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Abstract. Multiple input multiple output (MIMO) is a technology that enhances
wireless systems capacity, data rate, and coverage by utilizing the spatial
diversity provided by multiple antennas. However, these benefits come at the
expense of increased computational complexity. Implementing a broadband
MIMO wireless communication system in a real-time testbed is a challenging
task, entailing numerous pitfalls. This paper presents several implementation
aspects of a real-time MIMO testbed based on the mobile WiMAX standard.
The focus is mainly laid on the bit-intensive baseband digital signal processing
at the receiver.
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1 Introduction

Deploying a broadband wireless communication standard such as the IEEE
802.16e-2005 [1] (i.e., mobile WiMAX) in a real-time testbed implies several design,
implementation and testing challenges, especially considering the top-up
computational complexity introduced by the MIMO technology. The massive
parallelism required for the baseband signal processing in real-time testbeds, makes
the FPGA devices the obvious candidate for implementing such systems. The inherent
processing parallelism of FPGA devices and the availability of a wide range of pre-
verified IP-cores make them a preferable choice compared to DSP microprocessors.
At the same time, the cell-processors though demonstrating a remarkable performance
[2] are still considered to be an immature solution due to the C-coding parallelism
limitations, the insufficient IP libraries and the lack of development boards.

This paper presents the challenging and demanding task of implementing a point-
to-point mobile WiMAX system in a real-time testbed having a 2x2 MIMO
configuration. The system uses matrix A encoding in an open-loop configuration (i.e.
without feedback), based on Alamouti's space-time block code [3] in a per carrier
basis. The 20 MHz channel bandwidth of this testbed exceeds the WiMAX Forum
specifications for the IEEE 802.16e-2005 standard (i.e. wave-2) positioning the
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system presented herein on the forefront of applied research utilizing real-time MIMO
testbeds.

Setting up the whole testbed is a quite hard research and engineering task. The most
critical part of the mentioned development is found in the design, simulation,
implementation and real-time debugging of the receiver which, for this reason, is
widely detailed in this paper.

2 Short Review of MIMO Testbeds

The great majority of the existing testbeds supports off-line signal processing,
making use of Matlab or other signal processing software [4], [5]. Apparently, off-line
testbeds are not able to process in real-time the received signals. However, their
flexibility makes them appealing to researchers since such testbeds allow them to
explore various real-world signal processing concepts. Their offline operation renders
these testbeds incapable to explore medium access control protocols and the reception
of long data frames because of timing and memory constraints, respectively. Besides,
offline testbeds are not able to realize closed-loop strategies.

Although we have found in the literature low-bandwidth MIMO testbeds based on
the IEEE 802.11n [6] and the 802.16d standard [7], [8] (i.e. no mobility), we have not
encountered literature for real-time MIMO testbeds implementing the IEEE 802.16e
standard using a 20 MHz bandwidth. A combination of mobile and fixed WiMAX
testbed is presented in [9]; nevertheless the scope of the project is different since
commercial equipment is used to assemble the entire physical layer of the testbed.
Real-time MIMO testbeds implementing the IEEE 802.16e-2005 standard are mainly
deployed by industrial initiatives (e.g. Alvarion), which are currently offering
bandwidths up to 10 MHz (e.g. WiMAX wave-2 specifications [1]).

3 Description of the Experimental Setup

A point-to-point MIMO testbed typically comprises i) a transmitter with baseband
signal processing units, digital-to-analog converters (DACs) and RF up-converters, ii)
a multi channel emulator or sets of transmit and receive antennas (indoor channel),
and iii) a receiver with a series of RF down-converters, analog-to-digital converters
(ADCs) and baseband digital signal processing units. A graphic-overview of our real-
time mobile WiMAX testbed setup for a point-to-point 2x2 MIMO system is shown
in figure 1. The parameters of the OFDM downlink (DL) frame, consisting of a single
burst with a fixed predefined format (i.e, FCH and DL-MAP are not decoded), are
shown in table 1 and depicted in figure 2.

Taking into account the baseband sampling frequency (i.e. 22.4 MHz), the rate of
Alamouti's space-time code (STC) coding (i.e. unity) and the total number of PUSC
subcarriers (i.e. datat+pilot+dc-carrier = 1681), the actual peak of un-coded useful data
rate is 22.4 x 2 x 1 x 1681/2048 x 2048/2560 = 29.4175 Mbits/s and the spectrum
efficiency for a 20 MHz channel bandwidth is 1.47 bits/Hz/s assuming the use of
QPSK modulation at each data carrier.
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Figure 1: CTTC’s point-to-point real time 2x2 MIMO testbed featuring mobile WiMAX.

Table 1: A synopsis of system parameters.

Parameter Value OFDMA symbols
Wireless telecommunication standard IEEE 802.16e-2005 T T
Tx antennas x Rx antennas 2x2 FCH : :
RF frontend operating band (GHz) 2.495 - 2.690 I I
IF frequency || Ch. Bandwidth (MHz) 156.8 ] 20 : |
Channel models ITU Ped. B - Veh. A I I
A/D sampling clock frequency (MHz) 89.6 P o | DLmar : :
Sampling frequency Fs (MHz) 224 gl |e : satd burd :
Modulation type QPSK % g I I
Duplex mode TDD E | :
FFT size 2048 I I I
Supported permutation scheme DL PUSC only vc:id : :
Data || pilot || null subcarriers 1440 || 240[| 368 SIEiﬂ?l : :
Sub-channels 60 | I I
Subcarrier frequency spacing f (kHz) 10.94 L L !
Useful symbol time || Guard time (us) 91.422.85 1 Sepia 2 0Fon
Frame duration (ms) || OFDM symbols 5148 =
Open loop configuration: STC type Matrix A Alamouti Fi 2-F f "
De-interleaving, Ch. coding, multiuser not supported 1gure = Frame format.

MIMO Signal Transmission: The baseband part of the transmitter was designed
using Matlab. The separate I and Q baseband outputs of this model (corresponding to
the two transmitter’s branches) are written to data-files, which are fed to two instances
of Agilent's Signal Studio Toolkit. The data-files are then uploaded to two Agilent
vector signal generators (i.e. ESG4438C), which are appropriately connected for a
MIMO signal transmission. This connection requires careful offline adjustments (e.g.
time-alignment of the output signals). The two ESG4438C are utilizing their
embedded arbitrary waveform generator to playback in real-time the baseband I and Q
waveforms, up-convert the signal and finally provide the RF output centered at 2.595
GHz. The accuracy of these instruments guarantees a very high performance (e.g.
excellent Error Vector Magnitude (EVM) profile). To verify the transmitter's



compliance with the IEEE 802.16e standard, we have used Agilent's Vector Signal
Analyzer (VSA) to demodulate the received RF signal.

The Channel: The connection between the transmitter and receiver can be done via
a direct cable, over the free radio channel using antennas, or through a channel
emulator. The two testing and measuring scenarios were: i) antenna transmission
using an indoor radio channel, and ii) use of a channel emulator (i.e. EB Propsim C8)
to generate an outdoor static or mobile channel. Measurements over the indoor radio
channel were conducted only to prove functional conformity and thus they would not
be analyzed herein. The channel emulator is configured with a 2x2 MIMO model,
emulating the ITU Vehicular-A standard channel model (i.e. 6 tap tap-delay-line). The
channel is assumed to be quasi static for the duration of an OFDM frame.

The Receiver: A fully integrated, dual-band multi-channel WiFi RF transceiver
[10] (i.e. designed in CTTC) was upgraded to match the WiMAX testing scenario.
Certain critical building blocks were replaced (i.e. RF and IF filters, the local
oscillator and the sampling frequency synthesizer). Both the WiFi operation at 2.4
GHz and the WiMAX one at 2.6 GHz performed satisfactory in a 2x2 MIMO
configuration (i.e. proof of concept validation). The testbed specifications were
expanded in terms of scalability and performance by acquiring high-end, multi-
channel broadband RF downconverters (i.e. MCS Echotek Series RF 3000T). Table 2
summarizes the main specifications of the two available RF front-end solutions.

Table 2: Performance-comparison of the RF front-end solutions.

Parameter Custom receiver COTS receiver
RF input frequency range 2.4-2.7GHz & 5.15-5.35 GHz 20MHz-3GHz
IF output frequency range (3dB BW) 135..173 MHz 107.5..172.5 MHz
Frequency resolution <150Hz 1 Hz
Internal reference accuracy <+1ppm adj. <+0.5ppm
Phase Noise -83dBc/Hz@10KHz -112dBc/Hz@10KHz
Noise Figure 9.5dB 8.25dB
Gain control range 72 dB 85 dB
Image rejection 30 dB 95 dB
Spurious output levels -30 dBc (LO not inc.) -85 dBc
Input Third-Order Intercept Point (IIP3) -15 dBm 0 dBm

The receiver also includes two noise signal generators (i.e. Applied Instruments
NS-3) for testing purposes and a powerful baseband signal processing platform from
Lyrtech Inc., which is assembled in a cPCI chassis. This includes an ADC board (i.e.
8 channels, 105 MSPS, 14-bit resolution, Xilinx Virtex-4 LX160 FPGA device), a
signal processing board with 4 Xilinx Virtex-4 devices (i.e. 2 LX160 and 2 SX35) and
4 Texas Instruments TMS320C6416 DSPs. The platform also offers various I/O
connectivity options (e.g. 8 Gbps data transfer between boards).

4 Signal Model and Impairments

The WiMAX signal is frame-based, composed of data and silence periods. The
receiver is continuously monitoring the signal during the silence periods through a
synchronization algorithm to detect the beginning of a data period. In real systems, on



top of the noise, some system-wide signal-impairments appear during the silence due
to the instrumentation used (e.g. signal generators, channel emulator). These
“parasitic” signals impair the operation and performance of the system. Each one of
these has been studied in order to remove its undesirable effects. The specifications of
the signal generators, the channel emulator and RF downconverters, allow us to
ignore the impact of the following signal-impairments: i) I/Q gain and phase
imbalances due to variations in components between the analog I and Q processing
branches, ii) inaccuracy between the sampling clocks of the transmitter and receiver,
iii) random phase noise due to oscillator instability. Thus, the resulting received signal
model at the output of the RF downconverters at the ith antenna can be expressed as:

() =Re{x®(tye” "} + 4 + B cos(27(fy + ANt +) + (1), D

where x®() represents the useful part of the received baseband signal, fis is the
intermediate frequency (IF), Afis the carrier frequency offset (CFO), 4; represents the
DC level introduced by the baseband boards, B,cos(2z(fi=+Af)t + ¢;) represents the
carrier located at the center of the useful signal-spectrum as a result of the coupling of
the local oscillators at the transmitter and/or the receiver, and w(f) is the Gaussian
noise. In our case, the IF is 156.8 MHz and the sampling frequency is 89.6 MHz
(oversampling by a factor of 4). This means that after the ADCs, one of the aliases of
the discrete signal will be located at 22.4 MHz. The x,®() can be expressed as:

200 =3 2D, (1), @
p=1

where x,,m(t) is the equivalent baseband signal transmitted from the pth transmit
antenna and £;,(f) is the equivalent baseband of the time impulse response of the
MIMO channel between the pth transmit and the ith receive antennas. The total
number of transmit antennas is assumed to be 7.

Several countermeasures were employed to compensate as much as possible the
effects of the received noise and some undesired spurious signals introduced by the
channel emulator (e.g. prototyping of additional IF SAW filters).

5 The Mobile WiMAX Receiver

The digital front-end is one of the most critical processing stages of the receiver
with determinant contribution to system’s performance, highly susceptible to signal
impairments and thus error-prone. It comprises from the automatic gain control
(AGC), the digital down converter (DDC) and the synchronization block (figure 3).
Any deviation from the expected signal-specification may either render the system’s
output invalid or seriously compromise its performance.

The AGC block adjusts the gain of the programmable gain amplifier to fit the
dynamic range of the signal to the operating range of the ADCs preventing their
saturation (excluding a back-off margin accounting for the OFDM signal crest factor)
preventing their saturation and minimizing quantization errors. The DDC extracts the
in-phase and quadrature components of the signal. This is achieved by a numerically



controlled oscillator (NCO), initially tuned at the nominal frequency of 22.4 MHz, a
digital mixer and a low-pass filter with a decimation factor of 4 (i.e. output baseband
sampling frequency of 22.4 MHz). The filter was specifically designed to reject the
DC level introduced before the ADCs by the baseband board chassis.
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Figure 3: Overview of the processing components of the receiver.

The synchronization block has two main functions. First, it detects the beginning of
the data period and, accordingly, the position of the OFDM symbols to apply the FFT.
Second, it has to estimate any residual CFO that will be used to finely tune on-the-fly
the NCO of the DDC. Both functions can be implemented jointly by calculating the
cross-correlation of the received samples. Each OFDM symbol is composed of a
Cycle Prefix (CP) of 512 samples and a useful part of 2048 samples. Since the CP
samples copy that last samples of the useful part, it is expected that a peak in the
modulus of the cross-correlation r{n] between both sets of samples will appear if the
position of the correlation window is correct. An additional mechanism will also
prevent the false peak detection due to the presence of the carrier from the coupling of
the local oscillators during the silence periods. In addition, the phase of the cross-
correlation at the peak will allow calculating the CFO. This can be mathematically
expressed as follows (where ny denotes the number of receive antennas):

ng 511

D> x[n+k]-x,[n+k+2048]

r[n] - 51;:1 = 511 ’
\/ |x.ln+ k] \/ZZ|x,.[n +k+2048] 3)
i=1 k=0 i=l k=0
> 1 22410°
nmax - arg m’?.x |}"[}’l]| s Af - EW arg {r[nmax ]}



In the following processing stages, the OFDM demodulation takes place; this
includes the CP removal, the FFT, and the removal of the guard band and the DC
carriers. The subsequent blocks are related with the organization, randomization and
grouping of the carriers according to the IEEE 802.16e frame definition, and the
pilots’ extraction which are scattered along the signal bandwidth (where these pilots
are used to estimate the channel response). When the system is configured as a MIMO
one, each processing-chain at the receiver has to estimate the corresponding channels
from all transmit antennas. This is carried out by extracting the channel frequency
response at the pilots’ positions and then interpolating them by using a second order
polynomial interpolation as indicated in formula (4).

(yp3_yp2) (ypz_ypl)

f(x):ypl + (ypz _ypl)-(x—xpl)-i- (xps_xpz) (xpz —xp]) ‘(X—Xpl)'(x_x,,z) (4)

Xp2 =X (xp3 _'xpl)

One of the final blocks is related with the decoding of Alamouti’s code (matrix A),
which is applied on a per-subcarrier basis in 2-transmit antenna systems. The two
equations (5) show the operation to be applied for estimating the transmitted symbols
at the kth subcarrier. Two consecutive OFDM symbols, 2/ and 2/+1, have to be
processed jointly, where the samples at each antenna of the receiver after the FFT are
represented by R; and the estimated channel frequency response is denoted by H; ,:

> H kYR [k 201+ H, [k R (k.20 +1] > HIKR [k, 211~ H, [K]R k.20 +1]
Sy = = o 2 s Sy = = i S ) (5)
H,,[k]| >|a | +|H, ]
i=1

3 |H I+

i=1

The design has passed through numerous optimization stages in order to boost the
performance and minimize the processing complexity (i.e. FPGA slices, RAMB16s
utilization). The 2x2 MIMO receiver was fitted in two Virtex-4 LX160 devices, using
the Xilinx ISE 9.2 design-suite (FPGA1: 81% slices, 93% RAMBI16s, 100% DSP48
and FPGA2: 49% slices, 71% RAMBI16s, 57% DSP48). The compilation time of the
MIMO configuration reached a peak aggregate of 40 hours in a dedicated 64-bit
server. The dense device utilization resulted in a volatile implementation, since the
place and routing process only manages to meet timing constraints in an arbitrary
way. This limitation is posed by the ISE software and the only solution is to apply
more stringent timing constraints and divide the design targeting 3 FPGA devices.

6 Results and Conclusions

The data at the end of the processing chain of the mobile WiMAX receiver is
captured and visualized in real-time with the help of the Chipscope Pro software from
Xilinx. This software generates monitoring cores which are attached to the target
design running in the FPGAs of the testbed. The accuracy of the received
constellation points is investigated at the receiver by calculating the EVM, which is a
metric of their dispersion from the ideal positions [11]. To compare the performance



of the implementation we have also captured and stored in a data file a real signal in
the output of the ADCs which we have then fed to the respective Matlab model of the
receiver. Thus, by comparing both results, we can effectively measure which is the
degradation in the system performance due to the numerical approximations (finite bit
precision) performed by the hardware implementation of the testbed.

An indicative comparison of how the QPSK constellation of the received signal is
visualized using Matlab on the one hand and on-board real-time data-capturing on the
other, is shown in figures 4, 5 (i.e., SNR = 15.34dB) and figures 6, 7 (i.e. SNR =
21.69dB) respectively. The SNR represents the function of the total signal power over
the total noise power across the bandwidth of the received signal.
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Figure 5: On-board-SNR=15.34dB. Figure 7: On-board-SNR=21.69dB.

The two previous figures show a capture of the received QPSK constellations at
two indicative SNR values. In order to further evaluate the precision and performance
of the implemented system, more detailed numerical results have been obtained.
These correspond not only to the aforementioned EVM, but also to the raw BER (i.e.,
assuming no channel coding) for both the Matlab model (i.e., “ideal” receiver) and the
actual hardware implementation of the receiver. Note that the EVM is approximately
calculated since the deviations of the received constellation points are measured with
respect to the taken QPSK de-mapping decisions, instead of the actual ideal error-free
constellation points. In this sense, this approximate EVM will be more accurate at
high SNR, i.e., when less errors occur in the decisions. The results are obtained for a
fixed channel and for different values of the received SNR by adjusting the
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This paper presented a real-time MIMO testbed featuring a mobile WiMAX
system. This is rightfully considered a challenging task requiring a resourceful
budget, manpower, time and hands-on expertise on advanced signal processing
aspects. The testbed comprises the necessary technology, equipment and
specifications that allow the implementation of top performance systems. The
experimental setup of the 2x2 MIMO testbed operating in CTTC is shown in figure 8.
The deployment of an IEEE 802.16e-2005 2x2 MIMO real-time system operating
beyond the typical WiMAX specifications (i.e. wave-2), with a 20 MHz channel
bandwidth is giving us the opportunity to test and experiment state-of-the-art research
concepts.



The next development step will include the implementation of a real-time
transmitter replacing the signal generators with a custom FPGA development. This
will open several new research and implementation possibilities, such as the inclusion
of more advanced MIMO exploitation schemes based on real-time feedback. This
feedback from the receiver to the transmitter could deliver information about the
current channel conditions and would allow the transmitter to adapt its transmission
scheme to such channel, thus, boosting the system performance and making it more
efficient. Some schemes to be analyzed are based on antenna selection or adaptive
beamforming based on codebooks. Moreover, the feedback will enable us to explore
more advanced configurations, such as multi-user networks based on opportunistic
transmission, e.g., allocating carriers to users in a dynamic way.
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