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Abstract

NiMo (Nets In Motion) is a Graphic-Functional-Data Flow language designed to visualize algorithms and
their execution in an understandable way. Programs are process networks that evolve showing the full
state at each execution step. Processes are polymorphic, higher order and have multiple outputs. The
language has a set of primitive processes well suited for stream programming and supports open programs
and interactive debugging. The new version of the environment NiMo Toons includes: an also graphic
and incremental type inference system, multiple output processes as higher order parameters, symbolic
execution, five evaluation modes that can be globally or locally set for each process and dynamically changed,
and facilities to measure the used resources (parallelism level, number of steps, number of processes, etc.)

Keywords: graphic language, functional, data flow, stream programming, parallelism, visual type
inference, symbolic computation

1 Introduction

NiMo (Nets in Motion) [3,8] is a graphic programming language inspired on the

Data flow representation of some lazy programs (first proposed by Turner [13]),

where functions are viewed as processes and channels are (usually infinite) lists. Its

main objective is to provide the user a full control over its application development,

debugging and optimization. The fact of being totally graphic is the key point

because all the execution internals can be visible. The net is the code but also

the computation state. Edition and execution are interleaved, and any partially

defined net is an open program that can be executed and modified step by step. All

together allow incremental development even during execution, because the initial

code can evolve and be stored at any step as a program that can be recovered later.

On the other hand, execution steps can be undone, acting as an on line tracer and
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debugger. The NiMo graphic syntax is simple and concise. Solutions of growing

complexity can be built using a small set of graphic primitives, which allow dealing

with higher order, partial application, different evaluation policies, and polymorphic

type inference. The net architecture shows the chains of function compositions and

exhibits the implicit parallelism. Back arrows give an insight of the “recurrence

laws”, i.e. how new results are obtained from the already calculated ones. This bi-

dimensional view of the algorithm facilitates the reasoning about it and its possible

improvements.

The full semantics of NiMo was defined by means of graph grammars and im-

plemented in a graph transformation system [12]. This first prototype (NiMoAGG)

was the basis for the development of NiMoToons, the NiMo graphic environment.

The current version presented here, is a substantial development of earlier work [6].

The system overall design and implementation issues were described in that paper.

Here we focus on the main newly added features and their application possibilities.

The novelties are:

• A static and incremental graphic type inference system that guarantees type

safeness by construction and allows identifying easily the origin of error messages.

It is described in section 3.

• A more flexible use of multiple output processes as higher order parameters, and

processes with configurable arity.

• Symbolic execution that allows computing with symbolic constants of any type

including polymorphic ones.

• Visualization features like interactive separation of shared expressions, non ex-

panded net-processes execution.

• Measures of program behavior for comparing versions in terms of time, space and

parallelism.

• A customizable evaluation policy with five modes that can be global or locally

set for each process and dynamically changed, covered in section 4.

This last feature gives a very flexible way to experiment different strategies to ex-

ploit implicit parallelism, allows subnet synchronization and, together with symbolic

execution, provides the means for generative and multistage-programming as it is

discussed in section 4.2.

2 NiMo Overview

2.1 Graphic Syntax

Figure 1 illustrates the main graphic elements. Processes are represented by rectan-

gles with two kinds of parameters, horizontal entries for flowing data (streams), and

vertical entries for parameters that are not channels in the data flow sense. Their

names are shown in different colors according to their evaluation modes (see section

4). Data are represented by hexagons, which are placeholders that can be bound

to a value. If not, they can be considered as free anonymous variables. Hexagons

are colored and labeled according to their type, polymorphic data are green “?”.

Black dots are duplicators for multiple uses of a value or channel and circles repre-
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Fig. 1. A NiMo program example

sent constant values (also colored according to their type). In figure 1, the net has

four outputs (the leftmost hexagons): a list of functions, a list of reals, a boolean

value and a polymorphic value. All the mentioned nodes are interfaces having typed

(in/out) connection ports. Interfaces are dragged from a toolbox (see left side of

figure 2) and dropped into the workspace where the new net is being built.

Fig. 2. Interfaces

Afterwards they are connected by clicking on the respective in and out ports,

if both types are compatible. In this case an edge is constructed or else an error

message is generated, and therefore nets are type safe by construction (see section

3). The edges have a state reflecting data evaluation degree or process activation.

It is shown by means of a colored diamond. When a process output is connected the

diamond is white, and incoming data items are connected with green diamonds as

shown in the right side of figure 2. The user can change to red the white diamond

of a process output to request the process to act (or it can be changed in execution

as is discussed in section 4).

2.2 Processes are more than functions

Multiple output processes. Processes as functional data: In NiMo, pro-

cesses are functional in the sense of referential transparency and can be also a valid

data. However according to the data flow paradigm they can have no entries, mul-

tiple outputs, and even none (think of a sink-process that consumes its inputs) but

the number of inputs and outputs cannot be both zero. Let’s observe that on the
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left of figure 2, process interfaces have an out port at the bottom. It is not one

of their outputs, but their value as a functional data. This out port disappears

whenever one of the outputs or all the inputs of the process are connected (it is

acting as a process, not as a functional value). Higher-order parameter processes

are connected by this port as can be seen in figure 1. When this port is connected,

all the open ports of the process interface become blocked (red circle) to prevent

that new connections can be made. Otherwise its value as a functional constant

(and of course its type) would be different. See for instance the first element of the

first output list in figure 1, which is the NiMo equivalent for the function (3+) in

Haskell notation.

Curried/uncurried Implicit Behavior: Multiple inputs of a process in NiMo

can be interpreted in curried or uncurried way depending on the context. This is

a kind of implicit conversion from one functional type to other type. On the other

hand, partial application can be made in any order. In the new version the effective

arguments for the application can also be delayed. In figure 3 the first higher order

parameter ifBool has its first and third parameters already applied, and therefore

it has one single parameter. The green arrow at the first place indicates that the

argument value will be completed later.

Fig. 3. Partial application and resulting

Partial Resulting: The toolbox provides a repertory of basic processes (gray

rectangles) including multiple output versions of many Haskell prelude functions.

For instance the process SplitAt is analogous to the splitAt function returning a

pair of lists, but it can behave also as take or as drop just by leaving one or the

other output disconnected (three processes for the price of one). We will refer to

this multiple behavior as partial resulting, in analogy with the notion of partial

application i.e. there is a symmetry in parameters and results regarding partiality.

In the first version only single output processes were admissible as higher order

parameters. Now multiple outputs and also partial resulting are allowed. In figure

3, the higher order parameter of Map is the process SplitAt acting as a take; to

leave its second output open, it must be explicitly indicated by means of a green

arrow before connecting it to Map.

Net Processes: Are user defined components, their interfaces (the white rect-

angles) are defined by means of a net that has to be parameterized and given a

name. The user binds the in/out ports of a configurable interface with the open

in/out ports of the net to be considered the formal parameters and results. This
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mechanism is the graphic equivalent to bound variables definition in a lambda ab-

straction.

Fig. 4. Net Process definition

Figure 4 shows an example for the process fromUp that generates a list with k

consecutive integers from the value n, where n and k correspond respectively to the

parameters labelled 1 and 2. The equivalent Haskell code for this net is

fromUp n k = x where (x, y) = splitAt k z ; z= n: map (1+) z

Afterward it can be imported to the toolbox for being used in a new net and so

on, allowing incremental net complexity up to any arbitrary degree. In execution,

when the net process has to act the interface is replaced by the net setting the

connections according to the corresponding bindings. Though some of the in/out

ports could have been left open, NiMo allows to make “parameter passing” anyway.

In terms of graph transformation this replacement mechanism implements what we

call the expansion rule of the process.

Configurable arity processes and library nets: The system provides several

basic processes with configurable arity, as a Map with any number of inputs and

output channels, Takewhile and Filter with the same number of inputs and outputs,

and an Apply process. Also, for top down development a new interface (with the

desired name, in/out ports and also their types) can be created bringing the generic

process interface from the toolbox. Its net definition can be postponed.

In addition, some useful parameterized nets as fromStep are provided in the

system library. Given that the net size is critical for visualization, some of them are

considered to be included in the basic processes repertory.

2.3 Symbolic execution

Along with the ability to run with free variables (open in ports) and the postpone-

ment of the process definition, in NiMo it is also possible to use symbolic constants of

any type, even polymorphic. Symbolic manipulation is useful to compare equivalent

codes in a more abstract way, and it can be used as a proof assistant. For instance

in figure 5 it can be seen the initial results of evaluating map(f ·g) [x1, x2, x3, x4, x5]

and map f(map g[x1, x2, x3, x4, x5]). In this case the net definition of f and g in-

terfaces is not really postponed; they are being used as symbolic functional values.

The user can prevent a process to be expanded by assigning it a disable mode (see

section 4). Figure 6 shows the execution of the classical Fibonacci net example,

where the initial values 0 and 1 are replaced by a pair of symbolic integer constants
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Fig. 5. Symbolic execution with polymorphic values

Fig. 6. Fibonacci’s symbolic execution

a and b. The red multi-edges correspond to the shared expressions produced by

the duplicators. In NiMo only constant values (circles and list-ends) are physically

duplicated; any other subnet is shared. However, since sharing can obscure the

understanding of the results, duplication can also be enforced. It can be performed

locally on an in port, or by preceding the output of a subnet having shared expres-

sions with a special purpose process: the double-green-triangle that can be seen on

the left of the duplicator. In the previous version, where the evaluation policy was

lazy, it was used in the net outputs to set a continued demand on its provider. Now

it also has this mentioned functionality for enforcing duplication of shared values.

This algorithm is not trivial due to the existence of multiple outputs processes.

3 Visual type inference

In NiMo type inference is static and incremental. During the net construction each

connection is type consistent. The type inference system is a graphic generaliza-

tion of the classical Hindley/Milner algorithm to deal with multiple outputs and

curried/uncurried conversion. The net has an associated type graph. It is incre-

mentally built during the net construction and its evolution is optionally visible.
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Each process in/out port is tied to a node in the type graph. This feature allows

identifying easily the origin of the type error messages. The net type graph is con-

structed starting from the type descriptor of each interface. In Figure 7 we can see

the interfaces on the left of figure 2 with their type descriptors and the resulting

type graph after connecting them. Let’s observe that the type of the out port at

the bottom of ifBool and Map interfaces, describes their types. In NiMo a process

type is a graph rooted with a hexagon F whose outgoing edges are labeled From

and To. To describe textually this type we use the ‖ notation to signal that we are

neither using the curried nor the uncurried type as it was discussed in 2.

Fig. 7. Type descriptors

It denotes the type constructor for ordered parallel inputs or results correspond-

ing to graphs with an O-hexagon root. The textual denotation for the ifBool in-

terface type is bool‖a‖a → a. In this case, the hexagon labeled O is the root of

the graph corresponding to bool‖a‖a. It should have as many outgoing edges as the

input parameters, but multiple occurrence of the same type variable a is represented

by a single polymorphic hexagon and a single edge with two labels (2 and 3). The

Map type is ((a‖b‖c→ d‖e) ‖ [a] ‖ [b] ‖ [c])→ [d] ‖ [e]. After connecting the inter-

faces, the type graph is the final result of unifying each pair of in/out port types.

Intuitively each connection produces the “fusion” of both port types when the cor-

responding hexagons are superposed (if the types are compatible), i.e. the minimal

graph that has the same nodes and edges but eventually a ? node in one of them

has been replaced by the more refined type graph of the other. This structural

unification of graphs is enough to graphically model type inference in functional

languages. But the existence of multiple outputs and the curried/uncurried casting

required a particular procedure for unifying process types. It is detailed in [4].

In figure 8 the higher order parameter has a curried interpretation. Let’s observe

that before connecting process +, its type is int‖int → int and the parameter of

Map is int→ a. After connecting them the unified type is int→ (int→ int).
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Fig. 8. Process type unification

4 Evaluation Modes

Most languages admitting parallel computation, have specialized constructs to en-

force o suggest parallelization. In NiMo parallelism is implicit, in the model all

processes selected to act (the analogous to selected redexes) are supposed to ex-

ecute in parallel at the same execution step. Every selected process is explicitly

marked by means of a red frame around its interface. An execution step is a tran-

sition from one net to the next where all the marked processes have produced the

corresponding graph transformation. From the user point of view they all have

acted in parallel. In the previous version NiMo followed a parallel lazy policy, all

processes acted only under demand (only when some of their outputs had a red

diamond), except a distinguished one that continuously forced its provider to act.

A required process without enough data to act required the needed inputs providers

and so on. The user could only change the evaluation order setting a demand on

a given process (by changing to red some of its output diamonds). Now the user

control on the selection criterion and therefore on the process execution scheduling

is substantially upgraded. Each process has its own evaluation mode that can be

set globally (for all) or locally for each process and can also be changed during

execution.

The modes for basic process are: Disable: the process is not able to execute

(even if it is requested). Demand-Driven: The process is able to execute only if

it is requested. End-Driven: The process is able to execute as soon as it can end

and disappear (for instance a non-required map can execute whenever any of its

input channels ends). Data-Driven: The process is able to execute as soon as it has

enough data. Weak-Eager : the process is always able to execute or to request its

needed input providers.

Net processes have three possible modes: Disable: will never expand; Demand-

Driven: only when requested; Auto-Expand : always applies its expansion rule.

4.1 The evaluation model

In [1], a labeling procedure is used for selecting threads to be active in each synchro-

nized execution step. The labels are: Inactive, Blocked, Runnable and Active. We

do not have an equivalent for Runnable because in the NiMo model the number of

processors is unbounded, however exists a similarity with the underlying concepts

of the other three ones, but in our case labels relate to processes, not to threads. A

8



Clerici, Zoltan, Prestigiacomo

basic process having all its needed inputs evaluated enough is Active if: its mode

is Data-driven or Weak-Eager, or its mode is End-driven and can terminate, or its

mode is Demand-driven and is requested.

A basic process with any of its needed inputs not enough evaluated is Blocked if

it is required or its mode is Weak-Eager. All the other basic processes are Inactive.

Net processes are never Blocked. A net process is Active if its mode is Demand-

Driven and it is requested, or if its mode is Auto-Expand. Otherwise it is Inactive.

The NiMo execution scheme for each execution step is the following:

1 All the Active processes that were marked with a red frame are executed.

2 Disconnected subnets are erased by the garbage collector rules.

3 Labeling of processes and marking actions closure: Active processes are marked

with a red frame. Blocked processes require their needed input providers, each new

requested process becomes Blocked or Active and so on until no new Blocked or

Active processes are found.

Execution ends when no Active processes are found. Initially step 1 has an

empty set of marked processes.

The graph operational semantics for NiMo is detailed in [5].

4.2 Customizing Evaluation

Different semantic models could be implemented in NiMo using modes. When only

the outermost processes (the ones nearest to the net outputs) are set to Weak-

Eager, and all the other processes are set to demand-driven the net has a total

lazy parallel behavior. Setting non outermost processes as End-Driven allows net

simplification. Setting all processes as Data-Driven gives the usual semantics in

data flow approach. An eager semantics cannot be emulated in NiMo by changing

modes, because Weak-Eager processes require only their needed inputs. Combining

modes allows increasing the implicit parallelism, dealing with synchronization and

also regulating channel population. Also the evaluation modes could be used for

deactivating subnets during experimentation or promoting speculative calculations,

and to prevent evaluation of symbolic values. Modes alter the process scheduling

without changing the code (only the color of process names changes).

The system provides tools for measuring the execution behaviour of a program.

A step counter and two statistical viewers give the figures of resource consumption.

The first viewer shows the number of processes and data items per step, which cor-

respond to the total memory usage. The second one shows graphically the number

of processes acting at each step, and also the time the step takes (in the current

NiMo implementation). We have observed that starting with a lazy policy, a few

strategic changes in some processes modes result in a substantial improvement in

the program performance. For example, the net in figure 9 calculates the prefixes

of its input channel. The equivalent Haskell code is

prefixes x = y where y = [ ]: zipWith (++) y (map (: [ ] ) x )

Starting with all the processes being Demand-Driven, except the duplicator that

is Weak-Eager, execution takes twenty-five steps. The result is shown in figure 10.

It can be seen that the applications of both HO parameters ++ and (:) remain

unevaluated and their results are shared.
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Fig. 9. Net prefixes

Fig. 10. Prefix execution with shared results

If now we set all of them as Data-Driven (using the command for globally setting

a mode) the execution can continue, and after nine steps the net on the left of figure

11 is obtained.

Fig. 11. Prefix reults and statistical viewers

This final result could have been directly obtained in twenty-five steps if ++ and

(:) had been set to this mode from the beginning. And it would have taken only

fourteen steps if we had started the execution with all the processes set to Data-

Driven. On the right of figure 11 we can see the statistical viewers for both cases.
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When the Map processes are Demmand-Driven, the red line in the bottom viewer

shows that at most three processes execute in parallel, thus the mean of processor

usage is less than two. But setting all the processes as Data-Driven the maximun is

five and the average goes up beyond three, getting a 40 % gain in processing time,

while keeping a similar usage of memory as the top viewers show.

On the other hand, a very interesting consequence of having disabled processes

is that generative programming becomes very natural. A net can be defined to

generate another one containing disabled processes. The net evolves until no more

processes can act; this final result is the desired program. To be executed it only

requires to globally set the disabled processes to another mode, and execution pro-

ceeds in the next step, or it can be stored to be run later. This technique was used

(in collaboration with the UPC team of the WISEBED project [14]) to generate

different topologies for sensor networks of variable size and afterward simulating

their behavior [2].

5 Related works and final remarks

There are several languages or tools sharing some common characteristics with

NiMo. In [3] we related some tracers, debuggers, and visual representation tools for

functional languages. GemCut [9] is a graphical viewer for functions in the Haskell

like language CAL, the editor uses the inference system of the CAL compiler to

prevent type errors. In NiMo the type inference is also made graphically and gives

the user on line visibility of the type inference process. TypeTool [10] and System

I [11] are web-based tools for visualizing type inference of lambda terms, they are

oriented to teaching the basis of type inference algorithms for functional languages.

Regarding the different evaluation modes we can mention Ptolomy [7]. It is a

visual language based on actors having ports as communicating interfaces. Actors

have parameters that are not visualized on the actor but shown in a separate win-

dows. In NiMo all the program state is visualized. Ptolomy deals with continuous

data, while NiMo is only discrete. In Ptolomy there is a variety of domains with

an uniform evaluation policy, for instance process network domain correspond to a

Data-Driven policy.

However, beyond partial similarities, to the best of our knowledge there is no

other work that can be globally comparable, neither in approach nor in the integra-

tion of all the mentioned features in a single graphic system.

The graphic-functional-dataflow characteristics of NiMo result in a very pow-

erful computation model. The mixed paradigm opens several possibilities not yet

explored in pure dataflow or functional approaches. Integrating both worlds has

supposed a big challenge and it has been necessary to find many creative solutions

for making both models compatible. In particular, dealing with multiple outputs

and curried/uncurried compatibility has required a non-trivial generalization of the

usual notions of polymorphic type inference to handle the process type. On the

other hand, the fact of being graphic and the underlying graph-transformation op-

erational semantics, give the user a full control on the execution state at any step

in a way impossible to imagine in textual languages. But at the same time total

visibility (nothing can be hidden under the carpet) also required to find a graphic
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notation for many “internals” to make them understandable. Besides, the visual-

ization aspects are critical when nets grow, and it is a really difficult problem to

solve that textual languages do not have to face.

We are currently working on several aspects of net visualization like improving

the non expanded view of net process and channel viewers.

At the same time, a distribution version of NiMo Toons including an interactive

tutorial is now in preparation. In this way we hope to extend the range of possible

users beyond the academic environment.
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