version (A = LLT ) of the
Cholesky method (mind the notation abuse:D refers here to the diagonal factor,
not the diffusivity matrix defined in Equation (12)).

With the CG method, on the other hand, fill-in is completely precluded. However,
two drawbacks can be pointed out: computational work has to be re-started at each
time-step, and poor conditioning of matrixA may lead to slow convergence of the
iterative process.

This latter problem can be solved bypreconditioningthe linear system. If left-
preconditioning is used, the original linear system is transformed into

P−1Ax = P−1b (15)

whereP is the SPD preconditioner. The non-symmetry of matrixP−1A poses no
difficulties: the original CG method can be rewritten into a preconditioned conju-
gate gradient scheme [2] where the two key ideas are that (1) an auxiliary linear
system with matrixP needs to be solved at each iteration, and (2) for appropriate
P, the conditioning and hence the convergence of CG greatly improves.

Incomplete Cholesky factorizations (ICF) are a popular choice forP [2,11,12]. The
large fill-in of the complete (i.e. standard) Cholesky factorization is completely or
partially avoided by discarding coefficients along the factorization process. The
ICF with no fill-in prescribes the incomplete factorL to have the same sparsity
pattern as the lower triangle of matrixA. A better (but also denser) preconditioner is
obtained by allowing some degree of fill-in according to various strategies. In either
case, it is worth noting that the incomplete factorization (P = LLT orP = LDLT )
can be amortized over many time-steps.

More recently, sparse approximate inverses have become an interesting approach to
precondition conjugate gradient iterations [13,14]. Contrary to incomplete factor-
izations, the computation of approximate inverses can be parallelized in a straight-
forward way. In a sequential environment like ours, however, incomplete factoriza-
tions can still be considered as a more efficient preconditioning strategy.
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3.1 Drop-Tolerance Strategies

In drop-tolerance strategies, off-diagonal coefficients are dropped during the fac-
torization process if they are below a certain threshold. Various elimination criteria
may be used. Munksgaard [3], for instance, drops elementa

(k+1)
ij during stagek if

|a(k+1)
ij | ≤ τ

√
|a(k)

ii a
(k)
jj | (16)

whereτ is the dropping tolerance or threshold. Parameterτ controls the fill-in of
the factorization: the smaller theτ , the denser the ICF.

Let us analyze the two extreme cases. Forτ → 0, no entries are dropped and
a complete Cholesky factorization is obtained. Forτ → ∞, on the other hand,
all non-diagonal entries are discarded, and the diagonal (Jacobi) preconditioner
results. Note also that we cannot get the incomplete factorization with no fill-in
(same sparsity pattern) as a particular case, because drop-tolerance approaches drop
elements according to their size, not to their location in the matrix.

Since the factorization is incomplete, its existence is not guaranteed byA be-
ing SPD. The Munksgaard algorithm [3] contains two additional features to avoid
breakdowns or instabilities caused by negative, null or very small pivots [15].

Pivots can be shifted in a dynamic local manner, according the rule:

If dkk ≤ u


∑

j 6=k

|akj|

 then





dkk =
∑

j 6=k |akj| if
∑

j 6=k |akj| 6= 0

dkk = 1 if
∑

j 6=k |akj| = 0
(17)

Note that settingu = 1 ensures the diagonal dominance of the preconditioner.
However, this rule would cause significant changes in many pivots, and a poor
preconditioner would result. In practice, a far less demanding rule is preferred. In
our numerical examples, we have used rule (17) with the (typical) valueu = 0.01.

Even with u = 0.01, many pivot changes may be necessary. If this affects the
quality of the preconditioner, it may be better to perform a global diagonal shift
before starting the factorization. MatrixA is perturbed intôA = A + αdiagA.
Choosingα large enough to ensure the diagonal dominance ofÂ (and, hence, the
existence of the incomplete factorization) again leads to a poor preconditioner, so
much lower values ofα are preferred.

In practical implementations [16], the two shifting strategies (local and global) are
combined. Parameterα is chosen in an iterative, trial-and-error basis (starting with
α = 0) and, if still needed, pivots are shifted during the factorization. In our nu-
merical experiments,α = 0 provided satisfactory results and only local shifts were
required.
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3.2 Prescribed-Memory Strategies

The major drawback of drop-tolerance strategies is that the memory needed to store
the incomplete factorL cannot be predicted in advance. In general, one cannot
accurately predict the amount of fill-in for a given threshold parameterτ .

Various prescribed-memory strategies have been proposed to overcome this diffi-
culty. The algorithm of Lin and Moŕe [4], for instance, retains thecol len + p
largest elements in each factorization step, wherecol len is the original number
of non-zeros in the column of matrixA andp is a parameter that controls fill-in
(pN extra entries are allowed, withN the system dimension). Diagonal elements
are always retained.

Like in drop-tolerance strategies, the incomplete factorization without fill-in cannot
be obtained as a particular case. Forp = 0, thecol len largest non-zero elements
in column ofL will not, in general, coincide in location with thecol len non-
zero elements in column ofA. This means that, forp = 0, the sparsity pattern of
A is not maintained.

Two additional features of the Lin-Moré algorithm that ensure the existence of the
factorization are the scaling of the matrix and the perturbationA + αI, see [4].

4 Nodal Ordering and Storage Schemes

We have used a reverse Cuthill-McKee [2] nodal reordering to reduce the fill-in
in the direct solver. With domain decomposition techniques (not discussed in this
work) in mind, we have constrained the reordering to respect the typical block-
interface structure of many active carbon filters (our industrial application of inter-
est). Consider for instance the domain of Figure 1(a), consisting of five blocks and
four interfaces. The sparsity patterns before and after reordering are shown in Fig-
ures 1(b) and 1(c) respectively. Note that the reordered matrix is block-tridiagonal,
clearly showing that each block/interface interacts with two interfaces/blocks.

Nodal reordering also affects preconditioned iterations. As discussed in [17], re-
verse Cuthill-McKee is a good reordering strategy for conjugate gradient iterations
preconditioned by means of incomplete factorizations, especially in the case of
non-structured finite element meshes.

Many storage schemes for sparse matrices are available, see [2,12]. The Cholesky
direct solver is usually combined with a skyline storage (SKS). Back in 1980,
Munksgaard used a symmetric coordinate storage (SCS) [3]. Much more recently,
Lin and Moŕe preferred the more efficient modified column storage (MCS).
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(a) (b) (c)

Fig. 1. Nodal reordering: (a) typical block-interface domain, (b) matrix before reordering
and (c) matrix after reordering

5 Numerical Examples

The main goal of this section is to compare the performance of the two incomplete
Cholesky factorizations (drop-tolerance and prescribed-memory) as precondition-
ers of conjugate gradient iterations. For the sake of completeness and as a reference,
we will also include in the analysis the very simple diagonal (Jacobi) preconditioner
and the standard (non-preconditioned) CG scheme. More importantly, we will also
test the Cholesky direct solver: from the point of view of industrial applications,
iterative solvers (preconditioned or not) are to be preferred to direct solvers only if
they are indeed more efficient. Comparisons of computational cost will comprise
both memory requirements (measured in non-zero entries in incomplete factorL)
and CPU time.

For iterative solvers, the solution at the end of the previous time-step is taken as the
initial approximation. The stopping criteria are

∣∣∣x(k)
i − x

(k+1)
i

∣∣∣ ≤ tolx
( ∣∣∣x(k+1)

i

∣∣∣ + 1
)

for each componenti, (18)
∥∥∥b−Ax(k+1)

∥∥∥ ≤ tolr ‖b‖ (19)

with tolx = 0.5 · 10−10 andtolr = 0.5 · 10−9.

All the algorithms are coded in Fortran 90 with double precision arithmetics and
with a compiler optimization option that maximizes performance for the target plat-
form processor. Tests were run on one processor of a SGI Origin 3000 with eight
600 MHz IP35 processors and 8 Gb RAM.
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5.1 Applications: active carbon filters

We will work with the active carbon filters of Figure 2. For each of these filters, we
have used two finite element meshes, denoted as “coarse” and “fine”. For filter A,
we also work with a third, “coarser” mesh.

Filter A (fine mesh)

Filter B (fine mesh)

Filter C (coarse mesh)

Fig. 2. Active carbon filters
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Table 1 summarizes the main numerical parameters. For each filter and mesh, it
shows (1) the number of nodes, (2) the number of finite elements, (3) the size
N of matrix A (slightly smaller than the number of nodes because it does not
include Dirichlet nodes), (4) the number of non-zero entriesnnz(A) in the triangle
of matrixA, (5) the time-step∆t and (6) the number of time-steps.

Filter A Filter B Filter C

Coarser Coarse Fine Coarse Fine Coarse Fine

# nodes 5 186 17 943 87 502 48 138 84 087 33 041 65 941

# elem. 19 081 74 139 460 765 249 645 454 815 167 558 346 907

N 5 171 17 914 87 473 48 125 84 072 33 028 65 925

nnz(A) 32 928 117 181 653 435 357 251 636 669 242 793 493 278

∆t 5 8 4.31 4 3.6 8.59 6.82

# steps 23 490 17 961 32 867 20 719 23 152 11 135 13 974
Table 1
Main numerical parameters in filter simulations

The time-step is selected in accordance with element size by prescribing a Courant
number of 1 [8,9] and, hence, is different from mesh to mesh. To verify the positive
definiteness of the resulting matricesA, we have computed the minimum eigen-
value, see Table 2, which turns out to be positive in all the examples. In fact, our
numerical experience indicates that the Courant condition is more restrictive in the
selection of∆t than the SPD requirement. Table 2 also shows the maximum eigen-
value and the condition number of the unpreconditioned matrix.

Filter A Filter B Filter C

Coarse Fine Coarse Fine Coarse Fine

λmax 2.68 · 10−4 5.11 · 10−5 1.02 · 10−4 4.39 · 10−5 2.42 · 10−4 1.15 · 10−4

λmin 8.87 · 10−10 5.65 · 10−10 4.11 · 10−9 4.08 · 10−9 1.30 · 10−9 1.35 · 10−9

κ(A) 3.02 · 105 9.04 · 104 2.48 · 104 1.08 · 104 1.86 · 105 8.52 · 104

Table 2
Positive definiteness of matrices: maximum eigenvalueλmax, minimum eigenvalueλmin

and condition numberκ(A) = λmax/λmin

5.2 Effect of Nodal Ordering

The effect of nodal ordering is assessed with the numerical simulation of filter A.
Figure 3 shows the sparsity pattern of matrixA for the coarser mesh, see Table
1, before and after reordering. The numerical performance of the Cholesky direct
solver and the CG iterative solver with various ICF preconditioners (drop-tolerance

11



with τ = 10−2 andτ = 10−4; prescribed-memory withp = 2 and7) is summarized
in Table 3.
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(a) (b)

Fig. 3. Sparsity pattern of matrix with coarser mesh of filter A: (a) before reordering and
(b) after reordering

For each solver, Table 3 shows the CPU time needed to (1) obtain the (complete
or incomplete) factorization and (2) solve the linear systems in all the time-steps.
Note that the reordering leads to a very significant reduction (over 75%) in the CPU
time for the direct solver, while it has little effect on the performance of the ICF
preconditioners. The reordering is applied in all subsequent computations.

5.3 Effect of Storage Scheme

We analyze next the effect of the storage scheme. The drop-tolerance algorithm and
filter B are considered. In Figure 4 we compare the computational cost of the SCS
scheme originally used by Munksgaard [3] and the more modern MCS scheme.
In this and subsequent figures, computational cost is represented by CPU time (in
seconds) in thex-axis and number of non-zero entries in factorL in they-axis.

Figure 4 clearly shows that there is a significant reduction in the CPU time if the
MCS scheme is used, because it is more suited for the required substitutions at each
time-step. For this reason, in all subsequent analyses we will use the MCS format
for both the drop-tolerance and prescribed-memory ICF preconditioners.

5.4 Computational Performance of Direct and Iterative Solvers

After the two preliminary analyses of Sections 5.2 and 5.3, we will assess now the
relative numerical performance of the various direct and iterative solvers considered
in this work.

12



Cholesky

Before (s) After (s) Reduction (%)

Factorization 2.3 0.6 73.9

Solution 896.6 213.8 76.2

TOTAL 898.9 214.4 76.2

Drop-tolerance ICF preconditioner

τ = 10−2 τ = 10−4

Before (s) After (s) Red. (%) Before (s) After (s) Red. (%)

Preconditioner 0.4 0.4 0.0 1.5 1.6 −6.7

Solution 723.5 726.1 −3.6 568.2 608.6 −7.1

TOTAL 723.9 726.5 −3.6 569.7 610.2 −7.1

Prescribed-memory ICF preconditioner

p = 2 p = 7

Before (s) After (s) Red. (%) Before (s) After (s) Red. (%)

Preconditioner 0.0 0.0 0.0 0.0 0.0 0.0

Solution 919.9 920.1 0.0 776.1 796.8 −2.7

TOTAL 919.9 920.1 0.0 776.1 796.8 −2.7
Table 3
Effect of reordering on simulation of filter A with coarser mesh. CPU time (in seconds)
before reordering, after reordering and percentage reduction

5.4.1 Standard vs. Preconditioned Conjugate Gradients

For a first, broad view, we analyze filter B with all the solvers discussed: Cholesky
direct solver, standard CG and preconditioned CG with three different strategies:
diagonal, drop-tolerance ICF and prescribed-memory ICF.

The results are shown in Figure 5 and clearly illustrate the need to precondition
CG iterations. Indeed, even the very simple diagonal preconditioner leads to a very
significant reduction (by a factor of more than 4) in the CPU time with respect to
the standard CG with no additional storage requirements. For this reason, standard
CG will not be used in the remaining analyses.

Figure 5 also indicates that ICFs represent a substantial saving in memory require-
ments with respect to a complete Cholesky factorization. This aspect is addressed
in more detail next.
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Fig. 4. Effect of storage scheme on the simulation of filter B: (a) coarse mesh and (b) fine
mesh
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Fig. 5. Computational cost of all solvers for the simulation of filter B: (a) coarse mesh and
(b) fine mesh

5.4.2 Direct vs. Iterative Solvers

We compare now the Cholesky direct solver and the CG solver preconditioned with
various strategies: diagonal preconditioner, ICF with no fill-in, drop-tolerance ICF
and prescribed-memory ICF. Figure 6 shows the results for the three filters. The
following aspects should be noted:

• If memory constraints allow its use, the direct Cholesky solver is faster that the
CG method with a simple preconditioner (i.e. diagonal or ICF without fill-in). A
better preconditioner is required to beat the direct solver.

• Allowing some fill-in in the ICF considerably reduces the CPU time of the ICF
without fill-in in exchange for a modest increase in non-zero entries.

• The best ICFs outperform the direct solver both in terms of memory requirements
and CPU time.
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Fig. 6. Computational cost of Cholesky and preconditioned CG solvers for the simulation
of the three filters: (a) filter A, coarse mesh, (b) filter A, fine mesh, (c) filter B, coarse mesh,
(d) filter B, fine mesh, (e) filter C, coarse mesh, and (f) filter C, fine mesh

5.4.3 Drop-Tolerance vs. Limited-Memory Strategies

To conclude our numerical study of the active carbon filters, we compare here the
two strategies for ICF. According to Figure 7, drop-tolerance strategies are more ef-
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ficient than prescribed-memory strategies, in the sense that less CPU time is needed
for a given memory storage. This result contrasts the one reported by Lin and Moré
[4]. In must be noted, however, that the memory requirements of a drop-tolerance
strategy cannot be predicted in advance, so one may prefer a safer (although less
efficient) prescribed-memory ICF if memory is a critical constraint.
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Fig. 7. Computational cost of drop-tolerance and prescribed-memory ICF preconditioners
for the three filters: (a) filter A, coarse mesh, (b) filter A, fine mesh, (c) filter B, coarse
mesh, (d) filter B, fine mesh, (e) filter C, coarse mesh, and (f) filter C, fine mesh
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A more quantitative look is offered by Table 4. For filter A and a selection of the
ICF depicted in Figure 7, it shows (1) the accumulated number of iterations, (2) the
number of time-steps, (3) the average number of iterations per step, (4) the number
of non-zero entries in factorL, and the CPU time required (5) to computeL, (6) to
solve the linear systems in all time-steps, and (7) in total.

No fill-in ICF Drop-tolerance ICF

τ = 5× 10−3 τ = 10−4

Coarse Fine Coarse Fine Coarse Fine

# iterations 1 079 406 1 060 343 238 244 327 287 103 675 176 583

# steps 17 961 32 867 17 961 32 867 17 961 32 867

iter/step 60.10 32.26 13.26 9.96 5.77 5.37

nnz(L) 117 181 653 435 228 041 1 013 875 598 245 2 937 167

Precond. (s) 0.2 1.8 0.5 4.0 2.4 18.0

Solution (s) 6 918.7 86 523.9 2 871.1 37 679.6 3 639.0 47 558.9

TOTAL (s) 6 918.9 86 525.7 2 871.6 37 683.6 3 641.4 47 576.9

Prescribed-memory ICF

p = 0 p = 3 p = 7

Coarse Fine Coarse Fine Coarse Fine

# iterations 1 024 771 1 025 930 662 734 605 856 404 001 377 358

# steps 17 961 32 867 17 961 32 867 17 961 32 867

iter/step 57.05 31.21 36.90 18.43 22.49 11.48

nnz(L) 117 181 653 435 170 364 915 092 241 621 1 264 893

Precond. (s) 0.1 0.4 0.1 0.6 0.1 0.7

Solution (s) 6 779.3 84 561.5 6 587.6 57 167.5 5 173.8 45 746.4

TOTAL (s) 6 779.4 84 561.9 6 587.7 57 168.1 5 173.9 45 747.1
Table 4
Computational cost of ICF preconditioners for filter A

The following aspects should be remarked in Table 4:

• For a given preconditioning strategy the number of iterations is controlled by the
quality (i.e. density) of the preconditioner: more non-zero entries inL means less
iterations.

• The CPU time, however, may decrease or increase. With a denser preconditioner
less iterations are required, but each of these iterations is more costly (cf. the two

17



drop-tolerance ICF).
• For transient convection-diffusion problems, the time needed to compute the in-

complete factorL is negligiblein comparison with the time needed to solve the
linear systems in all the time-steps. How much time it takes tocomputethe pre-
conditioner is an irrelevant factor, because it is amortized over many time-steps.
The two key issues are (1) the number of iterations and (2) the time needed to
applythe preconditioner at each iteration.

• This is even the case for the direct Cholesky solver. For the range of problem
sizes considered, the critical factor is not the time needed for a complete factor-
ization of matrixA, but the time needed for substitutions with a very denseL at
each iteration.

5.5 Application: air pollution

In all the active carbon filter simulations discussed above, the complete Cholesky
factorization is feasible. This has enabled a detailed comparison, which clearly
shows that a good ICF-preconditioned conjugate gradient method beats the direct
solver both in terms of CPU time and memory requirement. However, it can be ar-
gued that these examples do not illustrate the real need for iterative methods, since
the complete factorization is (more expensive but) possible anyway.

With this idea in mind, we consider now a larger example, dealing with air pollution
modelling. A four-species linear dispersion model is used to describe the oxidation
and hydrolysis of sulphur and nitrogen oxides [18]. This process is modelled by a
vectorial version of Equation (1), where the unknowns are the four concentration
fields,vvv is the wind velocity, and the reaction term represents the chemical reactions
and the wet deposition. Splitting is not applied in this case. Boundary conditions
are also adapted, mainly to take into account the dry deposition effects in the terrain
and the emission source (stack).

The problem is defined in a rectangular region,15 600 m×22 803 m, in the south
of La Palma island (Canary Islands). The upper boundary of the 3-D domain is a
horizontal plane placed at a height of9 000 m. The adaptive discretization of this
domain has been developed by Montenegro et al. [19], see Figure 8. The untangling
and smoothing procedure introduced by Escobar et al. [20] has been applied in the
generation of this mesh, which contains15 3085 tetrahedra and28 387 nodes. The
wind velocity field has been simulated by Montero et al. [21]. Both the mesh and
the wind field have been used in this paper with the authors’ kind permission. The
simulation takes4 000 steps of∆t = 0.13 (selected with the Courant criterion).

The problem size isN = 107 548 (four unknowns per non-Dirichlet node) and the
system matrix hasnnz(A) = 3 094 002 non-zero entries. A memory check indi-
cates that 4.25 Gb (i.e. more than half of the total RAM of the multi-user server)
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(a) (b)

Fig. 8. Finite element mesh for air pollution problem: (a) surface mesh and (b) detail show-
ing the complex orography and the stack

would be required for a complete factorization. This renders the direct method un-
feasible in practice, and an iterative method is needed.

Since memory is the limiting factor, a prescribed-memory ICF is chosen as precon-
ditioner. Withp = 0, 510 Mb are needed; each unit inp results in 1.64 additional
Mb. This means that we can go to up to a (very large) value ofp = 100 with 674
Mb in total.

Figure 9 shows the performance of the preconditioned conjugate gradients. A prescribed-
memory ICF clearly beats the diagonal preconditioner in terms of CPU time while
keeping memory requirements under control. It is also worth noting how too large
values ofp result in an increase of both the memory and the CPU time.
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Fig. 9. Computational cost of prescribed-memory ICF preconditioners for air pollution
problem
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6 Concluding Remarks and Future Research

We have analyzed the numerical performance of two families of incomplete Cholesky
factorizations (ICF) to precondition conjugate gradient (CG) iterations: drop-tolerance
and limited-memory approaches. With an appropriate value for the corresponding
numerical parameter (toleranceτ and fill-in densityp, respectively), ICFs outper-
form both the diagonally preconditioned CG and the Cholesky direct solver.

According to our numerical experiments, the drop-toleranceτ should be selected in
the range[0.005, 0.01] for linear systems of order larger than 30 000. Similar results
are reported in [22] for elasticity problems. Regarding the fill-in densityp, our
experiments suggest takingp = 4 or p = 5. This latter value is also recommended
in [4].

Our numerical experiments also show that, for transient convection-diffusion prob-
lems with a constant velocity field (and, hence, the same matrix in all the time-
marching process), the numerical efficiency of a preconditioner is completely con-
trolled by theapplicationstage at each time-step. Since the computational cost of
thecomputationstage of the preconditioner can be amortized over many time-steps
(tens of thousands in our applications), how much it costs toobtainthe factorization
turns out to be an irrelevant factor.

This conclusion motivates the search for more efficient preconditioners, even if
they are more expensive to obtain. We are currently working in a symmetric sparse
approximate inverse that exploits the block-tridiagonality of the system matrix, see
Figure 1.

Another line also in progress is the use of domain decomposition with overlapping
subdomains. This is a promising approach especially in convection-diffusion prob-
lems with abrupt fronts, where the solution only varies over the time-step in one or
two subdomains. We believe that a combination of domain decomposition and ap-
propriate preconditioning of each subdomain can result in a very efficient solution
of 3D transient convection-diffusion problems.
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