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1 Introduction

Very often problems in biological, physical and social sciences can be re-
duced to problems involving matrices which have some special structure.
One of the most common situation is where the matrix in question has non—
positive off-diagonal and non—negative diagonal entries; that is L = kI — A,
k > 0 and A > 0, where the diagonal entries of A are less or equal than
k. These matrices appear in relation to systems of equations or eigenvalue
problems in a broad variety of areas including finite difference methods for
solving partial differential equations, input—output production and growth
models in economics or Markov processes in probability and statistics. Of
course, the combinatorial community can recognize within this type of ma-
trices, the combinatorial Laplacian of a k-regular graph where A is its
adjacency matrix.

If k£ is at least the spectral radius of A, then L is called an M —matriz.
We remark that M-matrices arise naturally in some discretizations of dif-
ferential operators, particularly those with a minimum /maximum principle,
such as the Laplacian, and as such are well-studied in scientific computing.
In fact M—matrices satisfy monotonicity properties that are the discrete
counterpart of the minimum principle, and it makes them suitable for the
resolution of large sparse systems of linear equations by iterative methods.

As well as a symmetric, irreducible and non—singular M—matrix appears
as the discrete counterpart of a Dirichlet problem for a self-adjoint elliptic
operator, its inverse corresponds with the Green operator associated with



the boundary value problem. On the other hand, when the M—matrix is
singular, it can be seen as a discrete analogue of the Poisson equation for
a self-adjoint elliptic operator on a manifold without boundary and then,
its Moore—Penrose inverse corresponds with the Green operator too. A
well-known property of an irreducible non—singular M—matrix is that its
inverse is non—negative, [4]. However, the scenario changes dramatically
when the matrix is an irreducible and singular M—matrix. In this case, it
is known that the matrix has a generalized inverse which is non—negative,
but this is not always true for any generalized inverse. For instance, it may
happens that the Moore-Penrose inverse has some negative entries. We
focus here in studying when the Moore—Penrose inverse of a symmetric,
singular and irreducible M-matrix is itself an M—-matrix. In particular,
we study the case of distance-regular graphs and more specifically strongly
regular graphs.

2 Preliminaries

The triple I' = (V, E, ¢) denotes a finite network; that is, a finite connected
graph without loops nor multiple edges, with vertex set V', whose cardinal-
ity equals n, and edge set E, in which each edge {x,y} has been assigned
a conductance c¢(z,y) > 0. So, the conductance can be considered as a
symmetric function ¢: V' x V. — [0, +00) such that ¢(z,z) = 0 for any
x € V and moreover, x ~ y, that is vertex x is adjacent to vertex y, iff
c(x,y) > 0.

The combinatorial Laplacian or simply the Laplacian of the network I'
is the endomorphism of C(V') that assigns to each u € C(V') the function

Lw)@) =Y ew,y) (ulx) —u(y), vV,

yeVv

It is well-known that L is a positive semi—definite self-adjoint oper-
ator and has 0 as its lowest eigenvalue whose associated eigenfunctions
are constant. So, £ can be interpreted as an irreducible, symmetric, diago-
nally dominant and singular M—matrix, L. Therefore, the Poisson equation

L(u) = f on V has solution iff >  f(z) =0 and, when this happens, there
zeV
exists a unique solution u € C(V') such that » wu(z) =0, see [1].
zeV



The Green operator is the linear operator G : C(V) — C(V) that
assigns to any f € C(V') the unique solution of the Poisson equation with

data f — L > f(z) such that Y u(z) = 0. It is easy to prove that G
zeV zeV
is a positive semi—definite self-adjoint operator and has 0 as its lowest

eigenvalue whose associated eigenfunctions are constant. Moreover, if P
denotes the projection on the subspace of constant functions then,

LoG=GoL=T—-7P.

In addition, we define the Green function as G : V x V — IR given by
G(z,y) = G(ey)(z), where g, stands for the Dirac function at y. Therefore,
interpreting G or G as a matrix, G, it is nothing else but the Moore—-
Penrose inverse of L, the matrix associated with £. In consequence, G is an
M-matrix iff G(x,y) <0 for any z,y € V with x # y.

In [1] it was proved that for any x € V, there exists v* € C(V') such
that v*(x) = 0, v*(y) > 0 for any y # = and verifying

LW*)=1—ne, onV. (1)

We call v* the equilibrium measure of V' \ {z} and then we define capacity

as the function cap € C(V') given by cap(z) = > v*(y).
yeVvV

3 The Moore-Penrose inverse of distance—regular
graphs

We aim here at characterizing when the Moore—Penrose inverse of the com-
binatorial Laplacian matrix of a distance-regular graph is a M—matrix.

Recall that a connected graph I' is called distance-reqular if there are
integers b;, c;, © = 0, ..., d such that for any two vertices x,y € I' at distance
i = d(x,y), there are exactly ¢; neighbours of y in I';_1 (x) and b; neighbours
of y in I';11(x), where for any vertex x € I' the set of vertices at distance
i from it is denoted by T';(x). Moreover, |I';(x)| will be denoted by k;. In
particular, I' is regular of degree k = by. The sequence

L(FY) = {b07b17 o 7bd71;clv v 7cd}a

is called the intersection array of I'. In addition, a; = k — ¢; — b; is the
number of neighbours of y in I';(z), for d(z,y) = i. Clearly, by = ¢y = 0,
c1 = 1 and the diameter of I' is d.



Lemma 1 ([1, Prop. 4.1]) LetT be a distance—regular graph. Then, for
ally eV

n — |Bj] (n—|Bj 1?2
z pu— — d
vi(y) Z |0B;| and - cap(z jz |0Bj|

Jj=0

where |Bj| is the number of vertices at distance at most j from a given
vertex and |0B;| = k;b;.

The following result has been proved in [3] in a more general context.
However, we prove it here for the sake of completeness.

Theorem 2 The Moore—Penrose inverse of L is an M -matriz iff for any
reV

cap(x) < nv®(y)  for any y ~ x.

Proof
The Green function is given by

1 X
Gle.y) = 5 (cap(e) —n v (v)),
see [1]. Therefore, G is an M-matrix iff

cap(z) <n min {v°* .
ple) <n_min {r7()}

The result follows by keeping in mind that min {V } min { v* },
yeV\{z} Y~z

since if the minimum is attained at z % x, then
1= L") (2) = Y elz,y) (V' (z) — v (y)) <0,
yeVv

which is a contradiction. U
Let L be the matrix associated with the combinatorial Laplacian of a
distance-regular graph. Then, from Theorem 2 we get the following result.

Proposition 3 The Moore—Penrose inverse of L is an M -matriz iff
di n—|Bi)? n-1
|0B;| — k: ’

=1




In particular, for a strongly reqular graph with parameters (n,k,a1,cq), the
Moore—Penrose inverse of L is an M -matriz iff

2
a1 <3k — —n.
n—1
Proof
From Theorem 2 the Moore—Penrose inverse of L is an M—matrix iff
S (n—|Bj))? _ nln—1)
= |0B;| - k

that is, iff

If ' is a strongly regular graph, then d = 2 and hence the Moore—Penrose
inverse of L is an M-matrix iff (n — k — 1)?> < by(n — 1) and the result
follows keeping in mind that by =k — 1 — a;. O

The above conclusion for strongly regular graphs also appeared in [6,
Theorem 2.4], expressed in terms of the eigenvalues of the combinatorial
Laplacian.

If T is the n—cycle with vertices labeled {x1,...,z,}, then it is easy to
verify that

n(n? —1)

B , ,7=1,...,n.

. . . o
vhi(z5) = B li—jl(n—]i—j|) and cap(a;) =
Therefore, by applying the above proposition, we obtain that the Moore—-
Penrose inverse of the combinatorial Laplacian of a n—cycle is a M—matrix
iff
n(n? —1) < n(n — 1);
12 - 2

that is, iff n < 5. This result was already obtained in [2, 5]. In addition,
the Moore—Penrose inverse of M is M = (g;;) where

1 ..
%5 = 19n (" _1_6|Z—J|("—|1—3|)> ij=1,...,n.

We point out that Petersen Graph does not fulfill the above condi-
tion, since its parameters is (10,3,0,1). Notice that the Green function



of the Petersen Graph is G(z,z) = 0.33; G(z,y) = 0.03 if d(z,y) =
and G(z,y) = —0.07 if d(z,y) = 2, since for any z,y € V, v*(y) = 3 if
d(z,y) =1, v*(y) =4 if d(x,y) = 2 and cap(z) = 33.

As an example of a strongly regular graph that fulfills the above condi-
tion we consider the family of Conference Graphs whose parameters are

n—1n—-5n-—1
n .
2 7 47 4
Corollary 4 The Moore—Penrose inverse of the Laplacian matriz of a con-
ference graph is an M —matrix.
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