
P-Slice Based Efficient Speculative Multithreading

Rakesh Ranjan 1, 2, Pedro Marcuello 2, Fernando Latorre 2, Antonio González 1, 2

1 Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona, Spain
rranjan@ac.upc.edu

2 Intel Barcelona Research Center
Intel Labs Barcelona – UPC

Barcelona, Spain
{pedro.marcuello, fernando.latorre,

antonio.gonzalez}@intel.com

Abstract—Microprocessor industry has recently shifted
towards multi-core to take advantage of the ever increasing
number of transistors provided by the new technologies.
Unfortunately, the multi-core approach does not allow single
threaded applications to benefit from the additional cores to
improve their execution time. Speculative multithreading
(SpMT) has been proposed in the past to boost performance of
irregular applications in multi-core environments. In this
work, we study the main bottlenecks of these architectures,
such as the memory behavior and the pre-computation slices
and propose two novel schemes that allow SpMT to get 25%
average speedup over single threaded execution.

We propose Selective Replication as a technique to improve the
performance of the SpMT memory system. This technique
does not introduce additional traffic in the bus and improves
the performance of a conventional SpMT memory model by
6% on average and up to 21% for some applications. Also, we
propose a scheme called Slice Specialization that reduces the
number of instructions in the pre-computation slices by
adapting the slice to every single speculative thread spawned.
The later proposal outperforms previous schemes with slices
by 15% and overall, both techniques combined achieve an
improvement of 20% over a conventional SpMT processor.

Keywords-Multithreading; Speculation; TLS

I. INTRODUCTION

Using the ever-increasing number of transistors to
improve instruction level parallelism nowadays shows
diminishing returns at the expense of significant power
increase. Thus, the industry and the academia are moving
towards on-die multi-core systems where these additional
transistors are used to exploit other types of parallelism like
thread level parallelism.

Increasing the number of cores available on the chip
augments the number of threads that can be run in parallel.
Thus, parallel applications whose performance scale well
with the number of threads can significantly benefit with
these systems. However, non-parallel applications cannot
take advantage of this multi-core approach because
conventionally they execute in a single core.

Speculative Multithreading (SpMT) has been proposed in
the past as a way to improve the performance of single
threaded applications through speculative parallelization. In
this paradigm, parallelization constraints are relaxed and the
new parallel threads are data and control dependent among

themselves. Speculative threads are spawned and executed
in parallel as regular threads, but due to their speculative
nature, they cannot modify the architectural state until the
speculation is proved to be correct. Therefore, processors
that are able to exploit speculative thread level parallelism
include support for storing the speculative state until
validation.

Previous proposals on speculative multithreading
[2][14][18][20][21][29] mainly differ on how speculative
threads are selected and the way inter-thread data
dependences are managed. The speculative threads can be
generated by the compiler [12] or detected at run-time [16].
Code regions that can be speculatively parallelized are loop
iterations, loop continuations, subroutines, modules or more
complex schemes based on profiling. To handle inter-thread
dependences there are several proposals like assuming no
dependences, use of hardware/software value prediction
[13][15], synchronization [26] or speculative loop fission
[27].

In spite of the promising potential of the SpMT
architectures, the observed performance has been far from
ideal. In this work, we focus on an architecture that assumes
a simple spawning scheme, i.e. loop iterations using pre-
computation slices to early compute the dependent values
among concurrent threads. For this architecture, we found
that the poor memory behavior and the significant cost of
pre-computation slices are two main bottlenecks among
others, which cause the unexpectedly low performance. In
this work we propose two profile guided techniques to
alleviate the effect of these two bottlenecks:

• Selective Replication reduces the impact of cold
caches and loss of locality in SpMT memory
hierarchies, by replicating those cache lines which
are expected to be reused with no extra hardware or
increase in bus traffic.

• Slice Specialization reduces the cost of the pre-
computation slices by removing the predictable
control flow computation.

Overall, the two techniques improve the performance by
an average of 25% over single thread on a 4-core CMP.

The rest of the paper is organized as follows. Section II
explains the spawning model and the supporting architecture
whose bottlenecks we explore. In the same section we also
define pre-computation slices and the method to build them.
In Section III we describe our experimental framework. In
Section IV we study the various bottlenecks of the SpMT

978-1-4244-4921-7/09/$25.00 ©2009 IEEE 119

architecture. In Section V we discuss the Selective
Replication technique. In Section VI we define our proposed
technique of Slice Specialization and the results obtained
using the technique. Finally, Section VII discusses some
related work and Section VIII summarizes the main
conclusions of this work.

II. SPECULATIVE MULTITHREADED ARCHITECTURES

A. Speculative Threads

SpMT architectures ([2][13][20] among others) have
been proposed as an execution model in which single
threaded applications can be speculatively split into multiple
threads. These threads can then be executed on multiple
cores. By speculative execution we mean that the spawned
threads may be data and/or control dependent on previous
uncommitted threads. Hence, their execution may not be
correct. In case of a dependence violation, the SpMT
architecture squashes the violating thread. If the speculation
turns out to be correct, the non-speculative thread validates
its successor thread and then commits itself. After the
commit the validated thread becomes the non speculative
thread. The presence of one non-speculative thread in the
system at any point in time guarantees forward progress of
the overall system while correct thread speculation ensures
added speedup.

A speculative thread in this model is identified by a SP-
CQIP pair [14], where SP stands for the Spawning Point, i.e.
the instruction in the execution stream where the speculative
thread’s execution is triggered. CQIP stands for Control
Quasi Independent Point, i.e. the instruction from which the
speculative thread begins execution. The choice of these
pairs strongly affects the performance achieved by the
system [14].

Figure 1(a) shows a single thread execution stream in
which there is a data dependence between instructions I1 and
I2. The same execution stream when executed in the SpMT
execution model is shown in Figure 1(b). When the
execution reaches instruction SP, it spawns a new thread on a
free Thread Unit (TU1). The new thread first executes a
chunk of code called the pre-computation slice (p-slice for
short) which computes all those values that are produced by
the parent thread (Region B) and are required by the new
thread (Region C). The values generated by the p-slice are
stored in a special buffer called the slice buffer. In the
example shown in Figure 1(b), the p-slice produces the value
needed by instruction I2. Once the p-slice finishes execution,
the speculative thread starts executing instructions starting
from CQIP. The speculative state of the thread is buffered in
the local register file and the L1 data cache. For any input
value that the speculative thread needs, it first checks if it has
produced the value itself. Otherwise, it checks if it is
available in the slice buffer. If not available in any of the
local buffers (i.e. slice buffer, register-file or L1 Data cache),
it then requests the value from its predecessor thread.

When the spawner thread reaches the CQIP, it validates
the next speculative thread. For validation, the spawner
thread compares the values read by the spawnee thread from
the slice buffer to the ones produced by the spawner thread.

If the validation is correct, the spawner thread commits and
the validated speculative thread becomes non-speculative. If
the validation is wrong, the speculative thread and its
successors are squashed and the spawner thread continues
execution beyond the CQIP. If the spawner thread reaches
the validation point while the spawnee thread is still
executing the p-slice, then the spawnee thread is squashed
and the spawner thread continues execution beyond the
CQIP. In Figure 1(b) when the non-speculative thread
running on TU0 commits correctly, we see that the Region C
has executed in parallel with the parent thread and hence
improves the overall performance.

In the SpMT execution model, efficient handling of
interthread dependences is very crucial for performance. In
our terminology, we call those output values of a thread as
live-ins which are used as inputs for threads that are more
speculative than itself. In the example of Figure 1(b), the
value stored at address(x) is a live-in and instruction I1 is a
Live Instruction. Previous works have proposed other
schemes to deal with these dependences, e.g.
synchronization mechanisms [21], optimistic execution
assuming no dependence, hardware value prediction [15] and
speculative loop fission [27]. Synchronization can have a
significant overhead if dependences are frequent as is the
case for many irregular programs in the workloads presented
here. Hardware Value Predictors (HVP) [19] exploit context
information, e.g. value history, branch history, etc. to predict
values. For this reason their accuracy suffers significantly
when the immediate context information is missing as is the
case with large speculative threads. Although HVPs perform
relatively well for exploiting instruction level parallelism,
their performance is severely limited in the context of
speculative multithreading when threads can be large in size.

B. Pre-Computation Slice

A p-slice is a piece of code that is executed before a
speculative thread in order to generate the live-ins needed by
the thread. Next we describe how to construct a p-slice.

1) P-Slice Construction: The p-slice is built by the
compiler from the Program Dependence Graph (PDG) [9]
using profile information. There are two steps in constructing
the p-slice: (a) Identifying the thread live-ins, and (b)
Generating the p-slice. To identify the thread live-ins, the
PDG is traversed top-down starting at the CQIP and marking
all those register and memory values which are read without

Figure 1: P-slice based SpMT Execution Model

120

being written first. These values are the live-ins for the
speculative thread. This is done for a certain length, which is
same as the number of instructions that is expected to
execute in parallel with the previous thread. As this number
depends on the size of the p-slice, for simplicity we assume
to be same as the number of instructions between the SP and
CQIP. After the live-ins have been identified, the PDG is
traversed bottom-up starting at the instructions which
produce the live-ins directly. All the ancestor instructions are
recursively traversed following the data and control
dependence edges, as long as the instructions are below the
SP in the program order. All the instructions traversed in this
fashion comprise the p-slice. The process of p-slice
construction is explained in the example shown in Figure 2.
In Figure 2, instructions D4 and D6 (black nodes) produce
the live-ins for the next thread starting at CQIP. To build the
p-slice for the thread, beginning at CQIP, we include D4 and
D6 into the p-slice and follow recursively their control and
data dependences (denoted by the solid and dotted lines).
Every instruction traversed is included in the p-slice. The
instructions comprising the complete p-slice are denoted
using the grey and black nodes.

2) P-slice Advantages: The P-slices offer many
advantages over other proposals for handling inter-thread
dependences. Since a p-slice is a subset of instructions from
the original program, they compute the live-ins with a much
higher accuracy than HVPs. It is useful at this point to
compare p-slice model to speculative fission [27], where the
instructions which compute the dependencies are pre-

computed before spawning the speculative threads. In p-slice
model, the slice does not update the architectural state.
Hence, it is a pure overhead. On the other hand, in
speculative fission, the instructions computing the
dependencies are not re-computed and they directly update
the architectural state.

At the first sight, p-slices seem very promising. However,
we will see later, when we separate the set of instructions
that compute the dependencies from those which do not, the
left over thread size is usually too small to achieve any
significant performance gain. In the case of p-slice based
execution, since the slice is a speculative piece of code, we
can apply very aggressive set of optimizations to reduce its
size. In speculative fission, aggressive optimizations cannot
be applied to the dependence computation as correctness has
to be ensured. Using p-slices, in many cases we are able to
extract parallelism out of threads where speculative fission
does not provide any significant parallelism. The reason why
a large part of the thread appears in the slice, as we will
study more exhaustively in later sections, arises from the fact
that integer programs have very complex control flows.

 While p-slices are very promising, the performance
achieved using p-slices built from the first principles
(described in Section 2.2.1), which we call conservative or
full slices, tend to be very poor. Figure 3 shows the speedups
obtained from a SpMT execution on a 4-core CMP using
conservative slices, over a single thread execution. It also
shows the ideal case speedups using Amdahl’s law for the
same threads. Note that in some benchmarks (186.crafty and
cjpeg) we even observe a slowdown over single thread
execution. The ideal limit is less than 4 for some benchmarks
because, due to limitations of the spawning scheme and the
infrastructure (discussed later), we are unable to cover 100%
of the execution in the selected threads. Nevertheless,
Figure3 shows that on an average the performance of SpMT
obtained using conservative p-slices is 150% less than the
ideal limit. We identify and evaluate the different bottlenecks
causing this performance gap in Section 4 and propose some
techniques and future directions to address them.

III. EXPERIMENTAL FRAMEWORK

A. Thread Selection

In the spawning model assumed in our framework, we
only consider program loops as potential thread candidates.
We do this precisely because loops make up for most of the
dynamic execution in a program. Since different iterations of
the same loop mostly do similar work, they also tend to be
more balanced in their execution length. Further, loops are
well defined program structures and hence they simplify the
thread analysis and the architecture design. We assume an in-
order spawn model, which means the threads are spawned in
the program order. To maintain the in-order spawn, we
spawn the thread only at a single nesting level when the
loops are nested. We choose the nesting level according to a
cost benefit model based on the metric that we call Weight,
Wl for the loop l, which is defined as follows:

Wl = ThreadInstCountl – pSliceInstCountl

Figure 3: Speedup with Full Slices

Figure 2: Dependence Graph for a typical thread

121

Where ThreadInstCountl and pSliceInstCountl denote the

number of dynamic instructions executed in l and in the p-
slice of l respectively, across all iterations. Additionally, for
every loop we also define another metric Resultant Weight,
RWl which is defined as follows:

RWl = Wl – �Wlo - �Wli

Where �Wlo and �Wli refer to the sum of Weights of

all the outer and inner loops of l respectively. Once we have
the Resultant Weights of all the loops, we use the greedy
algorithm shown in Figure 4 to select the final loop
candidates. The algorithm in Figure 4 takes as input, the set
of all loops L(N), where N is the total number of loops in the
program and selects a subset. The inner loop in Figure 4
chooses the loop SL that has the maximum RWl and marks it
as selected. Once a loop is selected, all its nested outer and
inner loops including itself are marked as visited. If all the
loops in the set L[N] are marked visited, the program exits or
else it calls itself recursively. All the selected loop candidates
have the selected field set. Once we have the loops selected,
the sum of Weights of all the selected loops gives us an
estimate of the benefit of the chosen loops. We call this the
Program Weight:

WP = �Wl

We repeat this process several times with a different
starting loop (L[0]) and choose the set which maximizes the
WP . When the p-slices are optimized using the Slice
Specialization, discussed later, we re-evaluate the selection
procedure as different loops might have different amount of
reduction in the size of their p-slices. The selection
procedure aims to maximize the overall Program Weight. In
our current spawning scheme we do not consider loops
which include function recursivity. For some of the
benchmarks, this limitation reflects the low coverage of the
loops and hence the low Amdahl’s limit in Figure 3.

B. Evaluation Infrastructure

This section describes the infrastructure framework used
for this work. For the purpose of this study we modified an
SMTSIM [23], an alpha ISA based execution driven
simulator to run the SpMT execution model. Henceforth, we
call the simulator as SpMTSIM. SpMTSIM simulates a 4-
core CMP, where each core is a 4-issue out-of-order
processor. The architectural configuration of the processor is
described in Table 1. We also developed a trace analyzer tool
to build the Static Program Dependence Graph (PDG) of the
whole program. This PDG is the same that a compiler would
build using the profile data. From the information in the
PDG, it generates the p-slice for each of the loop using the
method described in Section 2.2.1. Using the algorithm
described in the previous section a set of loops is selected.
This set of loops with their slices is fed to SpMTSIM. We
selected a set of programs from the SPEC2000 benchmark
suite and Mediabench. The selected benchmarks are highly
control-intensive single threaded programs. Conventional
parallelizing compilers fail to discover any thread level

parallelism in these programs. In cjpeg, djpeg and epicdec
we simulate the complete program execution, whereas in
others we fast forward 1 billion instructions before
simulating 100 million instructions. The simulator executes
Alpha binaries compiled with DEC-C Compiler using full (-
O3) optimizations.

Num. of Cores 4 Fetch width/core 4
ROB Size 128 GShare Table Size 2K
IQueue Size 64 FQueue Size 64
CacheLine Size 64bytes Slice Buffer 1K
DCache Size 64 K DCache Assoc 2
DCache Hit Lat. 1 DCache Miss Lat. 8
ICache Size 64 K ICache Assoc 2
ICache Hit Lat. 1 ICache Miss Lat. 8
Shared L2 512 K L2 Miss Latency 18
Shared L3 4M L3 Miss Latency 92

Table 1: Processor Configuration

IV. CHARACTERIZATION OF THE SPMT MODEL

In this section we evaluate the aspects of the SpMT
architecture and spawning scheme which explains the low
performance of the p-slice based SpMT paradigm. These are
Memory, P-Slice Size and others that include Workload
Imbalance and Spawning Scheme

A. Memory

1) SpMT Memory Model:
The Speculative Multithreading Execution model has

very significant consequences for the memory architecture of
a CMP. In this work we model a memory hierarchy similar
to the Speculative Versioning Cache (SVC) design [11].
Each cache line has two pointers, pointing to the less and
more speculative versions of the data contained in the cache
line. The list consisting of cache-lines, connected by these
pointers is called the Version Ordering List (VOL). Each
cache line is also augmented with additional state bits called
Load (L) bits for read-after-write conflict detection. Conflicts
are detected at word boundaries and hence a cache line has

Figure 4: Selection Algorithm for Loop Nesting Level

122

Figure 6: P-Slice Instruction Categories

as many L bits as it has words. As in SVC, each cache line
also has as many Dirty (D) bits as number of words. When a
thread reads a cache line without updating it, the L bit for the
touched words are set. While, on a write to a cache line, the
D bits of the touched words are set. Also, write-update
message is sent to the successor threads. When a thread
snoops a write-update message from a predecessor, it checks
if it has a cache line corresponding to the VOL of the
updated cache line. If it has, then it checks if the L bits for
those words are set. If they are set, it implies the thread has
read a value which has been later updated by a predecessor
thread, implying a read-after-write dependence violation. In
this case the violating thread and its successors are squashed.

2) Effect of SpMT Model on Memory Behavior:
When a single thread program transitions from a single

threaded execution to a SpMT execution model it loses some
of the temporal locality between memory accesses to the
local L1 cache. Going back to Figure1(a), if the Store
instruction I1 and Load instruction I2 are close enough in
their execution so that the cache line containing address(x) is
not replaced between their execution, then I1 and I2 will
cause a miss and hit in L1 respectively. In the SpMT model
as in Figure 1(b), since both instructions are executed in
different cores, both of them will lead to L1 misses.

The loss of temporal locality is further exacerbated by the
thread Commit and Squash events, unique to SpMT
execution model. In a naive SpMT design, for every thread
commit, the dirty cache lines are written to the next level
cache, after which all the cache lines are invalidated.
Similarly on a thread squash all the cache lines are
invalidated as well. This gives rise to the problem of Cold
Caches. This means that when a new thread is spawned, it
starts with an empty cache and suffers lots of cache misses.
To deal with this problem in the SVC design, additional state
bits were added to the cache lines, namely the Commit(C),
the Architectural (A) and the sTale (T) bits, one per cache
line. When a thread commits, it sets the C bit in all the valid
cache lines. This avoids the need to write the dirty lines to
the next level cache. When a thread is squashed, the cache
might contain data which is same as the non-speculative
version of the data e.g. the squashed thread might have read
the value from the L2 cache. On squash, the A bit is set in all
the cache lines containing non-speculative data. This is done
to indicate that the cache line has valid architectural version
of the data. When a new thread is spawned the data in these
lines are valid. The T bit is used to mark whether it is safe to
use a committed line or not, since it might have become stale
because a new version of the data has been produced. More
details of this model are explained in the SVC design [11].

Figure 5 shows the cache hit ratios for the speculative
threads and their p-slices for the memory model described in
Section 4.1.1 (including the A and T bits), and the
corresponding single thread execution. The cache hit-ratio
for the p-slices is much lower than the speculative threads as
the p-slice prefetches some of the cache lines which are
needed by the speculative thread. It is important to note that
the p-slice consists of data-flow chains of dependent
instructions and hence there is very little ILP available in it.
Since, the time the p-slice takes to execute determines the
overall performance, it is important to explore mechanisms
to speedup its execution. As Figure 5 shows, the hit ratio for
the speculative threads and the p-slices is significantly lower
than that of the single thread. This is primarily due to two
reasons: (1) Cold caches (2) Loss of locality (both temporal
and spatial) in speculative threads. Cold caches refer to the
problem of empty caches with which speculative threads
begin execution. Locality loss happens when the data
accessed by successive threads access say the same cache
line. In a single thread execution, such an access would cause
a single cache miss at the first access, whereas in speculative
multithreading, it will lead to cache misses in all the threads.

B. P-Slice Size

A p-slice for a live instruction is built by a backward
traversal of the Program Dependence Graph (PDG) of the
static program starting from the live instruction up to the
Spawning Point instruction as explained in section 2.2.1.

Figure 6 shows the PDG of a typical p-slice. The
instructions in a p-slice can be categorized into two types: (a)
those which actually participate in the actual flow of data
leading to the live instruction, and (b) those which help in
determining the control flow. Note that these two categories
are not necessarily mutually exclusive. However, for ease of
understanding we include the instructions which are common
to both categories as only part of the former type. In the
Figure 6, the nodes colored in black actually compute the
live-ins needed by the thread. The ones in grey are used for
computing the control flow within the slice. In an ideal
scenario, where the control flow of the program can be
correctly determined, the instructions needed for control flow
computation can be safely removed without affecting the
correctness of the slice outcome. We refer to the slice
without the control-flow instructions as the Pure Data Slice.

Figure 5: Cache-Hit Ratios with SVC Cache

123

Following the same terminology, the first slice that contains
all the necessary instructions (data and control) is referred to
as the Full Slice. For our purposes we define Slice Quality
(SlcQual) as the p-slice length relative to the thread length,
where length can be defined in terms of number of
instructions or number of execution cycles. Figure 7 shows
the Slice Quality in terms of instruction count for the selected
programs. Each bar represents the size of the full slice
relative to the size of the thread. Also each full slice size is
broken into the fraction which consists of the data slice and
those which are needed only to compute the control flow. As
can be seen in Figure 7 the fraction of slice instructions
which are needed to compute only the control flow is very
significant. We propose a technique called Slice
Specialization to exploit this characteristic of the slices in
order to reduce the size of the slice. We discuss the technique
in more detail in the next section.

C. Other Factors

Figure 8 shows the speedup over single thread of the
SpMT execution with full slices and the SVC model
(leftmost bar) and the Amdahl’s limit (rightmost bar). The
bar in the middle shows the performance potential assuming
no dependences between threads and perfect memory for
speculative threads. As we can see there is a significant
performance gap between the obtained with full slices and
the potential benefit. Memory and how dependences are
handled can save almost half of the way. The other half of
this loss can be attributed to other factors such Workload
Imbalance and Spawning Scheme among others.

In SpMT execution, threads executing on different cores
take different amount of execution time. When this happens,
a speculative thread might reach its CQIP before its parent
thread has validated it. Hence, the speculative thread has to
wait till its parent validates it.

In several benchmarks, free cycles constitute a large
fraction of the total cycles, i.e. the Thread Units are not
running any thread at all. This is surprising given that the
selected loops have a high coverage for some benchmarks,
e.g. the loops in epicdec account for 99% of the total
dynamic instructions. This can be attributed to the loops
having a low trip count (number of iterations per invocation).
Further, during the time when the sequential portion of the
program is being executed by the non-speculative Thread
Unit, the other cores remain idle. This accounts for a
substantial fraction of the free cycles in some benchmarks
where our loop candidates have a low coverage due to the
limitations of our spawning scheme. Also, our spawning

scheme does not handle loops calling themselves through
recursive routines and those which are non-natural (loops
with multiple entries) [17].

To address the problem of free cycles due to low trip
count loops, the simple spawning scheme that we have
employed needs modification. For loops where the iteration
size is significant but have low trip count, loops could be
chunked [18] into smaller threads, instead of spawning
threads at loop boundaries. However, to do this automatically
it needs more sophisticated compiler analysis. We intend to
explore the techniques to solve workload imbalance and
improving the spawning scheme in our future work.

V. SELECTIVE REPLICATION

Previously proposed techniques to improve the memory
locality in SpMT architectures can be classified into two
categories: the ones that propose additional state bits in the
cache lines to identify data that is retained across thread
executions [11]; and those which attempt to snoop the bus
for data used by other threads and replicate them in special
local buffers [13].

We propose a new technique called Selective Replication
(SR) that is built over the SVC architecture. It belongs to the
latter category as mentioned above. Unlike [13], instead of
replicating every data available on the bus, the compiler is
responsible for selectively identifying the memory operations
for which replication is done. Using profile information, the
compiler inserts a hint in all those static memory instructions
whose data, if replicated is likely to benefit the memory
locality across the threads. We call these instructions as
load_all and store_all instructions or as mem_all
collectively.

If the execution of a load_all instruction causes a L1
miss, the cache-request encodes the information that the
requesting instruction is a load_all. When the requested data
is available on the bus, the active as well as the idle cores
snoop the bus and replicate the cache line in their respective
local L1-caches. In the case of store_all instructions causing
a L1 miss, only the threads which are more speculative than
the requesting thread replicate the cache line. If the line to be
replaced, in order to store the replicated data is dirty, then no
replication is done. In the case of a L1 hit, no replication is
done as well. Since, replication is only done when lines are
brought from L2 and we use snoop-based bus architecture,
selective replication does not increase the bus traffic or the
bus contention.

Figure 9 shows the overall Cache Hit Ratios for different

Figure 8: Speedups assuming Perfect Memory and No
Dependences Figure 7: Quality and Composition of Full P-Slices

124

cache types. The left bar shows the hit ratio for the baseline
SVC cache. The middle bar shows the hit ratios with our SR
scheme and the rightmost bar shows the hit ratios with
perfect replication, (i.e. using an unbounded sized structure
for replicate everything). We see that with our SR scheme
the hit ratio improves by an average of 4.1%. Figure 10
shows the speedups of SpMT using SVC, SR and PR
memory types over single thread execution, using an oracle
branch predictor (to remove the effect of branch prediction)
and full slices. SR outperforms by an average of 6% the SVC
model while a perfect replication would help improve the
performance by an average of 7%. Improvement in memory
affects the performance of speculative thread more than the
p-slice, since the thread has higher ILP than the p-slice. This
increases the ratio of execution time of the p-slice vs. the
thread. In the case that the non-speculative thread reaches the
CQIP while the spawnee thread is still executing the p-slice,
the spawnee thread is squashed. This increase in the number
of squash explains the fall in performance in epicdec in spite
of the increase in cache-hits due to replication.

Benchmark Static Dynamic
164.gzip 29.96 10.51
176.gcc 24.58 3.08
183.equake 17.38 0.35
186.crafty 34.8 16.52
256.bzip2 45.37 9.84
300.twolf 34.82 15.05
cjpeg 22.09 4.69
djpeg 16.09 2.75
epicdec 19.33 4.88

Table 2: Percentage of Mem Insts converted to mem_all

In Table 2, we show the percentage of memory

instructions which are converted into load_all and store_all
instructions. The second column shows the percentage of all

static memory instructions which are load all or store all i.e.
in which the extra hint bit is encoded. The third column
shows the corresponding percentage of all dynamic memory
instructions which act as load_all or store_all i.e. those
which cause replication

VI. SLICE SPECIALIZATION

We plan to reduce the slice size by removing the
instructions that compute part of the control flow which is
easily predictable by hardware control flow predictors like
branch predictors. A p-slice is a speculative piece of code, so
if the control flow prediction is incorrect, the thread can be
squashed without affecting correctness. We propose Slice
Specialization as a technique to create specialized slices for
the different possible control flows inside the slice. We
define a branch as prunable when its predictability is above a
certain threshold, determined using profiling. Slice
Specialization aims to remove these branches and the
instructions needed to compute them. By predicting the
prunable branches we split the slice along the taken and not-
taken paths. The slices obtained in this manner are called
Specialized Slices. Consequently, for every thread there are
multiple specialized slices instead of one full slice. At run
time using a hardware control flow predictor, we select the
specialized slice to fetch the slice instructions from.

By predicting the control flow taken in the slice, not only
the instructions needed for control flow computation can be
removed but also those live instructions and their slices
which do not appear in the selected path. In preparing
specialized slices, there might be multiple prunable
branches, which form a binary-tree like structure with the
first prunable branch of the thread at its root. In our
terminology we refer the specialized slices as Pruned Slices.
In this work we only take into account those slice branches
for pruning which are executed only once per execution of
the slice i.e. branches which are part of inner loops or
recursive routines are not included. Techniques to prune
multiple dynamic instances of the same static branch will be
explored in our future work

Figure 11 illustrates the Slice Specialization technique
used over the slice that was earlier shown in Figure 6. Figure

Figure 9: Cache Hit Ratios with various Replication
Types

Figure 10: Speedups with various Replication
Types

Figure 11: (a) The Full Slice extracted from
Thread (b) Specialized Slice when B1 is predicted
taken (c) Specialized Slice when B1 is predicted not-
taken

125

11(a) shows the full slice. Assume that B1 is a prunable
branch; we can safely remove B1 and all those instructions
which are only used for its computation. This gives rise to
two specialized slices as shown in Figure 11 (b) and (c). In
the original full slice depending on whether B1 is taken or
not-taken, we need to execute 9 and 13 instructions
respectively. On the other hand, if we execute the specialized
slices, we execute 6 and 10 instructions respectively.

A. Slice Predictor

As a consequence of Slice Specialization, when a new
thread is spawned, a hardware slice predictor predicts the
most likely to be executed slice from a pool of pruned slices.
One possible way to implement the Slice Predictor is by
predicting the set of prunable branches in succession. The
outcomes of these branches are used to generate a bitvector
(Uid) which uniquely identifies the specialized slice. The
Uid is then used to generate an address in memory where the
corresponding specialized slice is stored. Unlike for the
thread, for which we use the gshare branch predictor, we use
a local Bi-modal branch predictor for predicting the slice.
The reason for this selection is that the gshare predictor
works by exploiting the correlation between consecutive
branches preceding the branch, but the branches which are
predicted by the Slice Predictor are not consecutive and
hence not necessarily strongly correlated. Figure 12 shows
that a 2K entry Bi-modal predictor outperforms a gshare
predictor with the same size by an average of almost 60%
when it is used to predict the pruned slices. We assume a
cost of one cycle per branch predicted.

The spawner thread records the final outcome of the
predictable branches while executing the thread into a new
bitvector. This is communicated to the spawnee thread at the
validation time for updating the branch-predictor table used
by the p-slice predictor. When the spawner thread commits,
it checks those values that have been read from the Slice
Buffer. If the values read were correct, the spawner commits
or else it squashes the spawnee thread and its successors..

B. Results

In this section we present the evaluation of our slice
specialization technique. Using branch profiling we identify
the prunable branches. This is done by selecting all those
branches whose hit ratio is above a certain threshold. For the
experiments in this work, a threshold of 80% was enough to
predict the slices correctly. As for thread candidates, in our
current spawning scheme we are unable to handle non-
natural loops and those which execute themselves
recursively. This limits the coverage we are able to attain for
some of the benchmarks (as evident from the low Amdahl’s
limit in Figure 3 compared to the ideal speedup value of 4).
Nevertheless, the benefits obtained in the part of the program
we are able to parallelize shows the effectiveness of our
scheme. Extending our scheme to work with recursive loops
will be part of our future work.

Figure 13 shows the speedups obtained using different
kinds of slices, namely, the Full Slice, Pruned Slice and Data
Slice over a single threaded execution, using SVC Cache. On
an average, the Slice Specialization technique achieves 18%

performance improvement over single thread execution, with
some benchmarks benefiting up to 40%. Compared to
statically build full slices, our scheme achieves an average of
9% performance gain with some benchmarks benefiting up
to 12% (epicdec). In 186.crafty we suffer a slowdown
because less than 25% of the total execution is in our
selected loops (since our spawn model does not handle
recursion and non-natural loops). Further the selected loops
in 186.crafty have a very low trip-count, deteriorating any
improvement that could be achieved by SpMT execution.
Even in 186.crafty we see an improvement by 10% in the
speedup of the pruned slice over the full slice execution. The
speedups for the Data Slice show the ideal performance that
could be achieved if all the control flow computation in the
p-slice could be removed. In our future work we plan to
extend Slice Specialization to work for those predictable
branches of the p-slice which appear in inner loops and
recursive routines. This would further reduce the gap
between our current performance benefits and the
performance limits using Data slice.

We compare the effectiveness of our technique with
Mitosis [10] which is the state of the art scheme for
speculative multithreading using p-slices. In Mitosis every
dynamic instance of a static thread executes the same static
slice which is obtained by pruning the highly biased
branches from the conservative (full) slice. Unlike Mitosis,
our scheme is capable of pruning predictable branches which
already include the biased branches as they are always highly
predictable. It is important to note that though in Mitosis the
thread selection is not limited to loop structures, the Slice
Specialization technique is orthogonal to the selection
scheme. The technique can be employed for any static thread

Figure 12: Percentage of Specialized Slices Predicted
Correctly

Figure 13: Speedups for Different Slice Types

126

selection scheme.
Slice generated from Mitosis scheme performs well only

when the slice has a significant number of highly biased
branches and the single pruned static slice obtained by
pruning those branches covers a high percentage of the total
threads. For every thread, the single most used pruned slice
(sliceh) is a close approximation to the corresponding Mitosis
slice. Figure 14 shows the number of distinct specialized
slices needed to correctly generate the live-ins for all the
threads. We note that for some of the very control intensive
benchmarks like 176.gcc and 186.crafty the sliceh is correct
only for 60% and 53% of the total threads respectively. Our
scheme also adapts very well when the branches are not only
completely biased but highly predictable. Hence, it generates
smaller slices even when the program is very control
intensive. We observe that with 5 pruned slices on average
we are able to cover more than 90% of the threads across all
benchmarks.

Figure 15 shows the speedup gains of Slice
Specialization over Mitosis, assuming a SVC based cache
and a bimodal slice predictor. From Figure 15 we expect
significant improvements in speedup using Slice
Specialization in 176.gcc, 186.crafty and epicdec, since these
benchmarks have low coverage using sliceh. For 186.crafty,
164.gzip and epicdec the performance improvements are up
to 12%. By contrast, we do not see significant improvement
for 176.gcc (2.19%), because even after pruning, the p-slices
are significantly large. Hence, the threads get squashed as the
spawner thread catches up with the spawnee thread while it
is still executing the p-slice. This fact is observed in Figure 7
where the pure data slice for 176.gcc is still about 55% of the
thread size. Finally, Figure 16 shows the speedups of our
combined proposal of Slice Specialization and Selective
Replication over full slices using SVC cache. We see that
our combined techniques improve the performance by an
average of 15% over full slices using SVC, and an average
of 24% over single thread execution.

VII. RELATED WORK

Speculative Multithreading has been the subject of
research for many years and several architecture and
compiler techniques have been proposed to support this
execution paradigm. Multiscalar [20] was one of the earliest
and pioneering proposals. Speculative threads were extracted
statically by analyzing the Control Flow Graph and taking
care of the dependencies with the help of the compiler [24].

Many of the works have specifically focused on

extracting the speculative threads based on various program
structures like loops [12], subroutines [3] and loop and
subroutine continuations [5][8][22][25]. These proposed
techniques differ in the method they employ to handle thread
dependencies. Gopal et al. [11] use the snoop based cache
coherence protocol to communicate memory values and to
detect memory violations. In [16] the authors have proposed
to walk through the Control Flow Graph (CFG) of the
program and spawn threads at points which are very likely
control independent. To deal with the dependencies, they
propose a hardware value predictor [15].

Program slices have been used earlier in the context of
helper threads [4][6][7][28]. Helper threads are built in
similar fashion to p-slices for speculative threads but they
differ in their purpose. Helper threads are used to prefetch
long latency load data or predict hard to predict branches.
Due to the potentially higher impact of a misspeculation in
case of speculative threads, the p-slices are built to deliver
higher accuracy than helper threads.

Agarwal et al [1] make use of postdominators [17] in the
program CFG to spawn speculative threads Program
Demultiplexing(PD) [3] is a recent proposal that employs
program slices (handlers) to predict some of the input values
and the control flow between the spawning point and the
spawned thread, while waiting for the rest of the inputs to be
produced, at which point the thread is spawned. Mitosis [10]
on the other hand uses program slice for producing all the
input values and the control flow. As we saw in our
evaluation that the control flow computation comprises a
major fraction of the slice. Slices used in PD would be
prohibitably large when they intend to exploit distant
parallelism. Further, since threads used in PD are subroutines
they also tend to be inherently load imbalanced than loops.
Mitosis proposal is similar to our proposal but differs in the
way the slices are generated and executed.

Figure 14: Number of Specialized Slices needed vs
Fraction of Total Threads

Figure 15: Speedups for Mitosis vs Slice Specialization
assuming SVC Cache, over Single-Thread.

Figure 16: Speedups for Full Slice with SVC Cache vs
Pruned Slice with SR Cache, over Single-Thread

127

VIII. CONCLUSIONS

We have identified the main bottlenecks of the p-slice
based SpMT architecture, such as Cold Caches, loss of
locality, p-slice size, workload imbalance, and spawning
scheme limitations.In this paper we proposed two techniques
to alleviate the negative impact of two most important
bottlenecks i.e. loss of memory locality and large p-slice
sizes. Selective Replication improves the memory locality
using simple profiling by the compiler and achieves
performance close to that of a perfect replication. In addition,
we proposed Slice Specialization reduces the overhead of p-
slices used by the architecture, by selectively removing
predictable branches from the p-slice and the instructions
which are needed to compute these branches. This technique
generates different slices for all the possible paths
determined by the predictable branches. Using the
specialized slices and selective replication, we notice a 25%
average improvement in performance over a single thread
execution. The benefits over conservative slices using the
conventional SVC cache are on average 15%. Also, the slice
specialization technique gives a performance benefit of 4%
on average over static branch pruning based on biased
branches. Besides, the various other bottlenecks discussed in
this paper point to possible directions of future research on
improving performance of speculative architectures

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministry of
Education and Sc. under grants TIN2007-61763 and
TIN2004-03072 &Catalan Govt. under grant 2009SGR1250.

REFERENCES
[1] M. Agarwal, K. Malik, K. Woley, S. Stone and M. Frank, “Exploiting

Postdominance for Speculative Parallelization”, in Procs. Of the Int.
Symp. on High-Performance Computing Architecture, pp. 295-205,
2007.

[2] H. Akkary, M.A. Driscoll, “A Dynamic Multithreading Processor”, in
Proc. of the 31st Int. Symp. on Microarchitecture, 1998.

[3] S. Balakrishnan, G. Sohi, “Program Demultiplexing: Data-flow based
Speculative Parallelization of Methods in Sequential Programs”,
Proc. of International Symposium on Computer Architecture, p. 302-
313, 2006.

[4] R.S. Chappel, J. Stark, S.P. Kim, S.K. Reinhardt and Y.N. Patt,
“Simultaneous Subordinate Microthreading (SSMT)”, in Proc. Of the
26th Int. Symp. On Computer Architecture, pp. 186-195, 1999.

[5] M. Cintra, J.F. Martinez and J. Torrellas, “Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Systems”, in
Proc. of the 27th Int. Symp. on Computer Architecture, 2000.

[6] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y-F. Lee, D. Lavery
and J.P. Shen, ”Speculative Precomputation: Long Range Prefetching
of Delinquent Loads”, in Proc. of the 28th Int. Symp. on Computer
Architecture, 2001.

[7] E. Courses and T. Surveys, “Tolerating Memory Latency through
Software-controlled Pre-execution in Simultaneous Multithreading
Processors”, in Procs. of the 28th Int. Symp. on Computer
Architecture, 2001.

[8] P. Dubey et al. “Single-program speculative multithreading (SPSM)
architecture: compiler-assisted fine-grained multithreading”. In Procs.
of the Int. Conf. on Parallel Architectures and Compilation
Techniques, 1995

[9] J. Ferrante, K. Ottenstein and J. Warren, “The program dependence
graph and its use in optimization”, ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3), 1987.

[10] C. García, C. Madriles, J. Sánchez, P. Marcuello, A. González, D.
Tullsen, “Mitosis Compiler: An Infrastructure for Speculative
Threading Based on Pre-Computation Slices”, Procs. of Conf. on
Programming Language Design and Implementation, 2005.

[11] S. Gopal, T. Vijaykumar, J. Smith and G. Sohi, “Speculative
Versioning Cache”, In 4th Int. Symp. on, High-Performance
Computing Architecture 1998.

[12] W. Liu et al., ”POSH: a TLS Compiler that exploits program
structure”, in 11th Symp. on Principles and Practice of Parallel
Programming, 2006.

[13] C. Madriles et al., “Mitosis: Speculative Multithreaded Processor
based on Pre-Computation Slices” In IEEE Transactions on Parallel
Distributed Systems, 2008.

[14] P. Marcuello and A. González, “Clustered Speculative Multithreaded
Processors. In Procs. of the 13th Int. Conf. on Supercomputing, 1999.

[15] P. Marcuello, J. Tubella and A. González, “Value Prediction for
Speculative Multithreaded Architectures”, In Procs. of the Int. Symp.
On Microarchitecture, 1999.

[16] P. Marcuello, A. González, “Thread-Spawning Schemes for
Speculative Multithreaded Architectures”, Procs. of Symp. on High
Performance Computer Architectures, 2002

[17] S. Muchnick. ”Advanced Compiler Design and Implementation”,
Morgan Kaufmann, 1997.

[18] M. Prabhu, K. Olukotun, “Exposing Speculative Thread Parallelism
in SPEC2000”, Proc. of Symposium on Principles and Practice of
Parallel Programming, p. 142-152, 2005

[19] Y. Sazeides and J. Smith, “Implementations of Context Based Value
Predictors” Univ. of Wisconsin Technical Report ECE97-8, 1997.

[20] G. Sohi, S. Breach and T. Vijaykumar, “Multiscalar processors”, in
25th Int. Symp. on Computer Architecture ,1998.

[21] J. Steffan, C. Colohan, A. Zhai and T. Mowry, “Improving Value
Communication for Thread-Level Speculation”, in Proc. of the 8th
Int. Symp. on High Performance Computer Architecture, 1998

[22] J.Y. Tsai and P-C. Yew, “The Superthreaded Architecture: Thread
Pipelining with Run-Time Data Dependence Checking and Control
Speculation”, in Proc. of the Int. Conf. on Parallel Architectures and
Compilation Techniques, 1995

[23] D. Tullsen, “Simulation and Modeling of a simultaneous
multithreading processor”, in Procs. of the 22nd Int. Conference for
the Resource Management Performance Evaluation of Enterprise
Computing Systems, CMG. Part 2(of 2), 1996.

[24] T. Vijaykumar, “Compiling for the Multiscalar Architecture”, PhD
thesis, University Of Wisconsin, 1998.

[25] F. Warg and P. Stenstrom, “Limits on Speculative Module-Level
Parallelism in Imperative and Object-Oriented Programs on CMP
Platforms”, in Procs. of the 10th Int. Conference on Parallel
Architectures and Compilation Techniques, 2001.

[26] A. Zhai, C. Colohan, J. Steffan, and T. Mowry, “Compiler
optimization of memory-resident value communication between
speculative threads”, in Procs. of the Int. Symp. On Code Generation
and Optimization, 2004.

[27] H. Zhong, M. Mehrara, S. A. Lieberman, and S. A. Mahlke,
“Uncovering Hidden Loop Level Parallelism in Sequential
Applications”, in Procs of the 14th Int. Symp. on High-Performance
Computing Architecture, 2008.

[28] C.B. Zilles and G.S. Sohi, “Execution-Based Prediction Using
Speculative Slices”, in Proc. of the 28th Int. Symp. on Computer
Architecture, 2001.

[29] C.B. Zilles and G.S. Sohi, “Master/Slave Speculative Parallelization”,
in Proc. of the 35th Int. Symp. on Microarchitecture, 2002.

128

