
Reducing Soft Errors through
Operand Width Aware Policies

Oguz Ergin, Osman S. Unsal, Member, IEEE, Xavier Vera, and Antonio González

Abstract—Soft errors are an important challenge in contemporary microprocessors. Particle hits on the components of a processor

are expected to create an increasing number of transient errors with each new microprocessor generation. In this paper, we propose

simple mechanisms that effectively reduce the vulnerability to soft errors in a processor. Our designs are generally motivated by the

fact that many of the produced and consumed values in the processors are narrow and their upper order bits are meaningless. Soft

errors caused by any particle strike to these higher order bits can be avoided by simply identifying these narrow values. Alternatively,

soft errors can be detected or corrected on the narrow values by replicating the vulnerable portion of the value inside the storage space

provided for the upper order bits of these operands. As a faster but less fault tolerant alternative to ECC and parity, we offer a variety of

schemes that make use of narrow values and analyze their efficiency in reducing soft error vulnerability of different data-holding

components of a processor. On average, techniques that make use of the narrowness of the values can provide 49 percent error

detection, 45 percent error correction, or 27 percent error avoidance coverage for single bit upsets in the first level data cache across

all Spec2K. In other structures such as the immediate field of the issue queue, an average error detection rate of 64 percent is

achieved.

Index Terms—Memory structures-reliability, testing and fault tolerance, soft errors, narrow values.

Ç

1 INTRODUCTION

ALPHA particles released by radioactive impurities and
neutrons coming from outer space are known to cause

transient errors in contemporary microprocessors [5], [33].
“Single bit upsets” may arise when these particles hit
intermediate capacitive nodes of processor storage compo-
nents such as SRAM bitcells and latches. Since these
transient errors occur due to an incorrect charge or
discharge of an intermediate capacitive node, they do not
cause permanent failure in the hardware and, hence, are
termed “soft errors” in the literature.

There are four major factors that affect soft error rate
(SER) of a processor: amount of charge that hits the storage
element, capacitance value of the node that is hit, die area,
and supply voltage. While the charge carried by a high-
energy particle tends to be constant, node capacitance and
supply voltage decrease for each new manufacturing
process, making the circuit components of a processor
more prone to soft errors [30]. On the other hand, for a
given microprocessor design, scaling manufacturing tech-
nology reduces the area of the processor and, consequently,
reduces the probability of a high-energy particle to hit the
die. As a matter of fact, SER of a processor tends to be
constant with technology and voltage scaling if the design

of a processor does not change. However, as new micro-
processor designs make use of additional/bigger hardware
structures and are likely to occupy more area [32], SER of a
microprocessor is expected to increase and become a major
challenge in the microprocessor design.

1.1 Definitions and Motivations

Architectural vulnerability factor (AVF) of a processor
component is defined as the probability that a particle
strike at any place in the component will result in an
erroneous behavior in the executed program. For example,
if a particle strike to an unallocated entry in a component
does not cause an error in the processor, then the AVF of an
unallocated entry is 0 percent.

Mukherjee et al. [30] defined architecturally correct
execution (ACE) bits as the bits that are vulnerable to
particle strikes. A particle hit on these ACE bits results in a
visible error in the final program outcome. Similarly, a bit
that does not hold any required information for ACE and
hence is not vulnerable to soft errors is defined as an
unACE bit. AVF of a component is equal to the percentage
of ACE bits inside the corresponding component. Hence,
AVF of a component can be calculated with the following
equation:

AVF ¼ Average number of ACE bits resident in a hardware structure in a cycle
Total number of bits in the hardware structure :

Our design is generally motivated by the fact that many
of the produced and consumed values in a processor are
narrow where a narrow value is defined as a value that
holds consecutive zeros or ones in its upper order bits [7],
[12], [26], [27]. These values can be represented in a simple
compressed manner by just ignoring their upper order bits.
Soft errors caused by any particle strike to these unneces-
sarily stored higher order bits can be avoided by simply
identifying these narrow operands and converting their
upper order bits from ACE to unACE. In this paper, we
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exploit narrow values to establish a fault tolerance scheme
that has lower latency and lower error coverage when
compared to well-known Error Correcting Code (ECC) and
parity schemes.

1.2 Outline

This paper proposes several techniques that leverage
narrow operands to improve soft error tolerance of
processors’ data-holding components. With our first tech-
nique, by identifying narrow operands and zero partitions
(consecutive zeros), some portion of the narrow data
becomes invulnerable to particle strikes and the total
number of soft errors that affect the final program output
is reduced. As a second scheme, we improve our first
technique to detect and correct the particle hits that occur
on the unprotected part of the narrow value by replicating
the significant part of the narrow value into the storage
space devoted to store the upper order bits. We further
improve our technique by using storage space allocated for
data partitions that hold zero values as a repository for
replicated data, and later, we use these replicated copies of
the data to detect particle hits on the stored value.

The rest of this paper is organized as follows: We present
our techniques for using narrow-width operands for
improving soft error tolerance in Section 2. A soft error
avoidance and correction scheme for narrow operands
based on value replication is proposed in Section 3. Our
simulation methodology is described in Section 4 followed
by our experimental results. We review previous work in
Section 5 and summarize some concluding remarks in
Section 6.

2 IDENTIFYING NARROW VALUES FOR IMPROVING

SOFT ERROR TOLERANCE

Many researchers observed that a large percentage of the
generated and consumed values in a processor are narrow.
The narrowness of the values was previously used for

performance improvement [7], [12], [18], [27], energy
efficiency [8], [11], [20], [45], and complexity reduction [40]
in superscalar microprocessors. In this paper, we propose a
new way of exploiting narrow values by identifying them
throughout the processor for reducing soft error vulner-
ability and replicating them inside the conventional storage
space for error detection and correction.

In order to make use of the width variations in produced
and consumed values and identify a stored narrow
operand, our proposed architecture uses an additional bit
called Narrow Value Identifier Bit (NVIB) for each data
storage entry in the value holding components. This bit is
set whenever a narrow value is written into the storage
space. By using this bit, it is possible to identify the
unneeded portion of the stored value and these bits, which
are identified as “unneeded,” are converted to unACE bits.
Consequently, correctness of the stored narrow value is not
endangered by a bit flip caused by a particle strike if this
particle strike occurs at the upper order bits. When a value
is read out from the storage element, if the narrow value
indicator bit is set, upper order bits are not read and the
stored narrow value is sign extended to data path width
before it is ready to be used. This sign extension can be
accomplished by using a simple multiplexer.

Narrow values are identified by leading zero (or leading
one) detectors just before writing the value to the specific
data component. Fig. 1 shows the circuit diagrams for 8-bit
leading zero and one detectors, respectively, which employ
dynamic logic for faster operation and larger fan in.

Fig. 2 shows an example of the narrow value identifica-
tion process where a narrow value is defined as a value that
can be represented with only 8 bits. The NVIB is checked
whenever a value is read from the data storage. If NVIB is
set, Byte-0 is simply sign extended to 32 bits and any
particle strikes to Bytes-1, -2, and -3 become ineffective.

There are obvious trade-offs in defining the length of a
narrow operand. If a narrow operand is defined to have too
few bits, then the percentage of narrow operands decreases,
but the benefits of identifying the narrow values for
vulnerability reduction increases since more bits are
transformed into unACE bits. If a narrow operand is
defined to include large number of bits, the percentage of
narrow values increases but the number of protected bits in
each narrow value decreases and hence the benefits also
decrease. Therefore, there is an optimum point for defining
the number of bits in a narrow operand where the
percentage of narrow operands and the number of unACE
bits are optimized for best vulnerability reduction. Choice
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Fig. 1. Consecutive (a) zero and (b) one detection circuits.

Fig. 2. Example of narrow value identification.
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of number of bits to define the size of narrow values
depends on the applications that are run.

It should be noted that the NVIB is itself unACE when it
is indicating that a stored value is narrow. If this bit is
flipped when it is indicating a narrow operand, the value is
not endangered but the narrow value protection is nullified
and the contents of the upper order bits become vulnerable
to particle attacks. On the other hand, NVIB is an ACE bit
when the storage space is holding a wide value since the
contents of the upper order bits will be lost if a particle
strike occurs on it. Therefore, we call NVIB a “half-ACE”
bit, meaning that its vulnerability status depends on the
contents of the value stored in the storage area.

Although NVIB is half-ACE, it is still partially vulnerable
to particle strikes and, hence, increases the vulnerability of
the structure it is protecting. Therefore, the vulnerability
reduction achieved by adding these bits must justify the
slight increase in soft error vulnerability.

2.1 Zero Partition Identification for Soft Error

A variation of narrow value identification can be used to
increase the chances of reducing soft error vulnerability in a
processor by identifying zero partitions instead of identify-
ing the whole narrow values. Identifying zero bytes was
first proposed by Villa et al. [45] for reducing data cache
energy by avoiding the reading and writing of zero bytes.
Instead of avoiding the read and write of zero bytes for
energy efficiency, we propose identifying such zero parti-
tions for soft error vulnerability reduction.

Fig. 3 shows an example of zero partition encoding
process where a partition is defined to be a byte. By
inserting 1 bit per byte, each all-zero-containing-byte can be
identified and be immunized to particle strikes. When the
zero byte identifier bit is found out to be set while reading
the data, the value is not read and instead a zero byte is
provided.

As it is the case with narrow value identification bits,
zero partition identifier bits are also “half-ACE” since a
particle strike on these bits does not jeopardize correct
program execution when they indicate a zero byte. There-
fore, they also increase the soft error vulnerability of the
component where they are added if they are not protected.

3 REPLICATING NARROW VALUES FOR SOFT

ERROR DETECTION AND RECOVERY

Even though narrow value identification decreases the
vulnerability in the data-holding components of a proces-
sor, errors can still occur on the unprotected part of the
narrow operand. Narrow value replication can be used for
soft error detection and recovery since multiple copies of a

narrow value can fit into the allocated storage space. In case
of a particle hit on the entry, this particle hit can be detected
by comparing stored copies with each other. Similarly, soft
errors can be corrected by recovering the correct value from
one of the uncorrupted copies without signaling an error or
creating an exception if there are enough number of correct
replicated copies.

3.1 Narrow Value Replication for Soft Error
Detection and Correction

In the implementation of narrow value replication, our
previously proposed NVIB is replaced with a Narrow Value
Replicated Bit (NVRB), which indicates that the stored value
is narrow and the narrow value is replicated inside the
storage space. Upon obtaining a value from the storage
element, if NVRB of the value is set, replicated values are
compared with each other for detecting or correcting a
potential error. By using this bit, it is possible to detect
multiple particle hits to the value or correct at least a single
particle hit and recover from the error, provided that there
are enough copies of the value inside the storage space.

In order to make the required comparisons by the
narrow value replication scheme, a set of comparators is
required to work in parallel. The number of comparators
depends on the recovery scheme; however, if the full
protection is needed for N copies of a value, N � ðN � 1Þ=2
comparators are needed to cover all cases. For example, if
there are four replicas of a value inside a storage space,
4� 3=2 ¼ 6 comparators are needed. These comparators
can be designed using dynamic logic for faster operation, or
dissipate-on-match comparators proposed in [30] can be
used for power efficiency.

Fig. 4 shows an example of the narrow value replication
process where a narrow value is defined as a value that can
be represented with only 8 bits. If a value is identified as
narrow, NVRB is set while the value is being replicated
inside the storage element (four copies of the Byte-0 are
written to 32-bit storage area). NVRB is checked whenever a
value is read from the data storage. If this bit is set, Byte-0 is
simply sign extended to 32 bits after comparing all of the
replicated copies with each other and making sure that all
copies indicate the same value. If some of the comparisons
result in mismatch, simple voting is used to decide which
value to use where the highest number of identical copies
inside the storage space wins.

Note that although the replicated value is protected from
particle attacks, NVRB is itself not protected and is an ACE
bit. A particle strike on this bit will endanger the correctness
of the stored value at all times. Therefore, unlike previously
proposed NVIB, the vulnerability increase introduced to the
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Fig. 3. Example of zero byte identification.

Fig. 4. Example of narrow value replication.
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corresponding component by NVRB is not conditional. This
bit can either be left unprotected to avoid increased
complexity, at the expense of the soft error vulnerability
increase, or it can be replicated like the narrow value. Later
in Section 4.3, we show that replicating this bit is not a cost-
effective solution. If the NVRB is not replicated, in some
cases errors on this bit may still be recognized with
additional hardware since the replicated copies will differ
from each other significantly when the content of NVRB
flips from 0 to 1. It may also be possible to detect an error if
the indicator bit flips from 1 to 0 since replicated partitions
will differ very little (if they differ at all) from each other.

Similar to narrow value identification for soft error
vulnerability reduction, there are tradeoffs in narrow value
replication since the number of copies replicated inside the
storage space is bound by the definition of the size of the
narrow operands. There is an optimum point for defining
the number of bits in a narrow operand where the
percentage of narrow operands and the number of
replicated copies inside the storage elements are optimized
for best level of error tolerance.

In a 32-bit storage space, if the narrow operand is defined
as the values that can be represented with 16 bits, it is
possible to fit two copies of the values inside the storage
space. Assuming that there are no other means of error
detection, having two copies of the same value is enough to
detect a single bit upset but is not enough to recover from
this error.

Similarly, it is possible to fit four 8-bit values inside
32-bit storage space for more protection from soft errors.
Table 1 summarizes all possible cases for different
number of bit flips on the same value, where I, J, K
and L denote the different copies of the replicated value
and EI;J;K;L shows the number of bit flips on the
corresponding copy. For example, on the third row
where I holds an uncorrupted copy and all the other
copies (J, K, and L) are corrupted, the action depends on
the contents of the corrupted copies. If at least two of the
corrupted copies are identical, incorrect value will win
the voting (two identical corrupted versus one different
corrupted and one uncorrupted copy). As it can be seen
from the table, our narrow value replication technique
with a narrow value size of 8 (four copies of the value
inside) can surely correct one particle hit on the storage
and can at worst detect two particle hits if the dual bit
flip cannot be corrected. Although a rare event, it is also

possible to have a miscorrection if most copies are hit at
the same bit position and simple voting favors the faulty
copies. This situation is extremely improbable, and
therefore, we do not provide any solutions in this paper
for such occasions.

In order to implement our soft error recovery mechan-
ism, a number of comparators are needed to compare all
versions of values with each other in addition to the NVRB
(and its replicated copies) per entry of the data storage
element. In our example, where a narrow value is defined
as 8 bits wide, there are four copies of the same value and
six comparators are needed.

3.2 Replicating Data into Zero Partitions for Soft
Error Detection and Correction

A variation of narrow value replication can be used for
error detection by using the storage space allocated for zero
partitions as a repository for replicating nonzero data. We
propose to augment each byte inside data storage space to
include a bit called “Zero-Byte, holding Replicated data”
(ZBR). When a nonzero byte is replicated inside the storage
space of a zero byte, this bit is set to indicate that the actual
byte is zero and it now contains the value of another byte
for error detection purposes. Similar to NVRB, ZBR is also
an ACE bit at all times and the same tradeoffs exist in terms
of soft error vulnerability reduction and invested hardware.

Different heuristics can be applied to leverage zero
portions of the values for soft error detection (and possibly
recovery) in order to simplify the replication and error
detection logic. The number of copies generated for a
nonzero portion determines the level of protection, as it is
the case for narrow value replication. As the number of
copies generated and the number of different places a data
partition can be replicated increases, the complexity of the
design increases together with the level of protection
obtained.

As an example to demonstrate the effectiveness of our
technique, we present a simple heuristic to detect soft errors
by taking a single copy of each byte and copying each byte
only in one (or optionally two) different place(s). Fig. 5
shows an example of the heuristic where the 32-bit value is
divided into two parts and within each part each byte is
allowed to be replicated to the other byte. Replicating bytes
only within 16-bit partitions simplifies the design since,
when the ZBR bit of a byte is set, it is known that the
replicated byte is the adjacent byte within the 16-bit
grouping. In Fig. 5, the value to be stored contains 2 zero
bytes (Byte-1 and Byte-2). Using our heuristic, Byte-0 is
replicated to Byte-1 and Byte-3 is replicated to Byte-2. When
the value is accessed from the storage space, the error
detection logic will detect that Byte-1 and Byte-2 holds
replicated data and will compare Byte-3 with Byte-2 and
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TABLE 1
Actions Corresponding to Specific Number of Particle Strikes

Fig. 5. Example of using zero bytes as replication repositories.
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Byte-1 with Byte-0. If there is a mismatch, the processor will
signal the detected error. If an error is not detected, the
contents of Byte-2 and Byte-1 will be discarded and
replaced with zero bytes.

An optimization is possible to extend the protection to
cover the cases when Byte-3 and Byte-2 are zero bytes and
Byte-1 and Byte-0 hold valid data or vice versa (this case is
similar to 16-bit narrow value replication where two
uppermost bytes are zero). Our heuristic can be extended
to detect this case, and lower order 2 bytes can be copied to
the upper order 2 bytes for error detection purposes. When
the error detection logic detects that both ZBR bits within a
16-bit group are set, it understands that the stored bytes are
copied from the other 16-bit group and compares the
corresponding bytes with each other for error detection
(Byte-0 with Byte-2 and Byte-1 with Byte-3).

Although the optimized heuristic of replicating data into
zero bytes has larger soft error detection coverage, a better
alternative would be to combine zero byte identification for
vulnerability reduction and data replication for detection.
When both of the bytes in a byte pair are zero, both ZBR bits
can be set and their zero byte status can be identified
without any data replication inside them. Upon reading the
data, whenever error detection logic detects that both bits
are set, it just replaces any data stored inside the bytes with
zeros. This way, zero bytes are protected from particle
attacks while nonzero bytes can be replicated into a zero
byte for error detection if the byte next to them is zero.

3.3 Parity Protection and Error Correcting Codes
(ECCs)

ECCs and parity are widely known and used techniques in
current processors to protect memory structures against soft
errors. While parity can only detect single bit errors, ECC
can be used to correct single bit errors and detect double bit
errors [also known as Single Error Correction, Double Error
Detection (SECDED)]. Parity protection allows the detection
of odd number of errors by counting the number of 1s
inside a value and storing this information in an additional
bit. Counting the number of 1s inside a value is accom-
plished by XORing each and every bit together, as shown in
Fig. 6. Since XOR gates are slow compared to other basic
gates and using dynamic logic is not helpful due to the
nature of exclusive-OR operation that requires independent
bit-pair operation, latency of parity generator circuits is

typically high compared to simple logic circuits such as
NAND and NOR. There have been some efforts to speed up
parity generators that are used for large operands by using
four-input XOR gates [23]. However, these circuits still need
multiple levels of logic.

Detecting an error by using the parity bit also requires
the same logic. Error detector logic XORs all of the bits
including the parity bit since the parity bit indicates the
number of 1s inside the value including itself. If the
outcome of this XOR operation differs from the value of
the parity bit, an error is signaled.

ECCs are used when the error tolerance requirements
mandate correcting errors on the stored data or detecting
more number of errors than that can be caught by using a
parity bit. The most commonly used code is the Hamming
code. Hamming code accomplishes error detection and
correction by using multiple parity bits for each stored data.
The value of each parity bit is calculated by using a different
group of bits inside the value. Therefore, to implement the
hamming code, multiple parity generator circuits have to be
used in parallel. For an 8-bit value ðv1v2v3v4v5v6v7v8Þ,
four parity bits ðp1p2p3p4Þ are placed at the digits indicated
by the power of two. An example is shown below:

When the data is read from the storage space, all of the
parity bits are recalculated and verified. If an error occurs
on the stored data, some of the parity bits are calculated to
different values and the parity check fails. The location of
the error can be found by summing the location of the
parity bits that are found to be 1. Afterward, correction logic
flips the bit indicated by the outcome of the summation.

Both ECC and parity require encoding and decoding
logics that consist of multiple levels of exclusive-OR gates.
Since each and every value written into a protected storage
space has to be encoded, the latency of this process is
unavoidable. Therefore, using ECC and parity bit is not
desirable for structures that are on the critical path due to
the delay overhead introduced by these techniques. Gen-
erally, ECC is only used on memory and not on data path
components (such as the register files) because of the large
encoding/decoding latency overhead. Likewise, power
dissipation is another concern for highly utilized structures
of a processor since more data will be encoded and
decoded.

In memory structures, parity is generally implemented
as a single bit per 32-bit word or 1 bit per byte, while ECC
has a four-bit overhead per byte (50 percent more area) as
stated by Phelan [33]. ECC can also be used for the whole
32-bit word with a 7-bit overhead. As a general rule, the
more the coverage, the higher the delay and complexity of
the encoding and decoding process. For both ECC and
parity schemes, every added information (parity) bit
introduces an encoder and a decoder circuit like the one
shown in Fig. 6 (total two). Therefore, to protect 1 byte, ECC
needs eight parity generator circuits, whereas parity scheme
uses two. On the other hand, narrow value identification
logic is only used once for the whole generated result.
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Fig. 6. Eight-bit parity generator circuit and parity generation example.
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3.4 Exploiting Narrow Values versus ECC and
Parity

ECC and parity are effective methods to detect or correct
soft errors in memory structures. However, they do not
come for free; complex encoding and decoding circuits that
consist of multiple levels of XOR gates have to be employed
before the value is written to and after the value is read
from the storage space. Therefore, they may not be suitable
for structures whose access latency is on the critical path of
a processor.

We propose the narrow value identification and replica-
tion as a flexible and simple alternative to error detection/
correction schemes that use ECC and parity bit. With
narrow value identification, it is possible to detect/correct
multiple bit errors, but this coverage applies to only narrow
values stored in the storage space. If a full coverage is
needed, narrow value identification can be used in
conjunction with the other error detection/correction
schemes to improve error tolerance. Exploiting narrow
values offer a wide variety of choices for error detection,
correction, or avoidance at the expense of simple low
latency encoding (leading zero or one detectors) and
decoding (sign extension or comparison). Table 2 sum-
marizes the differences of exploiting narrow values when
compared with ECC and parity.

In order to compare the circuit level overhead of exploiting
narrow values with that of ECC and parity, we measured the
delays and energy dissipations of the parity generator and
the narrow value identifier logics through SPICE simulations
by using the 90-nm BSIM model 4.5.0 [8]. We used the pass
transistor XOR gate design described in [50] to implement the
parity generator logic (this XOR gate turned out to be the
fastest one among other XOR gate designs in our simulations).
We measured the worst case delay of 25-input narrow value
detectors in Fig. 1, which are used to detect 8-bit narrow
values in a 32-bit data path, as 187 ps. This delay consists of
the precharge time (106 ps) and the evaluation time (81 ps)
and occurs when only one pull-down path is enabled. The
circuit dissipates 311 fJ whenever it does not indicate a
narrow value and its energy dissipation is negligible when a
narrow value is identified (since the precharged output node
is not discharged on narrow value identification). If the

narrow values are defined to contain fewer bits, the energy
dissipation and the delay of the identifier circuit increase. The
delay of a 32-bit identifier circuit is 218 ps with 367-fJ energy
dissipation.

Parity generator logic is composed of multiple levels of
XOR gates, which make it slow. Our circuit simulations
show that the delay of an 8-bit parity generator (shown in
Fig. 6) is 698 ps. Unlike narrow value identification, parity
generator circuits are both used for encoding and decoding.
Therefore, this delay penalty is paid when reading and
writing a value, whereas for narrow value identification,
delay penalty is paid only when the result is generated.
Energy dissipation of a parity generator circuit amounts to
136 fJ. This is lower than that of the narrow value identifier
circuit since dynamic logic is used for identifying narrow
values. However, it should be noted that parity generator
circuit dissipates energy at all times, but the narrow value
identifier only dissipates energy when the incoming value
is not narrow. Moreover, multiple parity generator circuits
have to be employed for generating multiple parity bits for
ECC, which makes encoding and decoding more energy
consuming.

Narrow value replication mandates the use of com-
parators to check if the copies of the same value are the
same and free of errors. For this purpose, traditional pull-
down comparators can be used, as described in [30].
Energy dissipation of an 8-bit traditional comparator
circuit at 90-nm technology is 72 fJ and its delay is
84 ps. For sign extension and routing of the correct value
to the read busses, transmission gates are used, as shown
in Fig. 7. Delays of these gates are generally low; our
simulations show that the delay of this circuit is around
30 ps. When compared to encoding and decoding logic of
ECC and parity, exploiting narrow values has less circuit
level overhead, both in terms of delay and energy
dissipation.

4 RESULTS AND DISCUSSIONS

In this section, we present the experimental results to
demonstrate the effectiveness of our proposed techniques.
Several elements in a processor can benefit from identifying
narrow operands for soft error vulnerability reduction. In
general, any component that is used to store a data value is
eligible to use this technique. We evaluate the benefits of
our techniques on writeback latches, integer register file, the
immediate field in the issue queue, and the data cache.

4.1 Simulation Methodology

Results provided in this section were collected from an in-
house IA-32 trace-driven simulator simulating a processor
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TABLE 2
Comparison of Using Narrow Values with ECC and Parity

Fig. 7. One-bit multiplexer circuit that is used for sign extension.
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similar to Intel Pentium 4 [19]. The processor parameters
used in our experiments are representative of a recent
microarchitecture and are summarized in Table 3. Our
workload consists of 26 traces generated from Spec2K
integer and floating point benchmarks. To skip the
initialization section, we divide each benchmark into
10 equal slices and start executing from the fourth slice.
Each trace is composed of 100 million instructions.

In order to report the effectiveness of our narrow value
and zero partition identification techniques, vulnerability
reduction is used as a metric. Since the absolute soft error
vulnerability of a processor component depends on its size
and the characteristics of the running application, absolute
vulnerability numbers may change with different processor
configurations and may be misleading. However, vulner-
ability reduction percentage of a component is independent
from the size of the corresponding component and, hence, is
used here as a metric to report the benefits of our techniques
along with a soft gain factor �g.

4.2 A “Soft Gain” Metric: �g

Benefits achieved by using narrow and zero value identi-
fication have a tradeoff between the area overhead of the
identification bits and the reduction in vulnerability of the
corresponding component. While too much area overhead
is not desirable due to increased complexity, power
dissipation, and latency of the structure, large amounts of
vulnerability decrease can be achieved by investing mini-
mum amount of hardware resources. In order to evaluate
the benefits of the proposed soft error vulnerability
reduction schemes, we introduce a “soft gain” metric1 �g

that takes these concerns into account. We define �g as

�g ¼ Decrease in soft error vulnerability
Increase in storage area

:

If the decrease in vulnerability is high enough to justify
the invested area (which also indirectly indicates the delay,
power, and complexity overhead), gain factor �g is high and
the design is justified. Invested area can be roughly
estimated by the following formula:

Increase in area ¼ Number of added bits

Total number of bits in the component
:

By definition, the smallest value �g can get is zero, which
happens when the vulnerability of the structure does not
decrease at all, assuming that there is a technique applied
for vulnerability reduction [�g can be negative only in two
circumstances; either a decrease in area makes the compo-
nent less vulnerable (good case but not realistic) or an
increase in area results in an increase in vulnerability
(normal case but not a scheme for error tolerance)].
Although there is no upper bound on �g, a practical high
value would be 100 (when 100 percent vulnerability
reduction is achieved with 1 percent area overhead). For
the evaluation of our schemes in the results section, we will
consult this metric to compare the different vulnerability
reductions achieved with different levels of hardware
overhead.

4.3 Evaluation of Narrow Value Identification for
Reducing Soft Error Vulnerability

We now present the results for different storage compo-
nents of a processor. We also discuss the different tradeoffs
between soft error reduction and area overhead.

4.3.1 Integer Register File

The integer register file is the major component that holds
temporary values inside the CPU and all of its bits are
eligible for narrow value identification. For this study, we
did not consider the floating point register file since its
structure is more complex and stored values are less likely
to be narrow. Integer registers hold 32-bit values in IA-32
and can be in four states: free, allocated but not written
back, written back but last use has not yet occurred, and
dead (last use occurred and the value is kept to reconstruct
precise state). Nonallocated registers and registers that are
allocated but do not hold any valid data are not vulnerable
to particle strikes. Register values are vulnerable to soft
errors between the time the result is written back and the
time last use of the result occurs. The vulnerability of the
register file is reduced as a whole by identifying narrow
operands since the number of vulnerable bits between
writeback and last use of the value is reduced.

Fig. 8 shows the soft error vulnerability reduction in the
integer register file by identifying narrow operands with
and without replicating the NVIBs. Numbers are presented
for different sizes of narrow values across all Spec2K integer
and floating point benchmarks. For each defined length of
the narrow operand, the leftmost three bars show the
integer, floating point, and overall averages for vulner-
ability reduction with NVIBs not replicated. Similarly, the
rightmost three bars show the vulnerability reduction with
replicated NVIBs for integer, floating point, and all bench-
marks, respectively, on average. As the figure reveals, there
is an optimum point for the defined length narrow
operands; it is 12 bits for integer benchmarks and 10 bits
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1. We chose the Turkish letter �g (called “soft g”) to indicate soft gain
metric.
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Configuration of the Simulated Architecture
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for floating point benchmarks. On average, defining narrow
operands as “the operands that can be represented with
10 bits” provides the highest soft error vulnerability
reduction in the integer register file.

In order to evaluate the best configuration based on soft
error reduction and area overhead, we used the �g metric
introduced in Section 4.2. Table 4 presents the results of our
studies. If the NVIBs are protected through replication (two
additional copies of the NVIB are stored for correcting
single bit upsets), soft error vulnerability reduction num-
bers reported in the leftmost three bars for each value width
in Fig. 8 are increased by around 2 percent on average.
However, the area overhead is tripled (from 1 bit to 3 bits)
and �g decreases significantly, as reported in Table 4 (from
6.36 to 2.35 for 10-bit narrow values). This drop in �g is
expected since we are able to achieve a soft error
vulnerability reduction of more than 19.9 percent with the
use of a single identification bit while we can improve this
reduction by only 2 percent with an investment of two more
bits. As �g drops significantly, protecting NVIBs through
replication for further improving the soft error vulnerability
of the integer register file is not justified. Therefore, defining
a narrow operand as 10 bits wide without replicating the
identification bits is the best choice.

4.3.2 Immediate Field of the Issue Queue

Immediate field inside the issue queue is 32 bits wide and
constitutes around 30 percent of the bits stored inside the
issue queue (for a queue that does not hold data values).
For an immediate field to be vulnerable to soft errors, the
issue queue entry has to be occupied by an instruction that
has an immediate literal and this instruction should not be
flushed from the pipeline due to branch mispredictions or
exceptions.

Table 5 shows the change of �g in an issue queue with
64 entries for various value width definitions. Unlike the
integer register file, optimum length of the narrow value
definition occurs at 8 bits on the average. Overall vulner-
ability reduction in the immediate field of the issue queue is
around 43.5 percent for 8 bits.

4.3.3 Data-Holding Latches (Writeback Latches)

Narrow value identification can also be used on latches
that hold data values throughout the pipeline. Latches at
the output of the function units are a good example
since the execution stage is the place of actual value
creation in the processor. Although all of the results
generated by the function units are written to the register
file, soft error vulnerability factors of these latches and
the corresponding vulnerability reduction due to narrow
value identification vary from integer register file’s
numbers. This is mostly because of the transient values
that are consumed only through bypass network and are
not read from the register file at all. In addition, the total
vulnerable time a value spends in register file is variable
since it depends on the time of the consumer’s issue,
whereas a stored value’s lifetime inside a latch usually
does not exceed a single cycle.

Table 6 shows the �g values achieved in the writeback
latches by identifying narrow operands. Results are similar
to the results from the integer register file and immediate
field in the issue queue; optimum point for the length of
narrow values for the highest vulnerability reduction is
achieved at 8 bits for integer benchmarks and 10 bits for
floating point benchmarks. On the average, the highest
achieved vulnerability reduction is 24.4 percent and it is
achieved with a narrow value length of 10 bits.

4.3.4 Data Cache

The largest single component that holds data values in a
processor is the first-level (level-0) data cache. The data part
of the data cache contributes to more than 90 percent of its
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Fig. 8. Vulnerability reduction in the integer register file.
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in Writeback Latches across All Spec2K
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soft error vulnerability [2]. The data cache used for this
experiment is a two-way set associative cache with a size of
16 Kbits and a line size of 64 bytes. Soft error vulnerability
of the data cache depends on the utilization of each word
contained within a line. Each word inside a line is
vulnerable to particle strikes between the time data is
inserted to the data cache and the time the data was last
accessed. Table 7 shows the �g values achieved by using
narrow value identification. Results from our experiments
show that, on the average, the highest achieved vulner-
ability reduction is 32.4 percent with 8-bit narrow values
and this results in a �g of 10.36.

4.4 Evaluation of Zero Partition Identification for
Reducing Soft Error Vulnerability

Zero encoding can improve the vulnerability reduction
achieved by narrow value identification if the consecutive
zeros in a value reside in different places. In addition, if a
generated value consists of all zeros, zero encoding can
protect the whole value while the narrow identification
cannot. However, the number of identification bits sig-
nificantly increases especially for the smaller partition sizes,
which results in a large area overhead. Therefore, unlike the
area overhead of narrow value identification (which is a
single bit) the area overhead of zero identification is the
primary limitation as it increases with the decreasing
number of bits inside the zero partitions.

Fig. 9 shows the vulnerability reduction achieved in the
integer register file with the use of zero identification for
Spec2K benchmarks. Zero identification results in a sig-
nificant amount of vulnerability reduction (larger than
narrow value identification), and this reduction becomes
larger as the partition size decreases. However, this
reduction comes at the expense of a large area overhead
especially if the ZIBs are replicated. For example, for 2-bit
zero identification, it is possible to achieve 56.2 percent
vulnerability reduction at the expense of 150 percent area
increase, which is not a very desirable solution when
compared to 100 percent vulnerability reduction with
200 percent area increase by having three copies of each
and every bit. Fig. 9 also shows that the vulnerability
reduction saturates with smaller partition sizes as the
vulnerability overhead of the added identification bits start
to limit the benefits.

Results for other processor components are similar and
also show that identifying zero partitions achieves high
vulnerability reduction but is a less cost-effective solution
compared to narrow value identification (i.e., vulnerability
reduction achieved per inserted bit is lower). Table 8
summarizes the benefits for different components and

shows the �g for zero identification; as it is evident from
this table and Table 5, although zero partition identification
can achieve higher benefits (in terms of soft error vulner-
ability reduction), it is less cost effective when compared to
narrow value identification. However, zero partition iden-
tification is more efficient when compared to having three
copies of the same bit ð�g ¼ 0:5Þ except for 2-bit partitioning
with replicated ZIBs.

4.5 Evaluation of Narrow Value Replication for
Detecting and Correcting Soft Errors

Narrow value identification converts the higher order
unneeded bits of a narrow value to unACE bits while the
actual ACE bits of the narrow value are still vulnerable to
particle hits. It is possible to protect these ACE bits by
replicating the ACE part into the storage allocated for the
unACE bits. Narrow bit replication provides a larger extent
of soft error tolerance at the expense of some hardware
overhead.

Fig. 10 shows the percentage of single bit errors across all
Spec2K benchmarks that can be avoided with different
amount of hardware overhead. The leftmost bar for each
benchmark indicates the percentage of avoided errors in the
integer register file by simply identifying the narrow
operands, where a narrow operand is defined to include
10 bits (which is shown to be the optimum length of a
narrow value in Table 5). On the average across all
benchmarks, 22 percent of the errors can be avoided by
simply identifying the values that can be represented with
10 bits and later sign extending them when they are sought
from the register file. The middle bar in Fig. 10 shows the
percentage of corrected errors by replicating 10-bit narrow
operands inside the 32-bit storage space. On the average,
32 percent of the single bit upsets can be corrected at the
expense of three 10-bit comparators that compare the stored
copies with each other and a 10-bit 3 � 1 multiplexer to
select the correct value. Control logic that checks the
outputs of the comparators can detect or correct a high
number of particle strikes (theoretically up to 29 bit flips;
eight on the first copy, seven on the second, third, and
fourth copies, where each copy indicate a different value)
unless the voting outcome at the outputs of the comparators
indicates a miscorrection.
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Average �g for Narrow Value Identification
in Level-0 Data Cache across All Spec2K

Fig. 9. Vulnerability reduction in the integer register file by using zero

encoding.
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Higher percentage of the soft errors can be avoided by
using narrow value replication for only detection and
relying on other means of error recovery for correct
execution (such as branch misprediction recovery mechan-
ism). In order to detect a single bit upset, having two copies
of a narrow value is enough (which means 16-bit narrow
value definition with 32-bit storage space). The rightmost
bar in Fig. 10 indicates the percentage of errors that can be
detected by identifying 16-bit narrow operands and
replicating them inside the 32-bit storage space. On the
average, 40 percent of the soft errors can be detected by
using a single 16-bit comparator that signals the soft error in
case the two copies do not match and implementing an
error recovery mechanism inside the processor, which
restores the precise state.

Table 9 shows the benefits of narrow value replication in
data-holding components of the processor on average
across all Spec2K benchmarks. As the table reveals, benefits
of narrow value replication is consistent in different
processor components.

4.6 Evaluation of Replicating Data into Zero
Partitions

Data partitions that contain consecutive zeros can be used
for data replication as a variation of the proposed narrow

value replication scheme. Zero identification is more
beneficial than narrow value identification if the consecu-
tive zero blocks are distributed inside the stored data.

Table 10 shows the data distribution cases when a zero
encoding is done at the byte level for the integer register
file. Each zero in the first column indicates a zero byte and
each 1 indicates a nonzero byte. Spec2K benchmark results
show that zero bytes in the values are not very distributed
and reside mostly on the most significant bits of the values.

Fig. 11 shows the percentage of reduction in the number
of observed soft errors inside the integer register file by
using three heuristics to replicate data inside the storage
space allocated for zero bytes. The first bar in Fig. 11 shows
the number of soft errors that can be detected using simple
replication where a byte is replicated only to its neighbor if
the neighboring byte is a zero byte. On the average across
all benchmarks, around 21 percent of the errors can be
detected by using simple replication.

Soft error detection coverage can be extended by relaxing
the constraint of copying a byte only to its neighboring byte.
When both bytes in a pair are zero bytes and the other pair
is composed of nonzero bytes, extended replication allows
nonzero bytes to be replicated inside zero bytes. This
extension results in a more than 30 percent single bit upset
detection rate on the average.

A better improvement over the simple replication
scheme is to use the zero byte identification bits to reduce
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Fig. 10. Soft error reduction in the integer register file by using narrow

value replication.
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the soft error vulnerability by giving hints to the error
detection logic and simply supplying zeros to the zero-
identified bytes. As seen from the last bar in Fig. 11, an
additional 25 percent of the errors can be avoided over
simple replication, which is capable of detecting 21 percent
of the errors. Together with zero identification, simple
replication can tolerate 46 percent of the soft errors that
occur on the integer register file.

Table 11 shows the average error coverage numbers for
our error detection mechanisms in various data-holding
components of a processor for all Spec2K benchmarks. Soft
error detection/avoidance coverage is as high as 62 percent
in the data cache for our hybrid scheme.

4.7 Selecting the Right Scheme

Until this point, we discussed many schemes that leverage
narrow values, also providing coverage numbers along
with the corresponding �g values. Soft error requirements
and hardware overhead budget of the target processor
should be taken into account to make the best design choice.
If a designer wants to improve the error tolerance by
investing minimum hardware, just identifying the narrow
values with a single bit may provide enough coverage. If
the error avoidance and detection is the major concern,
simple byte replication can be used along with zero byte
identification to cover most partitions of the data values.

As seen in Tables 9 and 11, the choice of the correct
scheme also depends on the target component. While
simple byte replication with zero identification provides
the highest error coverage in level-0 data cache, narrow
value replication is a better choice for the immediate field
(due to higher number of consecutive ones in the upper
order bits). On the other hand, �g provides information on
the efficiency of the design choice for the designer that
wants the most from invested hardware. For different
components and workloads, different schemes may become
more attractive choices.

5 RELATED WORK

Several works have tried to identify the effects of soft errors
on the processor pipeline both at architectural level [47] and

at gate level [12]. Effects of power saving techniques on
SERs are also studied in [24].

Reducing the architectural soft error vulnerability of the
microprocessors is a developing area of research. Recently,
soft error AVFs of some components in a processor were
defined and evaluated by Mukherjee et al. [30]. Likewise,
AVFs of address-based structures were computed in [6],
and on-chip memory vulnerability was analyzed in [1] and
[2]. A selective error recovery mechanism was proposed in
[48], where a � bit is used to identify possible errors in each
instruction and only for the instructions that are needed for
ACE signals an error before they leave the pipeline.

Redundancy is a widely used technique to recover from
transient faults in a processor [1]. Replicating register
values into unused registers to recover from transient faults
and soft errors was proposed in [27], where if ECC signals
an error, the correct value is taken from the uncorrupted
register that holds the copy. Replicating active words into
passive words in caches was proposed in [49]. Recently,
Reis et al. proposed using hardware-software hybrid
schemes, which achieves fault tolerance by replicating
instructions at compiler level and using hardware fault
detectors that make use of this redundancy [38].

Multithreading is used for error detection and recovery
[30], [36], [39], [44]. The general idea is to use multithreading
to run two copies of the same thread and, after execution,
check the outcome of the instructions to detect the errors and
recover from them if it is possible. This approach causes some
degradation in performance since each instruction is actually
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Fig. 11. Results for data replication inside zero bytes.
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run twice. Several works attempted to reduce this perfor-
mance penalty by utilizing processor resources better or by
using idle resources of the processors for error checking [14],
[22], [35], [42]. Chip multiprocessors (CMPs) were also used
for error detection and correction [16]. Symptom-based soft
error detection was proposed in [46].

Narrow operands were leveraged in many different
ways in the literature. Packing multiple narrow values into
wide function units was proposed in [7] in order to improve
performance. The same study was extended with the use of
a width predictor in [30], and a similar idea was evaluated
for a VLIW machine in [31]. In [26], Lipasti et al. proposed
inserting a narrow value into the rename table entry and
releasing the corresponding register early. Packing multiple
narrow values inside a single register was proposed in [12]
for high performance. A similar idea was implemented with
a multibanked register file concept in [20]. A clustered
architecture that makes use of narrow values to improve
processor performance was proposed by Gonzalez et al.
[18], [43].

The presence of narrow values inside the processors was
widely used for achieving energy efficiency. In [45], Villa et al.
have observed that many bytes in the cache contain only zero
bits and proposed avoiding reading and writing of these
bytes inside the data cache. Significance compression was
proposed in [8] in order to encode significant zeros for power
reduction in scalar pipelines. ISA extensions with operand-
width-specifying opcodes were proposed in [10] for energy
efficiency. Power consumption of a value predictor was
reduced by exploiting narrow operands in [40]. Energy
dissipation and delay of the register file was reduced with a
content aware design in [17].

Recently, narrowness of the values was used to detect
soft errors in the register files in [20]. Hu et al. propose
duplicating narrow values inside the registers and detect
soft errors on the wide values through simple parity check.
A scheme using a combination of parity (for error detection)
and value duplication (for error recovery) is used to
mitigate soft errors on the narrow values (defined as
32 bits). Our work differs from this work in several aspects:
First, our schemes do not require parity to function for the
narrow values. We do not only focus on value duplication
but explore other ideas such as triplicating the narrow value
to recover from soft errors. We propose a metric to measure
the additional hardware investment versus error coverage
that enables us to explore the design space for using narrow
values for soft error tolerance. We also cover the issue
queue, data cache, and writeback latches, as well as the
register file.

6 CONCLUDING REMARKS

Soft errors caused by particle hits are expected to be a
major problem in the near future with increasing chip area
and reduced feature sizes. In this paper, we have proposed
microarchitectural techniques that make use of consecutive
zeros and ones inside the stored values in order to improve
soft error tolerance of the data storage components in a
microprocessor. We have proposed soft error detection and
recovery mechanisms, which protect the stored values by
replicating parts of the operands into the already available
storage space. None of our schemes result in IPC
degradation.

Exploiting narrow values for error tolerance turned out

to be a cost-effective solution although it provides protec-

tion only when the stored value is narrow. Our first

technique of just identifying narrow values with a single bit

results in a soft error vulnerability reduction of 22 percent

in the integer register file, 43 percent in the immediate field

of the issue queue, 24 percent in the writeback latches, and

32 percent in the data array of the data cache. In order to

protect the vulnerable part of the narrow value, we

proposed replicating these values into the provided storage

space, which lead to up to 63 percent error detection or

61 percent error correction for single bit upsets that occur in

the immediate field of the issue queue.
Our last technique that replicates nonzero data partitions

inside the storage space of zero partitions can detect

22 percent and 31 percent of the single bit errors with our

simple and extended schemes, respectively, in level-0 data

cache. Our hybrid scheme that combines replication and

zero identification together avoids 40 percent and detects

22 percent of the errors, which sums up to a total of

62 percent error reduction.
Simulation results show that there is no “ultimate

scheme” that provides the best results in all components

by making use of the narrow operands. The best solution

for a given component depends on the needs of the

processor designer, while the idea of exploiting narrow

operands for soft error tolerance offers a range of solutions

with tradeoffs between hardware overhead, type of error

tolerance (avoidance, detection, or correction), and error

coverage.
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Values for Soft Error Tolerance,” IEEE Computer Architecture
Letters (CAL ’06), vol. 5, 2006.

[15] M.A. Gomaa and T.N. Vijaykumar, “Opportunistic Transient-
Fault Detection,” Proc. Int’l Symp. Computer Architecture (ISCA),
2005.

[16] M.A. Gomaa, C. Scarbrough, T.N. Vijaykumar, and I. Pomeranz,
“Transient-Fault Recovery for Chip Multiprocessors,” Proc. Int’l
Symp. Computer Architecture (ISCA), 2003.

[17] R. Gonzalez, A. Cristal, D. Ortega, A. Veidenbaum, and M. Valero,
“A Content Aware Register File Organization,” Proc. Int’l Symp.
Computer Architecture (ISCA), 2004.

[18] R. Gonzalez, A. Cristal, M. Pericas, M. Valero, and
A. Veidenbaum, “An Asymmetric Clustered Processor Based
on Value Content,” Proc. Ann. Int’l Conf. Supercomputing (ICS),
2005.

[19] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., vol. Q1, 2001.

[20] J. Hu, S. Wang, and S.G. Ziavras, “In-Register Duplication:
Exploiting Narrow-Width Value for Improving Register File
Reliability,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN), 2006.

[21] M. Kondo and H. Nakamura, “A Small, Fast and Low-Power
Register File by Bit-Partitioning,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA), 2005.

[22] S. Kumar and A. Aggarwal, “Optimum Resource Allocation for
Concurrent Error Detection Techniques in High Performance
Processors,” Proc. Int’l Symp. High-Performance Computer Architec-
ture (HPCA), 2006.

[23] S. Kumar, S.L. Kuo, and C.Y. Yip, Fast Parity Generator Using
Complement Pass-Transistor Logic, US Patent 5608741.

[24] L. Li, V.S. Degalahal, N. Vijaykrishnan, M. Kandemir, and
M.J. Irwin, “Soft Error and Energy Consumption Interactions:
A Data Cache Perspective,” Proc. Int’l Symp. Low Power
Electronics and Design (ISLPED), 2004.

[25] X. Li, S.V. Adve, P. Bose, and J.A. Rivers, “SoftArch: An
Architecture-Level Tool for Modeling and Analyzing Soft Errors,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN), 2005.

[26] M. Lipasti, B.R. Mestan, and E. Gunadi, “Physical Register
Inlining,” Proc. Int’l Symp. Computer Architecture (ISCA), 2004.

[27] G. Loh, “Exploiting Data-Width Locality to Increase Superscalar
Execution Bandwidth,” Proc. Ann. Int’l Symp. Microarchitecture
(MICRO), 2002.

[28] G. Memik, M.T. Kandemir, and O. Ozturk, “Increasing Register
File Immunity to Transient Errors,” Proc. Design, Automation and
Test in Europe (DATE), 2005.

[29] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,”
Proc. Ann. Int’l Symp. Microarchitecture (MICRO), 2003.

[30] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt, “Detailed Design
and Evaluation of Redundant Multithreading Alternatives,” Proc.
Int’l Symp. Computer Architecture (ISCA), 2002.

[31] T. Nakra, B.R. Childers, and M.L. Soffa, “Width Sensitive
Scheduling for Resource Constrained VLIW Processors,” Proc.
Workshop Feedback Directed and Dynamic Optimizations (FDDO),
2001.

[32] D. Pham et al., “The Design and Implementation of a First-
Generation Cell Processor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), 2005.

[33] R. Phelan, Addressing Soft Errors in ARM Core-Based Designs, White
Paper, ARM, Dec. 2003.

[34] D. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose, “Energy
Efficient Comparators for Superscalar Datapaths,” IEEE Trans.
Computers, vol. 53, no. 7, pp. 892-904, July 2004.

[35] M.K. Qureshi, O. Mutlu, and Y.N. Patt, “Microarchitecture-Based
Introspection: A Technique for Transient Fault Tolerance in
Microprocessors,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN), 2005.

[36] S.K. Reinhardt and S.S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. Int’l Symp. Computer Archi-
tecture (ISCA), 2000.

[37] G.A. Reis, J. Chang, N. Vachharajani, S.S. Mukherjee, R. Rangan,
and D.I August, “Design and Evaluation of Hybrid Fault-
Detection Systems,” Proc. Int’l Symp. Computer Architecture (ISCA),
2005.

[38] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I August,
“SWIFT: Software Implemented Fault Tolerance,” Proc. Int’l Symp.
Code Generation and Optimization (CGO), 2005.

[39] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors,” Proc. 29th IEEE Int’l Symp. Fault-
Tolerant Computing (FTCS ’99), pp. 84-91, June 1999.

[40] T. Sato and I. Arita, “Table Size Reduction for Data Value
Predictors by Exploiting Narrow Width Values,” Proc. Ann. Int’l
Conf. Supercomputing (ICS), 2000.

[41] Semiconductors Industry Assoc. (SIA), Int’l Technology Roadmap
for Semiconductors 2005, http://www.itrs.net/Links/2005ITRS/
Home2005.htm, 2008.

[42] K.C. Smolens, J. Kim, J.C. Hoe, and B. Falsafi, “Efficient Resource
Sharing in Concurrent Error Detecting Superscalar Microarchi-
tectures,” Proc. Ann. Int’l Symp. Microarchitecture (MICRO), 2004.

[43] O. Unsal, O. Ergin, X. Vera, and A. Gonzalez, “Empowering a
Helper Cluster through Data Width Aware Instruction Steering
Policies,” Proc. 20th Int’l Parallel and Distributed Processing Symp.
(IPDPS ’06), Apr. 2006.

[44] T.N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-Fault
Recovery Using Simultaneous Multithreading,” Proc. Int’l Symp.
Computer Architecture (ISCA), 2002.

[45] L. Villa, M. Zhang, and K. Asanovic, “Dynamic Zero Compression
for Cache Energy Reduction,” Proc. Ann. Int’l Symp. Microarchi-
tecture (MICRO), 2000.

[46] N. Wang and S.J. Patel, “ReStore: Symptom Based Soft Error
Detection in Microprocessors,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN), 2005.

[47] N. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. Int’l Conf. Dependable Systems and Networks (DSN),
2004.

[48] C. Weaver, J. Emer, S.S. Mukherjee, and S.K. Reinhardt,
“Techniques to Reduce the Soft Errors Rate in a High-Performance
Microprocessor,” Proc. Int’l Symp. Computer Architecture (ISCA),
2004.

[49] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam,
“ICR: In-Cache Replication for Enhancing Data Cache Reliability,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN), 2003.

[50] R. Zimmermann and W. Fichtner, “Low-Power Logic Styles:
CMOS versus Pass-Transistor Logic,” IEEE J. Solid-State Circuits,
vol. 32, no. 7, 1997.

Oguz Ergin received the BS degree in electrical
and electronics engineering from the Middle
East Technical University, Ankara, Turkey, in
2000 and the MS and PhD degrees in computer
science from the State University of New York,
Binghamton, in 2003 and 2005, respectively. He
was a senior research scientist at the Intel
Barcelona Research Center for 15 months
during 2004 and 2005. He is currently an
assistant professor in the Department of Com-

puter Engineering, TOBB University of Economics and Technology,
Ankara. His current research interests include VLSI design, energy-
efficient and high-performance computer architectures, and dependable/
reliable systems.

ERGIN ET AL.: REDUCING SOFT ERRORS THROUGH OPERAND WIDTH AWARE POLICIES 229

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 29,2010 at 10:08:55 UTC from IEEE Xplore.  Restrictions apply. 



Osman S. Unsal received the BS degree in
electrical and computer engineering from
Istanbul Technical University, Istanbul, in
1987, the MS degree in electrical and computer
engineering from Brown University, Providence,
Rhode Islands, in 1991, and the PhD degree in
electrical and computer engineering from the
University of Massachusetts, Amherst, in 2002.
He is currently a senior researcher at the
Barcelona Supercomputing Center. His current

research interests include computer architecture, reliability, and
ensuring programmer productivity. He is a member of the IEEE, the
ACM, the Sigma Xi, and the Phi Kappa Phi.

Xavier Vera received the MS degree in compu-
ter science from the Universitat Politècnica de
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