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Abstract

Bimodal linear systems are those consisting of two linear systems on each side of
a given hyperplane, having continuous dynamics along that hyperplane. In this work,
we focus on the derivation of (orthogonal) miniversal deformations, by using reduced
forms.
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1 Introduction

Bimodal piecewise linear systems (consisting of two linear dynamics on each side of a given
hyperplane) have attracted the interest of researchers because they present a complex
dynamical behaviour (see [2], for example).

We consider a natural equivalence in the space of matrices defining those systems,
defined by basis changes in the state variables space and preserving the hyperplanes parallel
to that where the system has a continuous dynamics. Equivalence classes coincide with the
orbits under a suitable Lie group action on the differentiable manifold of matrices defining
the systems. Following Arnold’s techniques in [1] and [5], miniversal deformations are
obtained. In order to be able to explicitly compute them, reduced forms in [3] play a key
role.

The structure of the paper is as follows.
In Sec. 2, we define the equivalence relation in the space of matrices defining bimodal

piecewise linear systems which corresponds to basis changes of state variables, preserving
the hyperplane where the system presents a continuous dynamics and interpret equivalence
classes as orbits under a Lie group action on the space of matrices.

In Sec. 3, we obtain miniversal deformations, following Arnold’s theory (see [1]) and
using reduced forms for the matrices defining bimodal linear systems.

Throughout the paper, R will denote the set of real numbers, Mn×m the set of matrices
having n rows and m columns and entries in R (in the case where n = m, we will simply
write Mn(R)) and by Gln(R) the group of non-singular matrices in Mn(R). We will denote
by e1, . . . , en the natural basis of the Euclidean space R

n.
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2 Equivalence Relation. Geometric Approach

Piecewise bimodal linear systems can be defined by different systems of linear equations.
In particular, different state variables can be chosen. This leads to a natural equivalence
relation in the space of matrices defining such systems.

We will consider bimodal linear systems

{

ẋ(t) = A1x(t) +B1

y(t) = Cx(t)
if x1(t) ≤ 0

{

ẋ(t) = A2x(t) +B2

y(t) = Cx(t)
if x1(t) ≥ 0

where A1, A2 ∈Mn(R); B1, B2 ∈Mn×1(R); C = (1 0 . . . 0) ∈M1×n(R), and assume that
the dynamics is continuous along the hyperplane x1 = 0.

Coincidence in the hyperplane x1 = 0 is equivalent to:

B2 = B1; A2ei = A1ei, 2 ≤ i ≤ n

We will simply write B = B1 = B2. Thus any bimodal piecewise linear system is defined
by a triple of matrices (A1, A2, B).

Throughout the paper, X will denote the set of triples of matrices defining bimodal
piecewise linear systems,

X = {(A1, A2, B) ∈Mn(R) ×Mn(R) ×Mn×1(R) |A1ei = A2ei 2 ≤ i ≤ n}

X is a (n2 + 2n)-submanifold of M = Mn(R) ×Mn(R) ×Mn×1(R).
We consider the equivalence relation which corresponds to basis changes in the state

variables space, preserving the hyperplanes x1 = δ, δ ∈ R (admissible basis changes), in
order the results below can be applied to the cases where a bimodal system is defined by

{

ẋ(t) = A1x(t) +B1

y(t) = Cx(t)
if x1(t) ≤ δ

{

ẋ(t) = A2x(t) +B2

y(t) = Cx(t)
if x1(t) ≥ δ

with the dynamics continuous along the hyperplane x1(t) = δ, simply applying the coor-
dinate change x = x − δe1.

This leads to the following natural equivalence relation in X .

Definition 1 Two triples of matrices (A1, A2, B), (A′
1, A

′
2, B

′) ∈ X are said to be equiv-

alent if there exists S ∈ Gln(R) representing an admissible basis change such that

(A′

1, A
′

2, B
′) = (S−1A1S, S

−1A2S, S
−1B)

Note that this is a well-defined equivalence relation. Given a basis change S ∈ Gln(R),
the condition of preserving the hyperplane x1(t) = 0 is equivalent to:

S =

(

1 0
U T

)

, T ∈ Gln−1(R)

We will denote by S the set

{

S ∈ Gln(R)

∣

∣

∣

∣

S =

(

1 0
U T

)

, T ∈ Gln−1(R)

}

2



BLS. Miniversal Deformations

which is a Lie subgroup of G = Gln(R).
Equivalence classes defined above coincide with the orbits under the Lie group action

α : S × X −→ X

defined by α(S, (A1, A2, B)) = (S−1A1S, S
−1A2S, S

−1B).
Given a triple of matrices (A1, A2, B) ∈ X , we will denote by O(A1, A2, B) its orbit

or equivalence class. As an application of the Closed Orbit Lemma (see [4]), we deduce
that equivalence classes are locally closed differentiable submanifolds, and boundaries are a
union of equivalence classes or orbits of strictly lower dimension. In particular, equivalence
classes or orbits of minimal dimension are closed.

When considering the following scalar product in M :

< (A1, A2, B), (A′

1, A
′

2, B
′) >= tr (At

1A
′

1) + tr (At
2A

′

2) + tr (BtB′)

the normal vector subspace to the orbit of any triple in X may be described as follows.

Proposition 1 ([3]) Denoting by N(A1,A2,B)O(A1, A2, B) the normal vector subspace to
the orbit of the triple (A1, A2, B) at (A1, A2, B), N(A1,A2,B)O(A1, A2, B)∩X is the vector
subspace consisting of triples (X1, X2, Y ) such that

A1X
t
1 −Xt

1A1 +A2X
t
2 −Xt

2 −BY t ∈ A

where A is the set
{

M = (mj
i )

∣

∣

∣

∣

{

m1
i = −m1

1, 2 ≤ i ≤ n

m
j
i = −m1

1 2 ≤ i, j ≤ n

}

Then, we can characterize the triples (X1, X2, Y ) ∈ N(A1,A2,B)O(A1, A2, B) ∩ X as
those such that

M(A1, A2, B)













X1e1
X1e2
X1e3
X2e1
Y













= 0

for a suitable matrix M(A1, A2, B) ∈M(1+(n−1)2)×(n2+2n)(R).

3 Miniversal Deformations

When using mathematical models of physical systems, the question of how small perturba-
tions of the system may lead to different structures is most interesting. Versal deformations
provide all possible structures which can arise from small perturbations and can be applied
to the study of singularities and bifurcations.

The main definitions and results about deformations and versality can be found in [1]
and [5]. Here we recall them, adapted to our particular case.

Definition 2 A deformation of (A1, A2, B) ∈ X is a differentiable map ϕ : U −→ X , with
U an open neighborhood of the origin R

d, such that ϕ(0) = (A1, A2, B).
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A deformation ϕ : U −→ X of (A1, A2, B) is called versal at 0 if for any other defor-
mation of (A1, A2, B), ψ : V −→ X , there exists a neighborhood V ′ ⊆ V with 0 ∈ V ′, a
differentiable map γ : V ′ −→ U with γ(0) = 0 and a deformation of the identity I ∈ S,
θ : V ′ −→ S, such that ψ(µ) = α(θ(µ), ϕ(γ(µ))) for all µ ∈ V ′.

A versal deformation with minimal number of parameters d is called miniversal defor-

mation.
Miniversal deformations may be identified with submanifolds which are minitransversal

to the orbit of a given triple of matrices (see [1] and [5]). Therefore, the number of
parameters of any miniversal deformation is equal to the codimension of the orbit. Hence,
this minimal number of parameters does not depend neither on the miniversal deformation
we consider nor on the representative of the equivalence class. Thus the dimension of the
miniversal deformation of any triple may be computed by calculating the dimension of
the miniversal deformation of the canonical form in its equivalence class, or that of any
reduced form. Calculations become much simpler when using reduced forms.

A miniversal deformation deduced from a basis of the normal space to the orbit of a
given triple is usually called orthogonal miniversal deformation.

Theorem 1 The mapping

R
d−→ X

(u1, . . . , ud)−→ (A1, A2, B) + u1V1 + · · · + udVd

where {V1, . . . , Vd} is any basis of the vectorial space N(A1,A2,B)O(A1, A2, B) is a miniver-

sal deformation of (A1, A2, B).

Example 1 Let us consider a non-observable system (it is in reduced form, type 2, ac-
cording to [3]):

((

a1 0
0 λ0

)

,

(

α1 0
1 λ0

)

,

(

b1
b2

))

where b1 6= 0, λ0 6= a1. Let us denote by N1 the normal space to the orbit of this triple.
Then F1 = N1 ∩ X consists of triples

{((

x1 x3

x2 x4

)

,

(

x5 x3

x6 x4

)

,

(

y1

y2

))}

such that
x6 − b1y1 = 0

(λ0 − a1)x2 + (λ0 − α1)x6 − b1y2 = 0
x6 + b2y2 = 0







Since F1 has dimension equal to 6, this is the minimal number of parameters of
any miniversal deformation of the triple. If we consider a basis of this vector subspace:
(V1, . . . , V6) then an orthogonal miniversal deformation of the triple is given by

ϕ : U ⊆ R
6 −→ X

u = (u1, . . . , u6) −→
6
∑

i=1
uiVi
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For example, we can take

V1 =

((

1 0
0 0

)

,

(

0 0
0 0

)

,

(

0
0

))

, V2 =

((

0 0
1 0

)

,

(

0 0
0 0

)

,

(

0
0

))

V3 =

((

0 1
0 0

)

,

(

0 1
0 0

)

,

(

0
0

))

, V4 =

((

0 0
0 1

)

,

(

0 0
0 1

)

,

(

0
0

))

V5 =

((

0 0
0 0

)

,

(

0 0
0 0

)

,

(

1
0

))

, V6 =

((

0 0
(λ0−α1)b2+b1

λ0−a1
0

)

,

(

0 0
−b2 0

)

,

(

b2
b1

1

)

)

Example 2 Let us consider the following triple (as shown in [3], it is in reduced form of
type 3, case r = 2):

A1 =





a1 1 0
a2 0 0
1 0 λ0



 , A2 =





α1 1 0
α2 0 0
1 0 λ0



 , B =





1
0
0





where λ0 6= 0. We denote by N2 the normal subspace to orbit. Then F2 = N2 ∩ X is the
vector subspace defined by the matrix equation:

M(A1, A2, B)













X1e1
X1e2
X1e3
X2e1
Y













= 0

where M(A1, A2, B) is:





















0 a2 1 −2 0 0 0 0 0 0 α2 1 −1 0 0
1 −a1 0 0 −2 0 0 0 0 1 −α1 0 0 −1 0
0 −a2 0 2 0 0 0 0 0 0 −α2 0 0 0 0
0 −1 0 0 0 0 2 −2λ0 0 0 −1 0 0 0 0
0 0 λ0 − a1 0 0 −2 0 0 0 0 0 λ0 − α1 0 0 −1
0 0 −a2 0 0 2λ0 0 0 0 0 0 −α2 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0





















Then a basis of F is:

V1 =









0 0 0
0 0 0
0 0 1



 ,





0 0 0
0 0 0
0 0 1



 ,





0
0
0







 ,

V2 =









2 0 0
0 1 0
0 0 0



 ,





0 0 0
0 1 0
0 0 0



 ,





0
0
0







 ,

V3 =









1 0 0
0 0 0
0 0 0



 ,





0 0 0
0 0 0
0 0 0



 ,





0
1
0







 ,
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V4 =









2a1 a2 1
2 0 0
0 0 0



 ,





0 a2 1
0 0 0
0 0 0



 ,





0
0
0







 ,

V5 =









−1 0 0
0 0 0
0 0 0



 ,





1 0 0
0 0 0
0 0 0



 ,





0
0
0







 ,

V6 =









−2λ0a1 −λ0a2 0
−2λ0 0 1

0 0 0



 ,





0 −λ0a2 0
0 0 1
0 0 0



 ,





0
0
0









V7 =









0 0 0
0 0 0
λ0

δ
a2−α2

2δ
0



 ,





0 0 0
0 0 0

−λ0

δ
a2−α2

2δ
0



 ,





0
0
1







 ,

V8 =









α1 − a1
α2−a2

2 0
−1 0 0
0 0 0



 ,





0 α2−a2

2 0
1 0 0
0 0 0



 ,





0
0
0









where δ = α2 − a2 + λ0(α1 − a1). Thus an orthogonal miniversal deformation is given by

ϕ : U ⊆ R
8 −→ X

u = (u1, . . . , u8) −→
8
∑

i=1
uiVi
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