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Abstract

The set of controllable switched linear systems is an open set in the space of
all switched linear systems. Then it makes sense to compute the distance from a
controllable switched linear system to the set of uncontrollable systems. In this work
we obtain an upper bound for such distance.
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1 Introduction

In different works bounds for the distance between a system with a qualitative property to
the set of systems with different qualitative properties are found (see [1], [2], [3], [4], [5]).
In [6] a necessary and sufficient condition for controllability of switched linear systems
is provided. From this algebraic characterization, one can infer that controllability is a
generic property in the space of matrices defining such systems. That is to say, the set of
controllable systems is an open and dense subset. The natural question arising then is:
how far a controllable system is from the nearest uncontrollable one? The answer to this
question is specially important when working with matrices whose coefficients are given
with some parameter uncertainty.

Because of the fact that in most applications only real matrices make sense, we will
restrict ourselves to consider real perturbations.

The structure of the paper is as follows.
In Section §2, we summarize the definitions and some properties of norm matrices.
In Section §3, we lay the foundations of the problem to be solved.
In Section §4, we obtain an explicit bound for the distance from a controllable system

to the set of uncontrollable ones.
Finally, in Section §5, we consider different examples.
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2 Preliminaries

Let us consider the vector space of m× n-matrices with coefficients in k = R or C.
A matrix norm ‖ ‖ is a mapping associating to each matrix M a nonnegative number

‖M‖ having the following properties:

1. For all matrix M , ‖M‖ ≥ 0 and ‖M‖ = 0 if, and only if, M = 0.

2. For all matrix M and λ ∈ k, ‖λM‖ = |λ|‖M‖.
3. For all matrices M1 and M2, ‖M1 + M2‖ ≤ ‖M1‖+ ‖M2‖.
The most frequently used matrix norms are the Frobenius norm and the p-norms.
The Frobenius norm of a matrix M = (mi

j) 1 ≤ i ≤ m
1 ≤ j ≤ n

is defined as

‖M‖F =
√ ∑

1≤i≤m

∑

1≤j≤n

|mi
j |2

The matrix p-norm is defined for a real number 1 ≤ p ≤ ∞ as:

‖M‖p = sup
x 6=0

‖Mx‖p

‖x‖p
= max
‖x‖p=1

‖Mx‖p

where
‖x‖p = (|x1|p + · · ·+ |xn|p)

1
p , 1 ≤ p < ∞

and ‖x‖∞ = max
1≤i≤n

|xi|.

In particular, ‖M‖1 = max
1≤j≤n

m∑
i=1

|mi
j |. The spectral norm ‖ ‖2, is the square root of the

maximum eigenvalue of M tM in the real case and MHM in the complex case, where MH

denotes the conjugate transpose of the matrix M . And ‖M‖∞ = max
1≤i≤m

∑
1≤j≤n

|mi
j |.

The Frobenius and the p-norms satisfy the following inequality (submultiplicative prop-
erty):

For all m× n-matrix M1 and n× p-matrix M2, ‖M1M2‖ ≤ ‖M1‖‖M2‖
and some further inequalities, relating them and which are commonly used in matrix
analysis.

• ‖M‖2 ≤ ‖M‖F ≤
√

n‖M‖2

• max
i,j

|mi
j | ≤ ‖M‖2 ≤

√
mnmax

i,j
|mi

j |
• ‖M‖1 = max

1≤j≤n

∑
1≤i≤m

|mi
j |.

• ‖M‖∞ = max
1≤i≤m

∑
1≤j≤n

|mi
j |.

• 1√
m
‖M‖1 ≤ ‖M‖2 ≤

√
n‖M‖1

• 1√
n
‖M‖∞ ≤ ‖M‖2 ≤

√
m‖M‖∞

2



Distance from a Controllable SLS to an Uncontrollable One

3 Approaching the problem

Let us consider a switched linear system Σ defined by
{

ẋ(t) = Aσx(t) + Bσu(t)
y(t) = Cσx(t)

where Aσ ∈ Mn(R), Bσ ∈ Mn×1(R), Cσ ∈ Mp×n(R), with σ ∈ {1, . . . , `}.
Sun-Ge proved in [6] that system above is controllable if, and only if, the vector space

∑

k1, . . . , k` ∈ {0, 1}, k1 + · · ·+ k` = 1
j1, . . . , jn−1 ∈ {0, 1, . . . , n− 1}
A1, . . . ,An−1 ∈ {Aσ}σ∈{1,...,`}

Im [Aj1
1 . . .Ajn−1

n−1 Bk1
1 . . . Bk`

` ] = Rn

Therefore, the set of matrices {(Aσ, Bσ, Cσ)σ∈{1,...,`}} defining a controllable system
is an open dense subset of Mn(R)` × Mn×1(R)` × Mp×n(R)`.In particular, for each set
of matrices defining a controllable system there exists an open neighbourhood of this set
in Mn(R)` ×Mn×1(R)` × Mp×n(R)` with all set of matrices in it defining a controllable
system. Given a controllable system, our main goal is to explore the distance from this
system to the nearest uncontrollable one, hence deducing a safety neighbourhood.

Note that when studying controllability, only matrices {(Aσ, Bσ)σ∈{1,...,`}} are relevant.
From now on, we will consider the metric given by the 2-norm.

Definition 1 The 2-norm of the set of matrices {(Aσ, Bσ)σ∈{1,...,`}} is taken as:

‖{(Aσ, Bσ)σ∈{1,...,`}}‖2 = ‖ (A1|B1| . . . |A`|B`) ‖2

and thus the distance between two sets of matrices is:

d2({(Aσ, Bσ)σ∈{1,...,`}}, {(A′σ, B′
σ)σ∈{1,...,`}}) = ‖{(A′σ −Aσ, B′

σ −Bσ)σ∈{1,...,`}}‖2

Definition 2 Given a set of matrices {(Aσ, Bσ, Cσ)σ∈{1,...,`}} defining a controllable sys-
tem, the distance from this system to the nearest uncontrollable one is

µ((Aσ, Bσ, Cσ)σ∈{1,...,`}) = inf
δAσ∈Mn(R),δBσ∈Mn×1(R)

‖{(δAσ, δBσ)σ∈{1,...,`}}‖2

with {(Aσ + δAσ, Bσ + δBσ, Cσ + δCσ)σ∈{1,...,`}} defining an uncontrollable system.

We will restrict ourselves to consider real perturbations, and find a bound for
µ((Aσ, Bσ, Cσ)σ∈{1,...,`}).
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4 Bounding the distance

Let us assume that the switched linear system Σ defined by
{

ẋ(t) = Aσx(t) + Bσu(t)
y(t) = Cσx(t)

where Aσ ∈ Mn(R), Bσ ∈ Mn×1(R), Cσ ∈ Mp×n(R), with σ ∈ {1, . . . , `} is controllable.
For 1 ≤ σ ≤ `, let us consider the vector subspaces:

Gσ =
∑

k1, . . . , k` ∈ {0, 1}
k1 + · · · + k` = 1

∑
j1, . . . , jn−2 ∈ {0, 1, . . . , n− 2}

j1 + · · · + jn−2 ≤ n− 2
A1, . . . ,An−2 ∈ {Aσ}σ∈{1,...,`}

A1 6= Aσ


 ∑

0≤j≤n−1

ImAj
σ[Aj1

1 . . .Ajn−2

n−2 Bk1
1 . . . Bk`

` ]




Let us denote by G the matrix having as columns the generators of the vector subspaces
Gσ, as above:

(< G1 > | . . . | < G` >)

Remark 1 System Σ is controllable if, and only if, rkG = n.

Let P , Q be orthogonal matrices such that

G = P t(diag(λ1, . . . , λn) | 0)Q

where λ1 ≥ · · · ≥ λn are the singular values of G (Singular Value Decomposition of Matrix
G).

In order to obtain the desired bound, we will need the following Lemmas.

Lemma 1 µ((Aσ, Bσ, Cσ)σ∈{1,...,`}) = µ((PAσP t, PBσ, CσP t)σ∈{1,...,`}).

Proof: It is straightforward that (Aσ, Bσ, Cσ)σ∈{1,...,`} defines a controllable system if,
and only if, (PAσP t, PBσ, CσP t)σ∈{1,...,`} does. Then it suffices to prove that

‖(A1 −X1|B1 − Y1| . . . |A` −X`|B` − Y`)‖2

is equal to

‖(P (A1 −X1)P t|P (B1 − Y1)| . . . |P (A` −X`)P t|P (B` − Y`))‖2

This follows from the equality:

P (A1 −X1|B1 − Y1| . . . |A` −X`|B` − Y`)diag

((
P t

I1

)

1≤σ≤`

)
=

(P (A1 −X1)P t|P (B1 − Y1)| . . . |P (A` −X`)P t|P (B` − Y`))

and the fact that P and diag

((
P t

I1

)

σ∈{1,...,`}

)
are orthogonal matrices.
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Lemma 2 Let us consider PBσ =
(

B1
σ

B2
σ

)
, with B1

σ ∈ M(n−1)×1(R), for σ ∈ {1, . . . , `}.
Then ‖B2

σ‖2 ≤ λn.

Proof: First, note that

B2
σ = et

nPBσ = et
nPGe1+(σ−1)n = et

n(diag(λ1, . . . , λn) | 0)Qe1+(σ−1)n

where e1, . . . , en denote the natural basis of the Euclidean space Rn. Then

‖B2
σ‖2 = λn‖Qe1+(σ−1)n‖2 ≤ λn

since Q is an orthogonal matrix.

Lemma 3 Let us consider PAσP t =
(

A1
σ A2

σ

A3
σ A4

σ

)
, with A1

σ ∈ Mn−1(R), and assume

rkGσ = n for σ ∈ {1, . . . , `}. Then ‖A3
σ‖2 ≤ λn

λn,σ
‖AC

σ ‖2, where λ1,σ ≥ · · · ≥ λn,σ are
the singular values of Gσ (Gσ = P t

σ(diag(λ1,σ, . . . , λn,σ) | 0)Qσ) and AC
σ is the companion

matrix for Aσ.

Proof: We will denote by M † the Moore-Penrose inverse of any matrix M .
It is straightforward to check that AσGσ = Gσ(I ⊗ AC

σ ). Then Aσ = Gσ(I ⊗ AC
σ )G†

σ

and
PAσP t = PGσ(I ⊗AC

σ )G†
σP t

= PG

(
I
0

)
(I ⊗AC

σ )G†
σP t

= (diag(λ1, . . . , λn) | 0)Q
(

I
0

)
(I ⊗AC

σ )G†
σP t

Notice that

A3
σ = et

n(diag(λ1, . . . , λn) | 0)Q
(

I
0

)
(I⊗AC

σ )Qt
σ

(
diag

(
1

λ1,σ
, . . . , 1

λn,σ

)

0

)
PσP t

(
In−1

0

)

Therefore
‖A3

σ‖2 ≤ λn‖(I ⊗AC
σ )‖2‖G†

σ‖2 ≤ λn

λn,σ
‖AC

σ ‖2

Finally, we can state the main result.

Theorem 1 Given a controllable switched linear system defined by a set of matrices
((Aσ, Bσ, Cσ)σ∈{1,...,`}), such that rk Gσ = n for σ ∈ {1, . . . , `},

µ((Aσ, Bσ, Cσ)σ∈{1,...,`}) ≤
∑

σ∈{1,...,`}
λn

(
1 +

‖AC
σ ‖2

λn,σ

)

Proof: Let us set the blocks B2
σ, A3

σ to zero, for all σ, it is obvious that the system
thus obtained is uncontrollable. The real perturbation we have committed has a norm
which is bounded by λn + ‖AC

σ ‖2λn

λn,σ
for all σ ∈ {1, . . . , `}, and the statement follows.
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5 Examples

1. Let us consider a switched linear system Σ defined by
{

ẋ(t) = Aσx(t) + Bσu(t)
y(t) = Cσx(t)

with σ ∈ {1, 2, 3}, where

A1 =
(

1 1
0 0

)
, B1 =

(
1
−1

)
, A2 =

(
0 0
1 1

)
, B2 =

( −1
1

)
, A3 =

(
1 1
1 1

)
,

B3 =
(

1
1

)
, C1 = C2 = C3 =

(
1 0

)
.

Note that neither system defined by (A1, B1, C1) nor system defined by (A2, B2, C2)
or (A3, B3, C3) are controllable. Nevertheless, Σ is controllable, since matrix

G =
(

1 0 −1 0 1 2 1 0 −1 0 1 0 1 0 −1 0 1 2
−1 0 1 0 1 0 −1 0 1 0 1 2 −1 0 1 0 1 2

)

has full rank.
Then, according to Theorem above, the distance from this system to the nearest uncon-

trollable one, µ((Aσ, Bσ, Cσ)σ∈{1,2,3}), is bounded by λ2

(
1 + ‖AC

1 ‖2
λ2,1

)
+ λ2

(
1 + ‖AC

2 ‖2
λ2,2

)
+

λ2

(
1 + ‖AC

3 ‖2
λ2,3

)
where AC

1 , AC
2 , AC

3 denote the companion matrices of A1, A2, A3 and
λ2 = 4, λ2,1 = 1.66250775, λ2,2 = 1.66250775, λ2,3 = 2. That is to say, taking into account
that ‖AC

1 ‖2 =
√

2, ‖AC
2 ‖2 =

√
2 and ‖AC

3 ‖2 =
√

5, µ((Aσ, Bσ, Cσ)σ∈{1,2,3}) ≤ 23.27734242.
2. Let us consider now a switched linear system Σ defined by

{
ẋ(t) = Aσx(t) + Bσu(t)
y(t) = Cσx(t)

with σ ∈ {1, 2}, where

A1 =




0 1 0
0 0 0
1 0 0


 , B1 =




1
0
0


 , A2 =




0 0 −1
0 0 1
1 0 0


 , B2 =




0
1
0




C1 = C2 =
(

1 0 0
)
.

Note that neither system defined by (A1, B1, C1) nor system defined by (A2, B2, C2)
are controllable. Nevertheless, Σ is controllable, since matrix

G =
(

1 0 0 0 0 0 0 1 0 0 0 0 1 0 −1 0 −1 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 −1 0 0 0 0 1 0

)

has full rank.
Then, according to Theorem above, the distance from this system to the nearest un-

controllable one, µ((Aσ, Bσ, Cσ)σ∈{1,2}), is bounded by λ3

(
1 + ‖AC

1 ‖2
λ3,1

)
+ λ3

(
1 + ‖AC

2 ‖2
λ3,2

)

where AC
1 , AC

2 denote the companion matrices of A1, A2 and λ3 = 1.68455404, λ3,1 = 1,
λ3,2 = 1.20773289. That is to say, taking into account that ‖AC

1 ‖2 = 1 and ‖AC
2 ‖2 =

√
2,

µ((Aσ, Bσ, Cσ)σ∈{1,2}) ≤ 7.02621680.
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