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Abstract. In this paper, some problems related to the design of decentralized controllers are
considered. Due to information structure constraints on the systems, we are interested in determine
when a gain.matrix corresponding to a control law can be designed having a required structure.
To discuss this issue, we consider some generic classes of systems with different control strategies:
optimal overlapping control, guaranteed cost control and H.. control. For each one of them, two
scenarios are supposed: state feedback and output feedback controllers. In this line, some new
contributions are offered. : '

1 Introduction

The dynaraic behavior of many physical processes is frequently complex. This situation nt-
urally motivates the development of effective methods of control, taking into account particular
features of these systems. Decentralized control can be a useful strategy to design controllers
when the systems present complexities. Moreover, in many practical systems, specific structures
of controllers are needed. The most obvious restrictions are those that are structural in nature.

" Thus, when information-structure constraints appear, the necessity of designing gain control ma-
trices having preassigned structures arises. Different structures of the gain matrices are usually
considered when information structure constraints oceur [17], [19]. In the paper, some problems
related to the design of gain matrices having predetermined structures are presented and discussed.

On the other hand, large-scale and complex systems are usually composed by subsystems shar-
ing some components. These systems can be treated as interconnected but with overlapped parts.
In this case, it is advantageous to utilize actuators sharing the information only among their neigh-
bor subsystems but not with the overall subsystems, having “semidecentralized” feedback control
structures. Overlapping information sets and the inclusion principle give a useful framework for
such a design. A key point for this purpose is to obtain expanded systems with weak interconnec-
tions, Then, “virtual” decentralized controllers in the (non real) expanded system are designed,
which are further transformed to be implemented into the real system as a unique controller [7],
[16]. This method has been applied to different clasdes of overlapped systems and problems as
illustrated for instance in [3], [4], [13], [15].

Our study is focussed on the obtention of gain matrices having a predetermined zero-nonzero
structure, by considering state and output feedback control. We have focused the study on three
kinds of control criteria: optimal control, guaranteed cost control and H.. control. Some new
results are presented,
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2 Overlapping quadratic optimal control

The inclusion principle provides conditions under which an initial system, with shared compo-
nents, can be expanded to a higher dimensional space so that the overlapped subsystems appear
as disjoint. The expanded.space contains the essential information about the initial one in such
a manner that a control gfethodology can be advantageously designed for this system and trans-
formed (contracted) to ave a final control law which is implementable into the initial system [7],
[81, [91, [16]. The inclusion principle has been studied and applied satisfactory in different areas
as mechanical systems [2], electric power systems [11], vehicles [12], [14] or control of structures
{1} :

Next, we summarize briefly the main ideas involved in the inclusion principle. Consider two
linear time-invariant systems given by
‘ S: #(f)=Ax(t) + Bu(t), §: #()=Az()+Ba(), M
where x(1)€R", u(r)€R™ are the states and the inputs for the system § at time r€R " and £(r)cR",
ii(z)R™ are the states and the inputs for §. Matrices A, B and A, B are constant of dimensions
nxn, nxm and fi x#i, ixm, respectively. Suppose that the dimensions of the state and input vectors
x(t), u() of S are smaller than those of %(), #(t) of §. Denote x(r)=x(t; x0,u) the state behavior
of 8 for a fixed input u(z) and for an initial state x(0)=xo. An analogous notation X(t)=%(¢; %, #) is
used for the state behavior of 8. '

Consider the following transformations:

V:R"—R, U:R"—R', R:R"—R* ¢:R'—R" @
where V, U, R, @ are full-rank matrices such that UV=l, and QR=I,,, where I, I, denote the

identity matrices of indicated dimensions.

Definition 1 (Inclusion Principle) A system 8 includes the system S, denoted by §-8, if there
exists a guadruplet of matrices (U,V, O, R) satisfying UV =1,, QR=l,, such that for any initial state
xo and any fixed input u(t) of S, the choice Z9=Vxy and i(t)=Rult) implies x(t;x0,u)=UZ(t; %, i)
Jor allt 2 0. Figure I represents graphically this definition.

&, =V,
a(t) = Rult)

} = 2(2) = UE(l)

[

P —S—

Fig.1 Inclusion principle

Associated with the systems S and § given in (1), we consider the quadratic cost functions

I )= [ BT @0 +uT O ute)] d,

e . 3
J(z,,4())= fo [£ ()0 2(e) + " (1)R*a(r)] at,
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where 0%, O* and R*, B* are symmetric positive semidefinite and symmetric positive definite
matrices, respectively.
Assume that the system S given in (1) has the following structure

. Ay Ap i A Bn Bz 1 B
T A f ]
/ A= _Azl_:fzz_' v\, B=|BuBn, Buy, )
An 1 An Am By 1 Bn  Bn
5

where Ay, By; for i=1,2,3, j=1,2,3 are n;xn;, n;xm; dimensional matrices, respectively, and
L n=n, ¥ m=m. The expansion-contraction matrices are usually selected in the form

oo

Ly 00
0 4y O

— i3 o

V=100 U_[

0 00 I 00 Ly 0 0 0
éfnz %Inz 0], R= 0 ;mz o | Q=10 éfmz %I"‘Z o f. (5
) pod o 0

0 0 Iy

0 iy 00 I 0 I,
The expanded matrices A, B, 3" and B of § can be expressed as
A=VAU +M, B=VBQ+N, @'=UTQU+My, R =Q"R'Q+Ng, (6)

where M, N, Mg+ and N+ are complementary matrices that can be chosen conveniently by the
designer [3], [4], [5], {6]. The expanded matrices A=VAU and B=V BQ, without adding the com-
plementary matrices M and N, have the form

A dAn | {412 Ay By 3B | 4By B
i= [éu @n}: A jAz | 1A Ax Ao [éu Bn}x By Bn | $Bu Bn
An An Ayt $Am | An A |’ By By Byt By | 1By By

A3t dAn | dAn An B3 4B | iBx By

Q!

In this process, the basic idea is to achieve decoupled or weakly coupled expanded systems. For
this reason, a proper choice of M and N is required [8], [9], [10]. In the expanded system §, we
can denote ~
Si: % @) = A #(t) + By 0] +A12x2(t) + By #n(t),
S2: %(0) =An& () + Buip(r) + A %1 (1) + By i (t),

where 4;j, Byj, i, j=1,2, i are the interconnection matrices. The decoupled subsystems can be
expressed in the following form:

@®

8 : si(t)=Aunm()+Bum(), 8§ : £0) =Annh)+Bnu(), ©
denoted by
§,: #t) =A%) +B, () (10)

in a more compact form, where A =diag{A11, Az}, B,=diag{Bi1; Bz;}. With each subsystem
given in (9) it is possible to associate local cost fiunctions given by

Iy Gwn®) = [ O0#0)+ 8 60 ()] de

an

Iy Gnsin) = [ [ (0005200) +5 ) Ripia ()]
where %,, and %, are the initial states of § and &, respectively, and 0f;, 0%,, R}, and R}, are
appropriate expanded matrices. The final cost function for the decoupled expanded system 5,, will
be

Iy (6o,i) = [ (0035 +" (Ra0)] ot (2
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where 0} =diag{0},,05,}, R;=diag{R},,R},}. The local control laws corresponding to the de-
coupled expanded subsystems §; and §:, are given by

ﬁl(t) =K11f1(3), ﬁz(t) =K22f2(£). (13)

This type of feedbacl&ﬁmtrol is called overlapping control. The problem of designing overlapping
controllers can be formulated as a decentralized control problem in the expanded space S.

The goal is to implement an overlapping controller in the system S, denoted by u,,(1)=K, x(t),
but as a contraction of the control law u,, ()=, %(¢) designed in 8. Then, according to the previous
structures, the gain matrices in the expanded and initial systems have the following form:

*

: ) * 0
‘ an[___-ﬁ_,} contraction, KD=QKD\I=[* v *] (14)
0 * x

Remark 1 In this case, a quadratic optimal control has been applied to obtain the controllers
i1 (t) and fip(t). However, other control criteria can be used following the proposed strategy of
design. We can observe that ui(t) uses the information cortained in x,(f) and x;(t) but does not
use x3(t). Analogously, u3(t) only uses the information on x,(t) and x3(¢t) but does not use x{t).
Dealing with large-scale systems, where the number of variables can be notable, a decentralized
control design may be a convenient approach.

3 Guaranteed cost control
Consider a class of linear continuous-time uncertain systems described by the equations
§: (1) = [A+AA(1)]x(0) + [B+AB()] u(t),
y() = Cyx(t),

where x(2)€R" corresponds to the state, () €R™ is the input control and y(t)€R? is the measured
output. A, B and C, are known, real and constant matrices of appropriate dimensions. Norm-
bounded time-varying uncertainties are supposed in the form

(15)

AA(‘) =HAEA(1)EA7 AB(’} =HBFB(t)Em (16)

where H,, E,, H, and E, are known real constant matrices of appropriate dimensions and F,, F; are
unknown real time-varying matrices with Lebesgue measurable elements satisfying F (¢)Fi(t) < I,
for i=A, B.

Associated with the system (15) we consider the cost function

7= I(x,ut)) = /0 " T ()0 k() + uT (R u()] dt, an

where Q" and R* are symmetric positive semidefinite and symmetric positive definite matrices,
respectively.

The idea is to design robust controllers which make the resulting closed-loop systems not only
asymptotically stable but also guaranteeing an adequate level of performance. The performance
is measured with the standard quadratic cost function and an upper bound for the cost function is
obtained.
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Theorem 1 Consider the system (15) satisfying (16) with an associated cost function (17). Sup-
pose that there exist matrices X>0, Y, and scalars 01>0, 0p>0 such that the following linear
* matrix inequality

wo  x  xelyTED ¥T

XT g\l 0 0 0

j EX 0 -oql 0 0 <0 (18)

EgY 0 0 -l O
Y o 0 0 g
is feasible, where Wi = AX + XAT + BY + Y7 BT + o, H H' + 0o H,H_ . Then, the output feedback
controller u(t)=Ky(t) is a quadratic guaranteed cost controller for the uncertain closed-loop sys-
tem (15), where KC,=YX ™. Moreover, J < x'X~'x,.

3.1 State feedback control

Consider C,=I, the identity matrix, in the system (15). In this case, the control law u{r) is a
state feedback controller having the form u{t)=K x(r), where the gain matrix K=¥X ! is obtained
directly. When structural constraints appear in the model, it is necessary to consider some restric-
tions on the gain matrix K. Theorem 1 provides a gain matrix K, assuming that the LMI (18)
is feasible, but without requirements on its structure. However, by using an LMI approach, we
can impose some structural conditions on the variable matrices X and Y. Thus, if the matrix X
has a diagonal form, the gain matrix X adopts the same structure that the matrix ¥, which can be
imposed a priori. For example,

X11 0 0 -

0 - ym yrz O
K=[* * ]=YX‘={ } 0 xp 0] . (19)
0 x = 0 2 oyal|y o a3

In general, this assertion is only true when the matrix X has a diagonal form. Moreover, the
reduction in the number of variables in the LMI (18) can have a detrimental effect on the feasibility
of the problem. Other factorizations of the gain matrix K=YX ! have been studied [17], {18, [19],
[201, but not always with satisfactory results.

3.2 Output feedback control

From Theorem 1, when an output feedback controller is considered, the control gain matrix
is given implicitly by the relation KC,=YX~1. Then, two issues appear simultaneously: (1) how
to isolate the gain matrix X, and (2) how to impose some desired structure on K. To solve the
problem (1), the following strategy can be used [18]:

Step 1) Select a full rank matrix @ of ax (n — ¢) dimension such that C,Q=0.

Step 2) Solve the LMI given in (18) with

X =0x,0"+cT [T 7', +CTxC,, Y=Y, (20)
where X, and X, are unknown symmetric matrices of dimensions {(n—g)x (n—q) and ¢x g, respec-
tively, and Y, is an unknown m x ¢ dimensional matrix. )

Step 3) Supposing feasible the LMI (18), compute the gain matrix K as
K=Y.[I-GX'clx [1+¢x'clx] ™), @1

where Xo=0X,07 +CT [G,CT] 7' Cy. The procedure guarantees KC,=YX~!. This algorithm
solves (1) but can not be used to obtain a preassigned structure on the matrix K.
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Remark 2 Other design strategies can be found in the literature to solve these problems. How-
ever, in many cases, the reduction of the number of variables in the LMI resulting from the change
of variables leads to infeasibility. In other cases, the process depends on trial-error selection of
some matrices and, in this case, the algorithm does not always assure feasibility of the problem.

4 H. control
Consider a class of linear continuous-time uncertain systems described by the equations
S: x(t) = [A+AAQ)] x(r) + [BHAB(8)] ul(t) + Biw(1),

y(£) = Cyx(1), 22)
z{£) = Cx(t) + Duf(r),

where x(t)€R"” corresponds to the state, u(r)€R™ is the input control, w(f)€LE [0,c0) the distur-
bance input, y(¢)€R! is the measured output, and z(t)€RY is the controlled output. A, B, By, Cy, C,
D are known, real and constant matrices of appropriate dimensions. Norm-bounded time-varying
uncertainties satisfy (16).

The H.. control objective is to design controllers such that the closed-loop system is stable
guaranteeing the disturbance attenuation of the closed-loop system from w(t) to z{¢), i.e.

lz@ L <vlw®) s ¥>0, (23)

for all non-zero w{t}, under zero initial conditions. In this paper, an LMI approach is used. With
this idea in mind, consider an output feedback controller in the form u{r) = Ky(t) for the system
{22), where KeR™*L,

Theorem 2 Consider a linear continuous-time uncertain system given in (22) with norm-bounded
uncertainties (16} and a scalar y>0. For given scalars B1 >0, 0<By<1, suppose that there exists
a symmetric positive-definite matrix X and a matrix W such that the following linear matrix in-
equality

W XET X WE; W

EX -~ 0 0 0

X 0-1 0 o |<0 4

EW 0 0 -BJ 0

W; 0 0 0 -Py

holds, where

Wi =AX +XAT + BW + [BW|" + H HT + (1+ 1) H,H. +v°B\BT,

@5
Wy =CX +DW.

Then, there exists an output feedback controller in the form u(t)=Ky(t) such that the resulting
closed-loop system is asymptotically stable with H. norm-bound Y. Moreover, the control gain
matrix K is given implicitly as KCy=WX 1.

Remark 3 Here, the problem is similar to the guaranieed quadratic output feedback control case.
Now, we proposed a change of variables which allow to obtain explicitly the matrix K, taking into
account a preassigned zero-nonzero structure on the matrix K.

4.1 State feedback control

If we consider that Cy=l; in the system (22), then the gain matrix obtained from Theorem 2
has the form K=WX 1. Then, due to the flexibility given by using an LMI approach, it is possible
to impose the same structures as given in (19) on the variable matrices X and W. However, in
general, it is not possible to achieve a particular form of the gain matrix K.
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4.2 Output feedback control
4.2.1 Change of variables

Some strategies have been studied to obtain output feedback controllers [17], [19]. Here, the
following chan?of variables, by adapting some previous ideas presented in [18], [20], are used:

X = 0o+ QX.07, W = W.CyX, (26)

where a>>0 is a scalar variable, X is a constant symmetric matrix selected a priori, X, and W,
are unknown {n —I)x(n—1) and (m x I} dimensional matrices, respectively, and  is a constant
nx (n—1) dimensional matrix such that rank Q<(n — 1) verifying Q7 CT'=0. Obviously, the selec-
tion of the matrix X is not unique. It can be observed that

XCJ = 0XoC) +QX.0TCT = 0XoC) = a7'C, =CXoX . Qn .
From (26) and (27), we have
WX =W.CXX ! = a7 'W.C,. (28)

Consider the Theorem 2. with the change of variables given in (26). If the LMI (24) is feasible
for the new variables «t, X, and W,, then KC,=WX~! implies KC,=0"'W.Cy. As a result, a matrix
K satisfying the previous equality can be chosen in the form :

K=o"W, 29

Remark 4 By means of these changes of variables, two advantages are obtained: (1) the gain
matrix K can be isolated, and (2) a zero-nonzero structure on the matrix K can be specified a
priori, by imposing a desired structure on W, in the corresponding LMI. The same idea could be
applied to the output feedback guaranteed cost control.
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5 Conclusions

Decentralized control strategies, when information structure constraints appear, have been dis-
cussed in the paper. Some generic classes of systems with different control criteria have been
considered. Two kinds of control laws, state feedback and output feedback control laws, have
been studied. In both cases, the possibility to obtain a preassigned gain matrix K has been com-
mented.
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