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Abstract
In multimodal fusion systems a normalization of the 

features or the scores is needed before the fusion process. In 
this work, in addition to the conventional methods, histogram 
equalization, which was recently introduced by the authors in 
multimodal systems, and Bi-Gaussian equalization, which 
takes into account the separate statistics of the genuine and 
impostor scores, and is introduced in this paper, are applied 
upon the scores in a multimodal SVM-based person 
verification system composed by prosodic, speech spectrum, 
and face information. Bi-Gaussian equalization has obtained 
the best results and outperform in more than a 23.25% the 
results obtained by Min-Max normalization. 

 
Index Terms: equalization, normalization, Support Vector 
Machines, multimodal, audio-visual. 

1. Introduction
Multimodal score fusion can be performed in two main 
approaches: the arithmetical or logical combination of the 
scores and the classification of the score vectors by mean of 
classificatory techniques [1]. In the combinatorial approach 
the scores provided by every unimodal system must be 
normalized before the fusion process due to, without this 
process, the contribution of a biometric could eliminate the 
contribution of the rest of the experts [2]. In the classificatory 
approach, not much importance has been given to score 
normalization because the same classificatory techniques can 
adapt themselves to the biometric characteristics. 

Concretely, for the SVM based classificatory techniques, 
the usage of kernels permits the non linear transformation of 
the input scores in a higher dimensional subspace where the 
recognition decision can be taken by means of a separator 
hyperplane [3]. Some efforts have been made for the 
development of particular kernels for each application, as in 
the case of spherical normalization developed by Wan et al. 
[4]. However, most investigators and developers use well-
known kernels as radial basis function (RBF) or polynomial 
kernels for their systems and adapt them by the modification 
of the kernel parameters. In this case, the number of non 
linear transformations is limited by the kernel and the chosen 
parameters. 

The aim of this work is to demonstrate the importance of 
the normalization of the unimodal scores in an SVM fusion 
system and, more concretely, the application of histogram 
equalization techniques in the normalization process. 
Histogram equalization consists in the equalization of the 
distribution function to a reference signal, and has been used 
in a wide range of applications including image and speech 

processing. The authors have recently introduced this 
technique in multimodal systems [5, 6] with good results. 

In other hand, most fusion techniques do not take into 
account the separate statistics of the genuine and impostor 
scores. The authors made an effort in 2005 [7] to introduce 
this information in multimodal fusion techniques with good 
results. In this work, histogram equalization has been 
performed upon a reference distribution where the genuine 
and impostor distributions have been separately generated. 
The genuine and impostor distributions have been built by 
means of two Gaussians which variances have been set in 
order to the reference distribution had the same EER than the 
original modality. This novel technique has been called Bi-
Gaussian equalization and outperforms the results obtained 
by the rest of tested normalizations. 

The multimodal system is composed by three score 
sources: the first score has obtained by the SVM fusion of 9 
voice prosodic features [5, 8], the second one has been 
obtained by a voice spectrum expert based in the Frequency 
Filtering front-end and GMM [9], and the last one has been 
provided by an NMFFaces algorithm face recognition system 
[10]. The prosodic and spectrum scores have been obtained 
from voice signals of the Switchboard-I database and the face 
scores have been obtained from face still images of the 
XM2VTS database.

The paper is organized as follows: in section 2, the 
normalization techniques that have been tested in this work 
are introduced; in section 3 the equalization methods are 
presented; and finally; in sections 4 and 5, the results and 
conclusions are presented. 

2. Normalization Methods 
The normalization process transforms the unimodal scores of 
all the biometrics in a comparable range of values and is an 
essential step in multimodal fusion. The most conventional 
normalization techniques are Min-Max, Z-Score, and Tanh, 
which have been widely used in previous works [1, 2]. 

Min-Max normalization maps the scores in the [0, 1] 
range by means of an affine transformation, i.e., 
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where min(a) and max(a) are the minimum and maximum 
values of the unimodal scores a. 

By means of Z-Score normalization the mean of all the 
biometric scores is set to 0 and its variance is set to 1 in a non 
affine transformation. Equation 2 demonstrates the 
application of this normalization 
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where mean(a) and std(a) are respectively the statistical mean 
and standard deviation of a unimodal set of scores. 

Tanh normalization maps the scores in the [-1, 1] range in 
a non linear transformation. This normalization is performed 
by means of the formula in equation 3 
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where �GH and �GH are, respectively, the mean and standard 
deviation estimates, of the genuine score distribution 
introduced by Hampel [2], and k is a suitable constant. The 
main advantage of this normalization is the diminution of the 
effect of outliers, which is absorbed by the compression of 
the extreme values. 

3. Equalization 
The normalization techniques in the previous section permit 
to control certain statistical characteristics of the normalized 
scores, as the value of the maximum and the minimum score 
in the case of the MM and TANH techniques, or the mean 
and the variance of the scores in the case of the ZS 
normalization. 

The equalization process transforms the source histogram 
to a known reference distribution and, for this reason, the 
mean of the scores and the shape of the whole histogram can 
be set in order to improve the recognition results. In this 
section, histogram equalization, which has been recently 
integrated in multimodal person recognition systems by the 
authors [5, 6], is reviewed. Furthermore, a novel equalization 
technique that takes into account the separate statistics of the 
genuine and impostor scores, Bi-Gaussian equalization, is 
introduced in this paper. These techniques have been used as 
normalization methods in this work. 

3.1. Histogram equalization (HEQ) 
By means of histogram equalization, the distribution function 
of the unimodal biometrics is equalized to a distribution of 
reference. This non-linear technique has been widely used in 
image processing [11] and has been applied to speech 
processing in order to reduce non linear effects introduced by 
speech systems such as: microphones, amplifiers, etc. [12]. 
Furthermore, it has also been used in robust speaker 
verification for the warping of cepstral features streams over 
a specified interval [13]. 

The first phase of the equalization process is the division 
of the cumulative histogram of the scores in M intervals; all 
those with the same probability of occurrence (1/M). Once 
the source intervals have been defined, the target distribution 
must also be divided in the same number of intervals, and the 
point with the “half probability” is selected as the 
representative point for each interval. In the equalization 
process, all the scores of the source biometric that are 
included in an interval are matched to the representative point 
in the corresponding interval of the reference histogram. 

This equalization process can be seen as an increasing 
transformation from the source to the equalized scores. For 
this reason, this transformation will not modify the 
recognition result of the biometric and can be considered a 
normalization process. Figure 1 illustrates the equalization 

process. The score x and all the scores in the same interval are 
matched to the equalized score y in the reference distribution. 

The authors have used histogram equalization as a 
normalization technique in [5, 6] using one of the unimodal 
histograms as the reference distribution. The good results 
obtained in these works with combinatorial techniques as 
simple sum or matcher weighting for the fusion process are 
confirmed in this paper in an SVM-based fusion scheme. 

 

Figure 1: The distribution matching performed by HEQ. 

Another technique that can be seen as a particular case of 
histogram equalization is rank normalization [14], where each 
feature value is replaced by its rank in the reference 
distribution to obtain an approximately uniform distribution. 

3.2. Bi-Gaussian equalization (BGEQ) 
In the normalization process, the separate statistics of the 
genuine and the impostor scores are not generally taken into 
account. However, the information relative to these separate 
statistics can be used to improve the results obtained by 
multimodal fusion systems [6, 7]. 

In this section, a new technique is proposed for the 
equalization of the scores, where the genuine and impostor 
distributions are separately modelled by means of two 
independent Gaussian distributions that are overlapped to 
construct a reference distribution that had the same 
recognition error than the original biometric. This technique 
has been called Bi-Gaussian equalization. 

The mean of the genuine Gaussian distribution has been 
set to 1 and the impostor one has been set to -1 and the 
variance of both Gaussians, which controls the overlapping 
among them, has been set to the adequate value to accomplish 
the error condition. The reference distribution is, in this case, 
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where � is the standard deviation of both Gaussians. 
In this work, the Equal Error Rate (EER) of the original 

biometrics has been used to determine the variance of the Bi-
Gaussian Equalization. Due the fact that both genuine and 
impostor Gaussian distributions have been designed with the 
same variance, the EER will be obtained by setting the 
threshold to the average of the means of both Gaussians, in 
this case, zero. As the EER can be calculated as the 
probability that the value of an impostor score is greater or a 
genuine score is less than the threshold, i.e. 
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and with a change of variable in the previous equation, the 
variance of the Gaussians for each biometric can be 
calculated from its EER and the areas of a normal 
distribution. 

Figure 2 shows the Bi-Gaussian equalized biometric 
histograms for the face, spectrum speech, and prosody scores. 
As it can be observed in the figure, one of the benefits of the 
application of Bi-Gaussian equalization is the attenuation of 
the effect of the outliers. 

 
Figure 2: Histogram of the scores for BGEQ. 

4. Recognition experiments 
In this section, the unimodal recognition systems that provide 
the scores for the training and the testing of the fusion system 
are presented. Furthermore, the techniques and databases 
used in the fusion process are detailed. 

The experimental results obtained with the different 
normalization methods in an SVM fusion scheme will be 
presented in the second subsection. 

4.1. Experimental setup 
The unimodal scores used in the experiments have been 
provided by three experts: an SVM fusion of 9 speech 
prosodic features, a voice spectrum based speaker recognition 
system and a facial recognition expert based in the 
NMFFaces algorithm. 

In the prosody based recognition system a 9 prosodic 
feature vector was extracted for each conversation side [8]. 
The system was tested with 1 conversation-side, using the k-
Nearest Neighbor method. The prosodic vectors have been 
fused by means of a SVM classificatory system to obtain a 
single unimodal score. 

The spectrum based speaker recognition system was a 32-
component GMM system with diagonal covariance matrices; 
20 Frequency Filtering parameters were generated [9], and 20 
corresponding delta and acceleration coefficients were 
included. The UBM was trained with 116 conversations. 

The face recognition expert is based in the NMFFaces 
algorithm [10], where non-negative matrix factorization is 
used to yield sparse representation of localized features to 
represent the constituent facial parts over the face images. 

Equal error rate (EER) and minimum half total error rate 
(HTER) have been used in this work as the error measures to 

compare the recognition systems. EER and HTER are 
respectively 14.65% and 14.27% for the prosodic system, 
9.52% and 8.50% for the speech spectrum system, and 2.50% 
and 2.00% for the facial recognition system. 

The fusion process has been performed, after the 
normalization or equalization of the scores, by means of a 
Support Vector Machine system using radial basis function 
(RBF) and polynomial kernels. Radial basis function kernel is 
based in Gaussian classificatory regions where the parameter 
� controls the variance of the Gaussian functions, i.e. 
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Polynomial kernels are based in the dot product of the 
data vectors and are controlled by the exponent �, i.e. 
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Prosodic and spectrum scores have been obtained form 
speech records of the Switchboard-I database [15] and the 
face scores have been obtained from still images of the 
XM2VTS database [16]. The Switchboard-I is a collection of 
2,430 two-sided telephone conversations among 543 speakers 
from the United States. XM2VTS database contains face 
images of 295 subjects. A chimerical database has been 
created by the combination of the 1,860 speech experiments 
(for prosodic and spectrum information) and 33,361 face 
scores. A total of 5,000 score vectors have been generated for 
the training of the fusion models and 46,500 score vectors has 
been used in the test phase. 

4.2. Results
In the experiments, several normalization techniques have 
been applied upon the unimodal scores. Later, these scores 
have been fused by means of a SVM system. The 
normalization methods are those presented in sections 2 and 
3: Min-Max (MM), Z-Scores (ZS), a tanh based technique 
(TANH), rank equalization (RANK), histogram equalization 
to the best unimodal system, the face recognition system, 
(HEQ), and Bi-Gaussian equalization (BGEQ). 

To compare the effect of each normalization method upon 
the SVM fusion system, RBF and polynomial kernel SVM 
configurations have been tested. Concretely, for the RBF 
kernel different values of the Gaussian variance � have been 
tested: 1/3, 1, 3, and 9. For the polynomial kernel, values 
from 1 to 4 have been used for the � parameter. Furthermore, 
the regularization parameter C has been set to 1, 10, 100, and 
200. A cross-validation process has been performed for the 
selection of the final parameters for each technique and 
kernel. The EER and the HTER obtained by each 
normalization technique and kernel are presented in Table 1. 

The equalization techniques obtain the best results for 
both kernels for the two error measurements. Min-Max, one 
of the most often used normalization techniques in SVM 
systems, is outperformed by Bi-Gaussian equalization with 
relative improvements from 23.25% to 32.91% while ZS is 
improved in more than a 10% and TANH in more than a 5%. 
Among the equalization techniques, rank normalization is 
outperformed with relative improvements from 2.39% to 
9.74% and HEQ is also improved by BGEQ with the 
polynomial kernel. 
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RBF Polynomial 
EER HTER EER HTER

MM 1.005 0.948 0.869 0.827 
ZS 0.852 0.686 1.101 1.029 

TANH 0.714 0.671 0.703 0.657 
RANK 0.739 0.662 0.697 0.627 
HEQ 0.690 0.652 0.708 0.647 

BGEQ 0.701 0.636 0.667 0.612 

Table 1: Multimodal results. 

The minimum EER and HTER are obtained by the 
polynomial kernel with the BGEQ normalization, that obtain 
a relative improvement of a 69% with respect to the best 
unimodal system, and that improve between a 3% and a 4% 
the best results obtained with the RBF kernel. MM, TANH 
and BGEQ obtain the best results with the polynomial kernel 
while ZS takes a greater advantage of the use of the RBF 
kernel. 

In Figure 2, the DET curve for the comparison of the 
normalization methods with the polynomial kernel is shown. 

 

 
Figure 2: DET curve for polynomial kernel SVM. 

For all the ranges of FAR and FRR, the best results are 
obtained by HEQ and BGEQ. This last technique outperforms 
the conventional normalizations for all the range of values of 
FAR and FRR. 

5. Conclusions
Support Vector Machines fusion systems need the 
normalization process for the alignment of the range of values 
for the features or the scores. In this work, several 
normalization methods have been applied upon a multimodal 
score SVM fusion system with RBF and polynomial kernel. 

In this work, Bi-Gaussian equalization, a novel 
equalization technique that takes into account the separate 
distributions of clients and impostors, obtains the best results 
in a multimodal SVM-based system for the fusion of the 
scores of prosody, spectrum speech and face recognition 
experts. Concretely, Bi-Gaussian equalization obtains relative 
error improvements from 23.25% to 32.91% with respect to 
MM normalization and outperforms the conventional 
normalization techniques for all values of FAR and FRR. 
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