
A Failure-Distance Based Method to Bound the Reliability of

Non-Repairable Fault-Tolerant Systems without the

Knowledge of Minimal Cuts

V́ıctor Suñé and Juan A. Carrasco

Departament d’Enginyeria Electrònica

Universitat Politècnica de Catalunya

Diagonal 647, plta. 9

08028 Barcelona, Spain

email: sunye,carrasco@eel.upc.edu

Technical report DMSD 99 1

Last revision: December 11, 2000

Summary & Conclusions

CTMC (continuous-time Markov chains) are a commonly used formalism for mod-
eling fault-tolerant systems. One of the major drawbacks of CTMC is the well-known
state-space explosion problem. This work develops and analyzes a method (SC-BM) to
compute bounds for the reliability of non-repairable fault-tolerant systems in which only
a portion of the state space of the CTMC is generated. SC-BM uses the failure distance
concept as the method described in [1] but, unlike that method, which is based on the
computation of exact failure distances, SC-BM uses lower bounds for failure distances,
which are computed on the system fault tree, avoiding the computation and holding of
all minimal cuts as required in [1]. This is important since computation of all minimal
cuts is NP-hard and the number of minimal cuts can be very large. In some cases SC-
BM gives exactly the same bounds as the method described in [1]; in other cases it gives
less tighter bounds. SC-BM computes tight bounds for the reliability of quite complex
systems with an affordable number of generated states for short to quite large mission
times. The analysis of several examples seems to show that the bounds obtained by
SC-BM appreciably outperform those obtained by simpler methods, eg [2], and, when
they are not equal, are only slightly worse than the bounds obtained by the method in
[1]. In addition, the overhead in CPU time due to computing lower bounds for failure
distances seems to be reasonable.

Index terms: Fault-tolerant systems, Non-repairable systems, Reliability Bounds, State-
space reduction.

1 Introduction

Acronyms1

CTMC continuous-time Markov chain
DTMC discrete-time Markov chain

BM-1 bounding method in [1]
SC-BM bounding method in this work
T-BM trivial bounding method, eg [2]

T-SC-BM implementation of T-BM in this work
FIFO first-in, first-out

Definitions
· bag: collection of possibly repeated elements; the notation c1[n1]c2[n2] · · · ck[nk] is for

a bag a including ni > 0 instances of element ci, i = 1, 2, . . . , k; each ci[ni] is part of a.
Notation for bags is from [3] except that: 1) a subbag b of bag a is b ⊂ a whether b is strictly
contained in a or not, and 2) bags are denoted as explained here
· minimal cut: minimal bag of component classes whose failure implies the system failure
· failure bag: bag of component classes that can fail simultaneously (in a single transition)
· failure distance from state a: minimum number of components that must fail, in addition

to those already failed in a, to fail the system

Notation
Pr{c} probability of event c
ur(t) unreliability: Pr{system has failed by time t}

[ur(t)]lb lower bound for ur(t) obtained with SC-BM, BM-1 or T-SC-BM
[ur(t)]ub upper bound for ur(t) obtained with SC-BM
[ur(t)]′ub upper bound for ur(t) obtained with BM-1
[ur(t)]′′ub upper bound for ur(t) obtained with T-SC-BM
X = {X(t); t ≥ 0} acyclic CTMC modeling the system
X ′ = {X ′(t); t ≥ 0} acyclic CTMC used in SC-BM for computing [ur(t)]lb and [ur(t)]ub

X ′′ = {X ′′(t); t ≥ 0} acyclic CTMC used in T-SC-BM for computing [ur(t)]lb and [ur(t)]′′ub

λa output rate of state a in X
λa,b transition rate from state a to state b in X
λa,B

∑
b∈B λa,b

Λ randomization rate (greater than or equal to the maximum output rate of both
X and X ′)

Y = {Yn; n = 0, 1, . . . } DTMC obtained by randomizing [4] X with rate Λ
Y ′ = {Y ′

n; n = 0, 1, . . . } DTMC obtained by randomizing [4] X ′ with rate Λ
O up states: set of states of X in which the system is operational
f down state: absorbing state that represents system failure
G subset of O that is generated
o state of O without failed components
U O −G

d(a) failure distance from state a
1The singular and plural of an acronym are always spelled the same.

1

L d(o)
Ud {a ∈ U | d(a) = d}
Uk {a ∈ U |number of failed components in a is k}
Uk,d Uk ∩ Ud

d̃(a) lower bound for d(a)
L̃ d̃(o)

Ũd,i {a ∈ Ud| d̃(a) = i}
Ũd {a ∈ U | d̃(a) = d}

F (a) bag of failed component classes in state a
MC set of minimal cuts of the system
|·| cardinality of a set or a bag [3]
E set of failure bags of the system
Ei {e ∈ E| |e| = i}

FC set of different cardinalities of failure bags
λub(e) upper bound for the rate with which failure bag e ∈ E is realized from any state

fi
∑

e∈Ei
λub(e)

∧,∨ logical operator AND, OR

Modeling is important in the design and analysis of fault-tolerant systems. These sys-
tems exhibit a stochastic behavior and, therefore, probabilistic measures are adequate for
their quantitative assessment. An important class of such systems are those whose compo-
nents cannot be repaired. For these systems, the reliability, Pr{system is operational by time t},
or its complement, ur(t), are suitable measures. Non-repairable fault-tolerant systems can
be modeled using combinatorial methods and, more generally, hierarchical methods [5, 6].
Hierarchical methods require the behavior of components and subsystems to be mutually
s-independent. Recently, combinatorial methods have been improved, allowing some com-
plex dependencies such as lack of coverage [7, 8] to be dealt with. However, when the failure
rate of a component depends on the global state of the system, then state-level modeling
techniques such as CTMC are required. A major drawback of CTMC, especially of those
modeling complex systems, is that the size of their state space is typically so large that it
goes far beyond the available computing resources. This well-known problem is referred to
as the state-space explosion. One approach to attack this problem is the use of bounding
methods, in which only a subset G of O is generated. Typically, G includes the states with
up to a given number K of failed components. Bounds for ur(t) can be trivially derived (eg
[2]) by modifying X so that exits of X from G not going to f are directed to an absorbing
state u0. The probability of the modified CTMC X ′′ being in state f by time t is a lower
bound for ur(t), and the probability of X ′′ being in {f, u0} by time t is an upper bound for
ur(t). This lower bound is usually good, but the upper bound is not, because it is equivalent
to assuming that the system is non-operational in all the states in U , which can be far from
reality. A recent paper [1] proposed the BM-1 method, in which the behavior of the system
out of the generated portion is bounded using the failure distance concept, resulting in an
improved upper bound for ur(t).

BM-1 requires computing the failure distances from the states of U that are reachable
from G in a single transition. These computations can be done knowing MC . We have
developed an algorithm [9] that computes MC efficiently in many cases. However, computing

2

MC is NP-hard [10] and in some cases the algorithm [9] can break down. In addition, |MC |
can be very large, causing a large memory overhead due to the need to hold MC and related
data structures for efficient failure distances computation.

This work develops and analyzes SC-BM, our new bounding method for ur(t) using
lower bounds for failure distances that are obtained on the fault tree, avoiding the compu-
tation and holding of MC .

Section 2 describes the class of models assumed in SC-BM and shows how bounds for
ur(t) can be computed in SC-BM from lower bounds for failure distances satisfying some
conditions.

Section 3 defines the lower bounds for failure distances used in SC-BM, proves that
they satisfy the required conditions, describes the procedures used in SC-BM to compute
such lower bounds, and describes how the CTMC X ′ is generated in SC-BM.

Section 4 describes how the CTMC X ′′ is generated in T-SC-BM and proves that the
cost (in terms of CPU time) of SC-BM is at most identical to the cost of T-SC-BM when
L̃ = 1.

Section 5 analyzes SC-BM using two examples, and compares it with T-SC-BM and
BM-1.

2 Class of Models and Unreliability Bounds

We consider acyclic CTMC X modeling non-repairable fault-tolerant systems. We assume
that the system is made up of components that can be grouped into classes, the com-
ponents of the same class being indistinguishable from a dependability view-point. The
operational/down state of the system is determined by the unfailed/failed state of its com-
ponents by a fault tree. The fault tree of the system is constructed using AND and OR gates
and inputs. Inputs have associated with them different bags of the form c[n]. Input x with
associated bag c[n] has the value 1 if and only if at least n components of class c are failed.
The value of the fault tree is computed as usual from the values of its inputs. The system
is down if and only if the value of the fault tree is 1. To avoid trivialities, we assume that
no inputs x, y with associated bags c[n], c[n′], n �= n′ feed the same gate. This is not a true
restriction because, for n′ > n and an OR gate, x, y can be replaced by x and for an AND
gate by y. Each state a ∈ O has associated with it a bag of failed component classes F (a).
There is a single state, state o, with F (o) = ∅. Each transition of X has associated with it a
failure bag e ∈ E, including the components that are failed when the transition is followed.
Imperfect coverage can be modeled by introducing fictitious components that do not fail by
themselves and to which uncovered faults are propagated. This point is illustrated in the
following example.

Figure 1 shows the architecture of an example system, adapted from [6], which is used
for illustration. The system consists of two memory modules MM1 and MM2, three s-
identical CPU chips CPUC and two s-identical port chips PTC. In addition, to model

3

10

spare spare

1 2 8. . .

spares

9

CPUC PTC

MM1 MM2

MCj

ICj

Figure 1: Architecture of the example system.

imperfect coverage, one fictitious component RMMj , j = 1, 2 and two fictitious components
RCM are added to the system. One CPUC and one PTC are spares. Each MMj has ten
memory chips MCj , two of which are spares, and one interface chip ICj . The ICj and
active MCj , PTC, and CPUC fail, respectively, with rate λICj , λMCj , λPTC, and λCPUC.
Spare chips fail with rates ν · λMCj

, ν · λPTC, and ν · λCPUC, where ν, 0 < ν < 1 is a
dormancy factor. Recovery is hierarchical. A fault in a MCj is covered with probability
CMC. Failure of MMj and faults of CPUC and PTC are covered with probabilities CMM,
CCPUC and CPTC, respectively. To model imperfect coverage, an uncovered fault in a MCj

is propagated to the fictitious component RMMj , and an uncovered failure of MMj, and
an uncovered fault of a CPUC or a PTC are propagated to the two fictitious components
RCM. The MMj is operational if at least eight MCj, the ICj and the RMMj are unfailed.
The system is operational if at least one memory module is operational, and at least two
CPUC, one PTC and one RCM are unfailed.

Table 1 gives the failure bags of the example system and, for each failure bag e, a suitable
upper bound λub(e) expressed in terms of the above failure rates, coverage probabilities
and the dormancy factor. Thus, eg, failure bag e1 is the fault of a memory chip of the
first memory module which is covered at memory module level, e2 is the fault of that
chip which is uncovered at memory module level and covered at system level, and e3 is
the uncovered fault of the chip. For the example system, FC = {1, 2, 3, 4} and f1 =
λub(e1) + λub(e4) + λub(e6) + λub(e9) + λub(e11) + λub(e13), f2 = λub(e2) + λub(e7), f3 =
λub(e5) + λub(e10) + λub(e12) + λub(e14), and f4 = λub(e3) + λub(e8).

2.1 SC-BM

SC-BM computes [ur(t)]lb and [ur(t)]ub by solving the transient regime of the CTMC X ′.
The CTMC X ′ has state space G ∪ {f} ∪ {u0, . . . , uL̃

}. Although other selections for G
are possible, we assume that G includes all the up states of the model with up to K failed
components. We also assume Pr{X(0) ∈ G} = 1. The states ud, 0 ≤ d ≤ L̃ pessimistically

4

Table 1: Failure bags of the example system and, for each failure bag e, a suitable upper
bound λub(e).

description λub(e)
e1 MC1[1] (8 + 2ν)λMC1CMC

e2 MC1[1] RMM1[1] (8 + 2ν)λMC1(1 − CMC)CMM

e3 MC1[1] RMM1[1] RCM[2] (8 + 2ν)λMC1(1 − CMC)(1 − CMM)
e4 IC1[1] λIC1CMM

e5 IC1[1] RCM[2] λIC1(1 − CMM)
e6 MC2[1] (8 + 2ν)λMC2CMC

e7 MC2[1] RMM2[1] (8 + 2ν)λMC2(1 − CMC)CMM

e8 MC2[1] RMM2[1] RCM[2] (8 + 2ν)λMC2(1 − CMC)(1 − CMM)
e9 IC2[1] λIC2CMM

e10 IC2[1] RCM[2] λIC2(1 − CMM)
e11 CPUC[1] (2 + ν)λCPUCCCPUC

e12 CPUC[1]RCM[2] (2 + ν)λCPUC(1 − CCPUC)
e13 PTC[1] (1 + ν)λPTCCPTC

e14 PTC[1]RCM[2] (1 + ν)λPTC(1 − CPTC)

approximate the behavior of X in U from the instant in which X enters U from G. The
transition rates in X ′ from a to b, a, b ∈ G and from a to f , a ∈ G are as in X. The
transition rates from states a ∈ G to ud, 1 ≤ d ≤ L̃ have values λa,Ũd

, and for each

1 ≤ d ≤ L̃ and each i ∈ FC , there is a transition rate fi from ud to umax{0,d−i}. The initial
probability distribution of X ′ in G is the same as the initial probability distribution of X
in G. Section 3.1 shows that L̃ = 2 for the example system. Figure 2 shows the structure
of X ′ for the example system. The bounds are:

[ur(t)]lb = Pr{X ′(t) = f} ,
[ur(t)]ub = Pr{X ′(t) ∈ {u0, f}} . (1)

G

f

λa,Ũ2

λa,f

f2 + f3 + f4

λa,Ũ1

u1u2 u0

f1 + f2 + f3 + f4f1

Figure 2: State transition diagram of X ′ for the example system (L̃ = 2, FC = {1, 2, 3, 4}).

5

The correctness of [ur(t)]lb is trivial. The correctness of [ur(t)]ub is proved in Section 2.2.
Given the relationships between X ′ and the CTMC used in BM-1 [1], it is easy to conclude
that SC-BM and BM-1 give exactly the same bounds when d̃(a) = d(a), a ∈ U . Otherwise,
BM-1 gives, in general, tighter bounds than SC-BM.

2.2 Correctness of [ur(t)]ub

This section establishes the correctness of [ur(t)]ub under the conditions 1 ≤ d̃(a) ≤ d(a), a ∈
U , and d̃(a) ≤ L̃.

The proof is constructed with the aid of the DTMC Y and Y ′. Since [11]X = {X(t); t ≥
0} is probabilistically identical to {YN(t); t ≥ 0} and X ′ = {X ′(t); t ≥ 0} is probabilistically
identical to {Y ′

N(t); t ≥ 0}, where N = {N(t); t ≥ 0} is a Poisson process with arrival rate Λ
independent of both Y and Y ′:

Pr{X(t) = a} =
∞∑

n=0

e−Λt (Λt)
n

n!
Pr{Yn = a} , (2)

Pr{X ′(t) = a} =
∞∑

n=0

e−Λt (Λt)
n

n!
Pr{Y ′

n = a} . (3)

Let

R′
m(d) = Pr{Y ′

m = u0 |Y ′
0 = ud} , (4)

Rm(a) = Pr{Ym = f |Y0 = a} . (5)

Then, we have the following two results. Lemma 1 is formally identical to Lemma 1 of
[1].

Lemma 1 R′
m(d), m > 0, d > 0 is decreasing on d.

Proof. From the structure of Y ′,

R′
m(0) = 1, m > 0 , (6)

R′
1(d) =

∑
i∈FC
i≥d

fi

Λ
, d > 0 . (7)

Also, for m > 1, d > 0,

R′
m(d) =

(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m−1(d) +
∑
i∈FC

fi

Λ
R′

m−1

(
max{0, d− i}) . (8)

The proof is by induction on m.

Base case (m = 1): We show that R′
1(d) ≤ R′

1(d − 1), d > 0. For d = 1, using (7),
Λ ≥ ∑

i∈FC fi and (6):

R′
1(1) =

∑
i∈FC

fi

Λ
≤ 1 = R′

1(0) .

6

For d > 1, using (7),

R′
1(d) =

∑
i∈FC
i≥d

fi

Λ
≤

∑
i∈FC
i≥d−1

fi

Λ
= R′

1(d− 1) .

Induction step: Let m > 0 and assume R′
m(d), d > 0 is decreasing on d; it has to be shown

that R′
m+1(d) ≤ R′

m+1(d − 1), d > 0. For d = 1, using (8), Λ ≥ ∑
i∈FC fi, R′

m(1) ≤ 1, and
(6),

R′
m+1(1) =

(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m(1) +
∑
i∈FC

fi

Λ
R′

m(0)

≤ 1 − 1
Λ

∑
i∈FC

fi +
∑

i∈FC

fi

Λ
= 1 = R′

m+1(0) .

For d > 1, using (8), Λ ≥ ∑
i∈FC fi and the induction hypothesis,

R′
m+1(d) =

(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m(d) +
∑

i∈FC

fi

Λ
R′

m

(
max{0, d − i})

≤
(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m(d− 1) +
∑
i∈FC

fi

Λ
R′

m

(
max{0, d − i− 1}) = R′

m+1(d− 1) .

Proposition 1 Rm(a) ≤ R′
m(min{d, L̃}), a ∈ Ud, m > 0, d > 0.

Proof. Let λi
a,f be the contribution to λa,f associated with failure bags e ∈ Ei. Then,

λi
a,f ≤ fi. If i < d, λa,f does not have any contribution λi

a,f because a ∈ Ud and a failure
bag e ∈ Ei reduces the failure distance by at most i. Therefore,

R1(a) =
∑
i∈FC
i≥d

λi
a,f

Λ
. (9)

Let k be the number of failed components of the system in state a. Since f is absorbing,
for m > 1,

Rm(a) =
(
1 − λa

Λ

)
Rm−1(a) +

∑
i∈FC
i≥d

[λi
a,f

Λ
+

d∑
d′=1

∑
b∈Uk+i,d′

λa,b

Λ
Rm−1(b)

]

+
∑
i∈FC
i<d

d∑
d′=d−i

∑
b∈Uk+i,d′

λa,b

Λ
Rm−1(b) .

(10)

The proof is by induction on m.

Base case (m = 1): We show that R1(a) ≤ R′
1(min{d, L̃}), with a ∈ Ud, d > 0. Using

(9), λi
a,f ≤ fi, and (7),

R1(a) =
∑
i∈FC
i≥d

λi
a,f

Λ
≤

∑
i∈FC
i≥d

fi

Λ
≤

∑
i∈FC

i≥min{d,L̃}

fi

Λ
= R′

1(min{d, L̃}) .

7

Induction step: Let m > 0 and assume Rm(a) ≤ R′
m(min{d, L̃}), a ∈ Ud, d > 0; it has to be

shown that Rm+1(a) ≤ R′
m+1(min{d, L̃}), a ∈ Ud, d > 0. Using (10), Λ ≥ λa (which implies

1 − λa/Λ ≥ 0) and the induction hypothesis,

Rm+1(a) ≤
(
1 − λa

Λ

)
R′

m(min{d, L̃}) +
∑

i∈FC
i≥d

[λi
a,f

Λ
+

d∑
d′=1

∑
b∈Uk+i,d′

λa,b

Λ
R′

m(min{d′, L̃})
]

+
∑
i∈FC
i<d

d∑
d′=d−i

∑
b∈Uk+i,d′

λa,b

Λ
R′

m(min{d′, L̃}) .

Using R′
m(min{d′, L̃}) ≤ 1, Lemma 1 and that for i ∈ FC and d > 1

d∑
d′=d−j

∑
b∈Uk+i,d′

λa,b ≤ λa,Uk+i , 0 ≤ j < d ,

we have

Rm+1(a) ≤
(
1 − λa

Λ

)
R′

m(min{d, L̃}) +
∑

i∈FC
i≥d

[λi
a,f

Λ
+

d∑
d′=1

∑
b∈Uk+i,d′

λa,b

Λ

]

+
∑
i∈FC
i<d

[
R′

m(min{d− i, L̃})
d∑

d′=d−i

∑
b∈Uk+i,d′

λa,b

Λ

]

≤
(
1 − λa

Λ

)
R′

m(min{d, L̃}) +
∑

i∈FC
i≥d

λi
a,f + λa,Uk+i

Λ

+
∑
i∈FC
i<d

R′
m(min{d− i, L̃})λa,Uk+i

Λ
. (11)

Since λa = λa,f +
∑

i∈FC λa,Uk+i , then

λa

Λ
=

∑
i∈FC
i≥d

λi
a,f + λa,Uk+i

Λ
+

∑
i∈FC
i<d

λa,Uk+i

Λ
. (12)

Combining (11) and (12),

Rm+1(a) ≤ R′
m(min{d, L̃}) +

∑
i∈FC
i≥d

[
1 −R′

m(min{d, L̃})]λi
a,f + λa,Uk+i

Λ

+
∑

i∈FC
i<d

[
R′

m(min{d− i, L̃}) −R′
m(min{d, L̃})]λa,Uk+i

Λ
.

For i ≥ d, λi
a,f + λa,Uk+i ≤ fi; for i < d, λa,Uk+i < fi; then, using R′

m(min{d, L̃}) ≤ 1,

8

Lemma 1 (which guarantees R′
m(min{d− i, L̃}) −R′

m(min{d, L̃}) ≥ 0, i > 0), (6), and (8),

Rm+1(a) ≤ R′
m(min{d, L̃}) +

∑
i∈FC
i≥d

[
1 −R′

m(min{d, L̃})]fi

Λ

+
∑

i∈FC
i<d

[
R′

m(min{d− i, L̃}) −R′
m(min{d, L̃})]fi

Λ

=
(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m(min{d, L̃}) +
∑
i∈FC

fi

Λ
R′

m

(
max{0,min{d− i, L̃}})

≤
(
1 − 1

Λ

∑
i∈FC

fi

)
R′

m(min{d, L̃}) +
∑
i∈FC

fi

Λ
R′

m

(
max{0,min{d, L̃} − i})

= R′
m+1(min{d, L̃}) .

Using Lemma 1 and Proposition 1, it is possible to prove the following proposition,
which establishes that Y ′ “upper bounds” Y .

Proposition 2 Let 1 ≤ d̃(a) ≤ d(a), a ∈ U , d̃(a) ≤ L̃, and Pr{X(0) ∈ G} = 1. Then,
Pr{Yn = f} ≤ Pr{Y ′

n ∈ {u0, f}}, n > 0.

Proof. The following notation is used in the proof:

ψ(m,x) ≡ Ym−1 ∈ G ∧ Ym = x ,

ψ′(m,x) ≡ Y ′
m−1 ∈ G ∧ Y ′

m = x .

Y can enter f through U or directly from G. Because f is absorbing, conditioning the entry
of Y in f through U to the step in which Y enters U and the entry state, and using (5),

Pr{Yn = f} =
n−1∑
m=1

∑
a∈U

Pr{ψ(m,a)}Pr{Yn = f |Ym = a} +
n∑

m=1

Pr{ψ(m, f)}

=
n−1∑
m=1

∑
a∈U

Pr{ψ(m,a)}Rn−m(a) +
n∑

m=1

Pr{ψ(m, f)} .

Since, for a ∈ U , 1 ≤ d̃(a) ≤ d(a) and d̃(a) ≤ L̃, then Ud can be partitioned as:

Ud =
min{d,L̃}⋃

i=1

Ũd,i .

Then, since L̃ = d̃(o) ≤ d(o) = L,

U =
L⋃

d=1

Ud =
L⋃

d=1

min{d,L̃}⋃
i=1

Ũd,i =
L̃⋃

i=1

L⋃
d=i

Ũd,i .

Using this partition of U and Proposition 1,

Pr{Yn = f} =
n−1∑
m=1

L̃∑
i=1

L∑
d=i

∑
a∈Ũd,i

Pr{ψ(m,a)}Rn−m(a) +
n∑

m=1

Pr{ψ(m, f)}

9

≤
n−1∑
m=1

L̃∑
i=1

L∑
d=i

∑
a∈Ũd,i

Pr{ψ(m,a)}R′
n−m(min{d, L̃}) +

n∑
m=1

Pr{ψ(m, f)} .

Using Lemma 1, Ũi =
⋃L

d=i Ũd,i, the relations between Y and Y ′, and (4):

Pr{Yn = f} ≤
n−1∑
m=1

L̃∑
i=1

L∑
d=i

∑
a∈Ũd,i

Pr{ψ(m,a)}R′
n−m(i) +

n∑
m=1

Pr{ψ(m, f)}

=
n−1∑
m=1

L̃∑
i=1

∑
a∈Ũi

Pr{ψ(m,a)}R′
n−m(i) +

n∑
m=1

Pr{ψ(m, f)}

=
n−1∑
m=1

L̃∑
i=1

Pr{ψ′(m,ui)}R′
n−m(i) +

n∑
m=1

Pr{ψ′(m, f)}

=
n−1∑
m=1

L̃∑
i=1

Pr{ψ′(m,ui)}Pr{Y ′
n = u0 |Y ′

m = ui} +
n∑

m=1

Pr{ψ′(m, f)}

= Pr{Y ′
n = u0} + Pr{Y ′

n = f} = Pr{Y ′
n ∈ {u0, f}} .

Proposition 1 allows us to prove the correctness of [ur(t)]ub. This result is Theorem 1.

Theorem 1 Let 1 ≤ d̃(a) ≤ d(a), a ∈ U , d̃(a) ≤ L̃, and Pr{X(0) ∈ G} = 1. Then,
ur(t) ≤ [ur(t)]ub.

Proof. Using (2) and Pr{Y0 = f} = Pr{X(0) = f} = 0,

ur(t) = Pr{X(t) = f} =
∞∑

n=1

e−Λt (Λt)
n

n!
Pr{Yn = f} .

Using Proposition 2, Pr{Y ′
0 ∈ {u0, f}} = Pr{X ′(0) ∈ {u0, f}} = 0, (3), and (1),

ur(t) ≤
∞∑

n=1

e−Λt (Λt)
n

n!
Pr{Y ′

n ∈ {u0, f}} =
∞∑

n=0

e−Λt (Λt)
n

n!
Pr{Y ′

n ∈ {u0, f}}

= Pr{X ′(t) ∈ {u0, f}} = [ur(t)]ub .

3 Computation of Lower Bounds for Failure Distances and

Model Generation in SC-BM

Definitions
· node (also referred to as event): gate or input of the fault tree
· related: two inputs x, y are related if b(x) = c[n] and b(y) = c[n′], n �= n′

· realized: an event x is realized if val(x) = 1
· path: a sequence of nodes x1 · · · xk such that xi ∈ fo(xi+1), i = 1, . . . , k − 1
· reachable node: a node x is reachable from node y if there exists a path from y to x

10

· module: x ∈ I ∪ P is a module if and only if every path z · · · y, z /∈ Reach(x), y ∈
Reach(x) contains node x, and for each input y ∈ Support(x), no related inputs exist
outside Support(x)
· independent: two nodes x, y ∈ I∪P are said to be independent if Support(x)∩Support(y) =
∅ and there do not exist related inputs z ∈ Support(x), t ∈ Support(y)

Notation
C set of component classes
I set of inputs (basic events) of the fault tree; each input x has associated with it

a different bag, b(x), of the form c[n], c ∈ C, n ≥ 1
P set of gates (complex events) of the fault tree
gr root gate (top event) of the fault tree

type(g) type of gate g: AND or OR
fo(x) fanout of (set of nodes fed by) node x
fi(x) fanin of (set of nodes that feed) node x

val(·) value (1 or 0) of an input or a gate
lev(x) level of node x; if x ∈ I, lev(x) = 0; if x ∈ P , lev(x) = 1 + maxy∈fi(x) lev(y)

Reach(x) node x plus set of nodes reachable from x

Support(x) I ∩ Reach(x), x ∈ I ∪ P
S(F, x)

∣∣∣F ∩
(⋃

y∈Support(x) b(y)
)∣∣∣, where F is a bag of failed component classes and x

is a node
db(F, x) distance from F to x: minimum number of components which must fail in addi-

tion to those in the bag of component classes F to realize event x
d̃b(F, x) lower bound for db(F, x)

η̃(e) d̃b(e, gr): lower bound for the distance from a failure bag e ∈ E to gr

This section obtains the lower bounds d̃(a) = d̃b(F (a), gr) for the failure distance from
states a used in SC-BM. The bounds are proved to fulfill the conditions which, according to
Theorem 1, guarantee the correctness of [ur(t)]ub and the condition d̃(a) = 0 if and only if
d(a) = 0, which eases the generation of X ′ (see Section 3.4). The section also gives sufficient
conditions for d(a) = d̃(a). Finally, it describes procedures that can be used to compute the
lower bounds for the failure distances from the successors of a state, and describes how the
CTMC X ′ is generated using those procedures.

3.1 Recursive Definition of Lower Bounds for Failure Distances

The lower bounds for failure distances d(a) = db(F (a), gr) used in SC-BM are defined on
the fault tree of the system using the concept of module, which generalizes to component
classes the definition in [12, 13], in the sense that a module is a node such that the subtree
hanging from it has that node as only entry point and every input of the subtree does not
have related inputs outside the subtree. To determine which gates or inputs of the fault tree
are modules, the algorithm LTA/DR of [13] is used with a small modification to deal with
component classes: during the first depth-first left-most traversal of the fault tree (step no.
2 of the algorithm LTA/DR), visit to x ∈ I implies simultaneous visit (viz with the same
time-stamp as for x) to all inputs related to it.

11

RMM1[1]

x6x5x4x3x2x1

IC1[1]

g2 g3

g1

gr

x7 x8 x9

MC1[3] RMM2[1]

CPUC[2] PTC[2] RCM[2]

IC2[1]MC2[3]

Figure 3: Fault tree of the example system. The bag associated with an input is given next
to that input.

Given a bag of component classes F , d̃b(F, x), x ∈ I ∪ P is defined recursively by:

For x ∈ I, b(x) = c[n]:

d̃b(F, x) ≡
{
n if no c[n′] is part of F
max

{
0, n − n′

}
if c[n′] is part of F

. (13)

For x ∈ P , type(x) = OR:
d̃b(F, x) ≡ min

y∈fi(x)
d̃b(F, y) . (14)

For x ∈ P , type(x) = AND:

d̃b(F, x) ≡
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y) , max
y∈C(x)

{
0, d̃b(F, y)

}}
, (15)

where A(x) ≡ {y ∈ fi(x)| y is a module ∧ |fo(y)| = 1}, B(x) ≡ {y ∈ fi(x)| y is a module ∧
|fo(y)| > 1 ∨ y is not a module ∧ y ∈ I}, C(x) ≡ {y ∈ fi(x)| y is not a module ∧ y ∈ P}.

Expressions (13)–(15) allow computation of d̃b(F, gr) traversing the fault tree depth-
first left-most, starting at gr. Figure 3 shows the fault tree of the example system. Table 2
shows how L̃ = d̃b(∅, gr) is computed for that fault tree. All gates and inputs of the fault
tree are modules and, therefore, (15) reduces to

d̃b(F, x) =
∑

y∈fi(x)

d̃b(F, y) .

3.2 Correctness of the Lower Bounds for Failure Distances and Related

Results

Let F be a bag of failed component classes and x ∈ I ∪ P . This section:

12

Table 2: Computation of L̃ = d̃b(∅, gr) traversing depth-first left-most the fault tree of the
example system, starting at gr and using (13)–(15).

step 1 2 3 4 5 6 7 8 9
node x gr g1 g2 x1 x2 x3 g2 g3 x4

d̃b(∅, x) – – – 3 1 1 1 – 3
step 10 11 12 13 14 15 16 17

node x x5 x6 g3 g1 x7 x8 x9 gr

d̃b(∅, x) 1 1 1 2 2 2 2 2

a) Proves that 0 ≤ d̃b(F, x) ≤ db(F, x); also, d̃b(F, x) = 0 if and only if db(F, x) = 0
(Lemma 2, Propositions 3 and 4, and Theorem 2).

b) Gives a sufficient condition for d̃b(F, x) = db(F, x) (Theorem 3).

c) Gives a lower and upper bound for d̃b(F, x), F = F ′ + F ′′ in terms of d̃b(F ′, x)
(Theorem 4).

We start by proving Lemma 2, Propositions 3 and 4, and Theorem 2.

Lemma 2 Let x, y ∈ I∪P , and let x be a module. Then, if x, y ∈ I, Reach(x)∩Reach(y) =
∅; otherwise, Reach(x)∩Reach(y) �= ∅ if and only if either x ∈ Reach(y) or y ∈ Reach(x).

Proof. If x, y ∈ I, the result is trivial. The three remaining cases that have to be dealt
with are: x ∈ I, y ∈ P ; x ∈ P, y ∈ I; and x, y ∈ P . The if implication for these cases
is also trivial since x ∈ Reach(y) or y ∈ Reach(x) implies (recall that x ∈ Reach(x) and
y ∈ Reach(y)) Reach(x) ∩ Reach(y) �= ∅. Regarding the only if implication, consider first
the case x ∈ I, y ∈ P . Reach(x) ∩ Reach(y) = {x} ∩ Reach(y) �= ∅ implies x ∈ Reach(y).
The case x ∈ P, y ∈ I is analogous: Reach(x) ∩ Reach(y) = Reach(x) ∩ {y} �= ∅ implies
y ∈ Reach(x). Now, consider the case x, y ∈ P . Assume Reach(x) ∩ Reach(y) �= ∅ and
neither x ∈ Reach(y) nor y ∈ Reach(x), and take z ∈ Reach(x) ∩ Reach(y). Then, since
x /∈ Reach(y), the path y . . . z does not contain event x, which contradicts the fact that x is
a module because y /∈ Reach(x) and z ∈ Reach(x).

Proposition 3 Let x, y ∈ I ∪ P, z ∈ P , x, y ∈ fi(z), and let x be a module. Then, x and y
are independent if one of the following conditions holds:

a) y ∈ I,

b) y ∈ P and y is a module,

c) y ∈ P and |fo(x)| = 1.

13

Proof. If Support(x)∩Support(y) = ∅, the inputs in Support(x) are not related to those in
Support(y) because x is a module and, thus, x and y are independent. Therefore, it suffices
to prove Support(x) ∩ Support(y) = ∅ or, equivalently, Reach(x) ∩ Reach(y) = ∅.

Condition a: If x ∈ I, Reach(x) ∩ Reach(y) = ∅ by Lemma 2. If x ∈ P , Reach(x) ∩
Reach(y) = Reach(x) ∩ {y} �= ∅ if and only if y ∈ Reach(x) by Lemma 2 (x ∈ Reach(y) is
not possible). But y ∈ fi(z) implies the existence of the path zy not containing x, and, then,
y ∈ Reach(x) would contradict the fact that x is a module.

Condition b: Assume Reach(x) ∩ Reach(y) �= ∅. Using Lemma 2, either x ∈ Reach(y)
or y ∈ Reach(x). x ∈ Reach(y) and the existence of the path zx contradicts the assumption
that y is a module. If x ∈ I, y ∈ Reach(x) is not possible. If x ∈ P , y ∈ Reach(x) and the
existence of the path zy contradicts the assumption that x is a module.

Condition c: Assume again Reach(x) ∩ Reach(y) �= ∅. From Lemma 2, either y ∈
Reach(x) or x ∈ Reach(y). If x ∈ I, y ∈ Reach(x) is not possible. If x ∈ P , y ∈ Reach(x)
and the existence of the path zy contradicts the assumption that x is a module. x ∈ Reach(y)
implies |fo(x)| > 1 since x ∈ fi(z), in contradiction with |fo(x)| = 1.

Proposition 4 Let x ∈ P , type(x) = AND. Let the partition fi(x) = A(x) ∪ B(x) ∪ C(x),
where A(x) ≡ {y ∈ fi(x)| y is a module ∧ |fo(y)| = 1}, B(x) ≡{y ∈ fi(x)| y is a module ∧
|fo(y)| > 1 ∨ y is not a module ∧ y ∈ I} and C(x) ≡ {y ∈ fi(x)| y is not a module ∧ y ∈ P}.
Then,

a) all y ∈ A(x) are mutually independent,

b) all y ∈ A(x) are independent from all y′ ∈ B(x) ∪ C(x), and

c) all y ∈ B(x) are mutually independent.

Proof. To show part a, consider y, y′ ∈ A(x). Obviously, y is a module. If y′ ∈ I, condition
a of Proposition 3 is satisfied. If y′ ∈ P , condition b of Proposition 3 is satisfied because y′

is also a module. To show part b, consider first y ∈ A(x), y′ ∈ B(x). Clearly, y is a module
and y′ is an input or a gate. If y′ ∈ I, condition a of Proposition 3 is satisfied; if y′ ∈ P ,
y′ is a module and condition b of Proposition 3 is satisfied. The case y ∈ A(x), y′ ∈ C(x)
is dealt with as follows. We have that y is a module, |fo(y)| = 1 and y′ ∈ P . Therefore,
condition c of Proposition 3 is fulfilled. Regarding part c, let y, y′ ∈ B(x). The following
four cases have to be considered: 1) y, y′ ∈ I, 2) y ∈ I, y′ ∈ P , 3) y ∈ P , y′ ∈ I, and 4)
y, y′ ∈ P . In case 1 the result holds trivially since, as assumed (see Section 2 on page 3),
two inputs of a gate cannot be related. In case 2, y′ must be a module and y, y′ satisfy
condition a of Proposition 3. Case 3 is symmetric to case 2. Finally, in case 4 both y and
y′ are modules and condition b of Proposition 3 is satisfied.

Theorem 2 Let F be a bag of component classes and x ∈ I∪P . Then, the d̃b(F, x), defined
recursively by (13)–(15), verify:

a) 0 ≤ d̃b(F, x) ≤ db(F, x) .

14

b) d̃b(F, x) = 0 if and only if db(F, x) = 0 .

Proof. By complete induction over lev(x).

Base case (lev(x) = 0): In this case, x ∈ I, b(x) = c[n]. From (13) and the definition
of db(F, x), 0 ≤ d̃b(F, x) = db(F, x), showing both a and b.

Induction step: Assume that the theorem holds for all x ∈ I ∪ P , lev(x) ≤ l, l ≥ 0; it
has to be shown that the theorem also holds for x ∈ P , lev(x) = l+1 (x cannot be an input
since lev(x) ≥ 1).

Part a: Consider first the case type(x) = OR. Using the definition of db(F, x), the
fact that x is realized if and only if some y ∈ fi(x) is realized, the induction hypothesis for
y ∈ fi(x) since lev(y) ≤ l, the monotonicity of min{·}, and (14),

db(F, x) = min
y∈fi(x)

{
db(F, y)

}
≥ min

y∈fi(x)

{
d̃b(F, y)

}
= d̃b(F, x) ≥ 0 .

Consider now the case type(x) = AND. Let the partition fi(x) = A(x)∪B(x)∪C(x) defined
in Proposition 4 and let t =

∧
y∈B(x) y and u =

∧
y∈C(x) y (if some of the subsets B(x)

or C(x) is empty, the corresponding logical variable is equal to the logical constant 1 and
d̃b(F, 1) = 0). Using the fact that x is realized if and only if all y ∈ fi(x) are realized, the
definition of db(F, x) and parts a and b of Proposition 4,

db(F, x) =
∑

y∈A(x)

db(F, y) + db(F, t ∧ u) ≥
∑

y∈A(x)

db(F, y) + max
{
db(F, t), db(F, u)

}
.

Using the definition of failure distance from a bag to an event, the fact that t is realized if
and only if all y ∈ B(x) are realized and u is realized if and only if all y ∈ C(x) are realized,
part c of Proposition 4, the induction hypothesis, the monotonicity of max{·}, and (15),

db(F, x) ≥
∑

y∈A(x)

db(F, y) + max
{ ∑

y∈B(x)

db(F, y), max
y∈C(x)

{
0, db(F, y)

}}

≥
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{
0, d̃b(F, y)

}}
= d̃b(F, x) ≥ 0 ,

where the use of maxy∈C(x){0, d̃b(F, y)} instead of maxy∈C(x) d̃b(F, y) allows to deal correctly
with the case C(x) = ∅.

Part b: The if implication follows from 0 ≤ d̃b(F, x) ≤ db(F, x). The only if implication
is proved as follows. If type(x) = OR, d̃b(F, x) = 0 implies (14) the existence of y ∈ fi(x)
with d̃b(F, y) = 0. From the induction hypothesis, this implies db(F, y) = 0, which leads to
db(F, x) = 0 by the definition of distance from a bag to an event and the fact that x is realized
if and only if some y ∈ fi(x) is realized. If type(x) = AND, using (15), d̃b(F, x) = 0 requires
d̃b(F, y) = 0 for all y ∈ fi(x). As before, the induction hypothesis implies db(F, y) = 0 for
all y ∈ fi(x), and, hence, db(F, x) = 0 by the definition of db(F, x) and the fact that x is
realized if and only if all y ∈ fi(x) are realized.

Theorem 3 gives a sufficient condition for d̃b(F, x) = db(F, x).

15

Theorem 3 Let x ∈ I ∪ P and let F be a bag of component classes. Then, d̃b(F, x) =
db(F, x) if for every z ∈ P with type(z) = AND one of the following two conditions holds:

a) Every y ∈ fi(z) is a module or an input.

b) There exists only one u ∈ fi(z) which is neither a module nor an input, and every
y ∈ fi(z), y �= u is a module with |fo(y)| = 1.

Proof. By complete induction over lev(x).

Base case (lev(x) = 0): In this case, x ∈ I, b(x) = c[n]. From the definition of db(F, x)
and (13), d̃b(F, x) = db(F, x).

Induction step: Assume that the theorem holds for all x ∈ I ∪ P , lev(x) ≤ l, l ≥ 0; it
has to be shown that the theorem also holds for x ∈ P , lev(x) = l+1 (x cannot be an input
since lev(x) ≥ 1). Consider first the case type(x) = OR. Using the definition of db(F, x),
the fact that x is realized if and only if some y ∈ fi(x) is realized, the induction hypothesis,
and (14),

db(F, x) = min
y∈fi(x)

{
db(F, y)

}
= min

y∈fi(x)

{
d̃b(F, y)

}
= d̃b(F, x) .

Consider next the case type(x) = AND. Let the partition fi(x) = A(x)∪B(x)∪C(x) defined
in Proposition 4. If condition a of the theorem holds, C(x) = ∅. Then, using the fact that
x is realized if and only if all y ∈ fi(x) are realized, the definition of db(F, x), the fact that
C(x) = ∅, and that, according to Proposition 4, all y ∈ fi(x) are mutually independent,

db(F, x) =
∑

y∈A(x)∪B(x)

db(F, y) .

Using the induction hypothesis, the fact that C(x) = ∅ and (15),

db(F, x) =
∑

y∈A(x)∪B(x)

d̃b(F, y)

=
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{
0, d̃b(F, y)

}}
= d̃b(F, x) .

Assume now that condition b of the theorem holds. Then, B(x) = ∅ and C(x) = {u}.
Using the fact that x is realized if and only if all y ∈ fi(x) are realized, the definition of
db(F, x), the fact that B(x) = ∅ and C(x) = {u}, and that, according to parts a and b of
Proposition 4, all y ∈ fi(x) are mutually independent,

db(F, x) =
∑

y∈A(x)

db(F, y) + db(F, u).

Finally, using the induction hypothesis, the fact that B(x) = ∅ and C(x) = {u}, and (15):

db(F, x) =
∑

y∈A(x)

d̃b(F, y) + d̃b(F, u)

=
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{
0, d̃b(F, y)

}}
= d̃b(F, x) .

16

Theorem 4 gives a lower and an upper bound for d̃b(F, x), F = F ′ + F ′′ in terms of
d̃b(F ′, x).

Theorem 4 Let F , F ′, F ′′ be bags of component classes with F = F ′+F ′′ and let x ∈ I∪P .
Then,

d̃b(F ′, x) ≥ d̃b(F, x) ≥ d̃b(F ′, x) − S(F ′′, x) .

Proof. By complete induction over lev(x).

Base case (lev(x) = 0): Since lev(x) = 0, then x ∈ I, b(x) = c[n]. The following three
cases cover all possibilities: a) d̃b(F ′, x) = 0, b) d̃b(F ′, x) > 0 and no c[n′] is part of F ′′,
and c) d̃b(F ′, x) > 0 and there exists c[n′] part of F ′′. In case a, there exists (13) c[n′] part
of F ′ with n′ ≥ n. Since F = F ′ + F ′′, then c[n′′], n′′ ≥ n′ part of F exists. Therefore,
d̃b(F, x) = 0 = d̃b(F ′, x) showing both inequalities because S(F ′′, x) ≥ 0. In case b, clearly
d̃b(F, x) = d̃b(F ′, x) and both inequalities are also shown. In case c, let d̃b(F ′, x) = n′′,
0 < n′′ ≤ n. Since Support(x) = {x} and b(x) = c[n], it follows that S(F ′′, x) = min{n, n′}.
Let n′′′ = n− n′′. Then (13), if n′′′ > 0 we have that c[n′′′] is part of F ′ and if n′′′ = 0, no
c[m] is part of F ′. Since F = F ′ + F ′′, then c[n′′′ + n′] is part of F . Therefore, using (13),

d̃b(F ′, x) = n′′ = n− n′′′ ≥ max
{
0, n− n′′′ − n′

}
= d̃b(F, x) ≥ n− n′′′ − min{n, n′} = n′′ − min{n, n′} = d̃b(F ′, x) − S(F ′′, x) .

Induction step: Assume that the theorem holds for all x ∈ I ∪ P , lev(x) ≤ l, l ≥ 0; it
has to be shown that the theorem also holds for x ∈ P , lev(x) = l+1 (x cannot be an input
since lev(x) ≥ 1). Since Support(x) =

⋃
y∈fi(x) Support(y), it is immediate to show that for

any x ∈ P ,

S(F ′′, x) ≥ S(F ′′, y), y ∈ fi(x) , (16)

S(F ′′, x) ≥ max
y∈fi(x)

{
S(F ′′, y)

}
. (17)

Consider first the case type(x) = OR. Using (14), the induction hypothesis, the mono-
tonicity of min{·}, and (16),

d̃b(F ′, x) = min
y∈fi(x)

{
d̃b(F ′, y)

}
≥ min

y∈fi(x)

{
d̃b(F, y)

}
= d̃b(F, x) ≥ min

y∈fi(x)

{
d̃b(F ′, y) − S(F ′′, y)

}
≥ min

y∈fi(x)

{
d̃b(F ′, y) − S(F ′′, x)

}
= min

y∈fi(x)

{
d̃b(F ′, y)

}
− S(F ′′, x) = d̃b(F ′, x) − S(F ′′, x) .

Assume now that type(x) = AND. Let the partition fi(x) = A(x) ∪ B(x) ∪ C(x) defined
in Proposition 4 and let t =

∧
y∈A(x) y, u =

∧
y∈B(x) y, and v =

∧
y∈C(x) y (if some of the

subsets into which fi(x) is partitioned is empty, the corresponding logical variable is equal
to the logical constant 1 and S(F ′′, 1) = 0). Let α = S(F ′′, x), β =

∑
y∈A(x) S(F ′′, y),

γ =
∑

y∈B(x) S(F ′′, y), and δ = maxy∈C(x)

{
S(F ′′, y)

}
. From part b of Proposition 4, t

17

and u ∧ v are independent, which, taking into account the definition of S(F ′′, ·), implies
S(F ′′, x) = S(F ′′, t) + S(F ′′, u ∧ v). Then, using (16) and (17),

S(F ′′, x) = S(F ′′, t) + S(F ′′, u ∧ v) ≥ S(F ′′, t) + max
{
S(F ′′, u), S(F ′′, v)

}
≥ S(F ′′, t) + max

{
S(F ′′, u), max

y∈C(x)

{
S(F ′′, y)

}}
= S(F ′′, t) + max

{
S(F ′′, u), δ

}
.

¿From parts a and c of Proposition 4, S(F ′′, t) = β and S(F ′′, u) = γ. Then, using the
definition of α the last inequality becomes

α ≥ β + max
{
γ, δ

}
. (18)

Using (15), the induction hypothesis, the definition of α, β, γ and δ, the monotonicity
of max{·}, and (18),

d̃b(F ′, x) =∑
y∈A(x)

d̃b(F ′, y) + max
{ ∑

y∈B(x)

d̃b(F ′, y), max
y∈C(x)

{
0, d̃b(F ′, y)

}}

≥
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{
0, d̃b(F, y)

}}
= d̃b(F, x)

≥
∑

y∈A(x)

(
d̃b(F ′, y) − S(F ′′, y)

)
+ max

{ ∑
y∈B(x)

(
d̃b(F ′, y) − S(F ′′, y)

)
, max
y∈C(x)

{
0, d̃b(F ′, y) − S(F ′′, y)

}}
=

∑
y∈A(x)

d̃b(F ′, y) −
∑

y∈A(x)

S(F ′′, y)

+ max
{ ∑

y∈B(x)

d̃b(F ′, y) −
∑

y∈B(x)

S(F ′′, y), max
y∈C(x)

{
0, d̃b(F ′, y) − S(F ′′, y)

}}
≥

∑
y∈A(x)

d̃b(F ′, y) −
∑

y∈A(x)

S(F ′′, y)

+ max
{ ∑

y∈B(x)

d̃b(F ′, y) −
∑

y∈B(x)

S(F ′′, y), max
y∈C(x)

{
0, d̃b(F ′, y) − max

y∈C(x)

{
S(F ′′, y)

}}}

≥
∑

y∈A(x)

d̃b(F ′, y) − β + max
{ ∑

y∈B(x)

d̃b(F ′, y) − γ, max
y∈C(x)

{
0, d̃b(F ′, y)

}
− δ

}
≥

∑
y∈A(x)

d̃b(F ′, y) − β

+ max
{ ∑

y∈B(x)

d̃b(F ′, y) − max{γ, δ}, max
y∈C(x)

{
0, d̃b(F ′, y)

}
− max{γ, δ}

}

=
∑

y∈A(x)

d̃b(F ′, y) + max
{ ∑

y∈B(x)

d̃b(F ′, y), max
y∈C(x)

{
0, d̃b(F ′, y)

}}
− (

β + max{γ, δ})
= d̃b(F ′, x) − (

β + max{γ, δ}) ≥ d̃b(F ′, x) − α = d̃b(F ′, x) − S(F ′′, x) .

18

Let a be a state. With F = F (a) and x = gr, part b of Theorem 2 implies d̃(a) = 0 if
and only if d(a) = 0, part a implies 0 ≤ d̃(a) ≤ d(a), and both results imply 1 ≤ d̃(a) ≤ d(a)
for a ∈ U . In addition, taking x = gr, F ′ = ∅, F ′′ = F (a) and F = F ′ +F ′′ = F (a), the left
inequality of Theorem 4 states that L̃ = d̃b(∅, gr) ≥ d̃b(F (a), gr) = d̃(a). Thus, the derived
d̃(a) satisfies the requirements of Theorem 1, guaranteeing that the upper bound [ur(t)]ub

obtained by SC-BM is correct. In addition, we have d̃(a) = 0 if and only if d(a) = 0. With
F = F (a) and x = gr, Theorem 3 gives a sufficient condition for d̃(a) = d(a) which can be
checked inexpensively. Finally, when L = 1, Theorem 2 with F = F (a) and x = gr implies
d̃(a) = d(a). Thus, when the condition of Theorem 3 is satisfied or L = 1, d̃(a) = d(a) and
SC-BM gives the same bounds as BM-1.

3.3 Computation of the Lower Bounds for Failure Distances

Section 3.4 shows that the generation of the CTMC X ′ can be done knowing d̃(b) for all
successors b of each state a ∈ G. Each d̃(b) could be computed from F (b) by traversing the
fault tree as described in Section 3.1. However, that procedure is expensive if the fault tree
is large. This section describes a typically much more efficient procedure, comp all d , which
can compute d̃(b) for all successors b of a state.

The procedure comp all d is built on top of three procedures named update d , comp d
and restore d .

Each node x of the fault tree holds a distance variable dv(x) properly initialized. The
procedure update d takes as inputs a bag of component classes F , a positive integer ub and
a stack CS , and processes the fault tree as follows. For each c[n] that is part of F , the
procedure makes dv(x) = max{0,dv(x) − n} for each input x, b(x) = c[n′] and follows a
recursive processing from x. The recursive processing from a node z of the fault tree involves
computing for each y ∈ fo(z) a potential new value for dv(y) using (14) for OR gates and
(15) for AND gates with dv(t), t ∈ fi(y) instead of d̃b(F, t). If the potential new value for
dv(y) is < ub and smaller than the current value of dv(y), the variable dv(y) is updated and
the processing of the fault tree continues recursively from node y. When a distance variable
is updated, the corresponding node and the old value of the variable are put in CS .

The procedure comp d takes as inputs a bag of component classes F , two non-negative
integers lb and ub, with lb ≤ ub, and a stack CS . If lb = ub, the procedure returns lb
without doing anything else. If lb < ub, the procedure makes the call update d(F, ub,CS)
and returns min{dv(gr), ub}.

The procedure restore d takes as input a stack CS and simply restores the distance
variable of the nodes kept in CS to their old values. After the call to restore d , CS becomes
empty.

The procedure comp all d takes as inputs a bag of failed component classes F , the
lower bound d̃ = d̃b(F, gr), a subset E′ of the set of failure bags E, and η̃(e), e ∈ E′, and
computes d̃b(F + e, gr) for each e ∈ E′. For the procedure to work properly, d̃ must be > 0
and the distance variable dv(x) of each node x of the fault tree must have been initialized

19

to d̃b(∅, x). The procedure is:

1. Let CS and CS ′ be empty stacks.

2. comp d(F, 0, d̃,CS)

3. for (each e ∈ E′) {
4. s = max{0, d̃ − |e|, η̃(e) − |F |}
5. t = min{d̃, η̃(e)}
6. d̃b(F + e, gr) = comp d(e, s, t,CS ′)

7. restore d(CS ′)

}
8. restore d(CS)

After calling the procedure, the distance variable dv(x) of each node x of the fault tree holds
the value d̃b(∅, x).

Next, the procedure comp all d is illustrated using the example system of Section 2,
whose fault tree is given in Figure 3. The procedure is illustrated for the inputs F = MC1[1],
d̃b(F, gr) = 2 and E′ = {e4, e7} with e4 = IC1[1], e7 = MC2[1]RMM2[1], η̃(e4) = 1, and
η̃(e7) = 1 (see Table 1). The procedure begins by creating empty stacks CS and CS ′

and making the call comp d(F = MC1[1], lb = 0, ub = 2,CS). Since lb < ub, that call
to comp d results in the call update d(F = MC1[1], ub = 2,CS). Figure 4 illustrates the
processing of the fault tree during that call. The distance variable dv(x) of each node x
is initialized to d̃b(∅, x) before the call. The only input having associated with it a bag
related to MC1[1] is x1. Using (13), dv(x1) is updated to max{0, 3 − 1} = 2 and the pair
(x1, 3) is stored in CS . The change in dv(x1) is not propagated up the fault tree because
the new value of dv(x1) is not smaller than ub = 2. Next, the procedure processes the
failure bag e4 = IC1[1]. The values of the variables s and t are s = 1 and t = 1; the
procedure continues by making the call comp d(F = IC1[1], lb = 1, ub = 1,CS ′) followed
by the call restore d(CS ′). The first call returns lb = 1 without processing the fault tree
because lb = ub. This results in d̃b(MC1[1]IC1[1], gr) = 1. The second call does not
restore any distance variable because CS ′ = ∅. The procedure continues by processing the
failure bag e7 = MC2[1]RMM2[1]. The s, t become s = 0 and t = 1 and the procedure
continues by making the call comp d(F = MC2[1]RMM2[1], lb = 0, ub = 1,CS ′). Since
lb < ub, the call to comp d results in the call update d(F = MC2[1]RMM2[1], ub = 1,CS ′).
Figure 5 illustrates the processing of the fault tree during that call. The only inputs having
associated with them a bag related to some part of MC2[1]RMM2[1] are x4 and x6. Using
(13), dv(x4) is updated to 2 and the pair (x4, 3) is stored in CS ′. The change in dv(x4)
is not propagated up the fault tree because the new value of dv(x4) is not smaller than
ub = 1. Next, the input x6 is dealt with. Using (13), dv(x6) is updated to 0 and the
pair (x6, 1) is stored in CS ′. Since the new value of dv(x6) is smaller than ub = 1, that
change is propagated up the fault tree to the gate g3. Using (14), the potential new value
for dv(g3) is 0. Since that potential new value is smaller than both the old value of the
variable and ub = 1, then dv(g3) is updated, the pair (g3, 1) is stored in CS ′ and the change

20

x6x5x4x3x2x1

g2 g3

g1

gr

x7 x8 x9

MC1[3] IC1[1] RMM1[1] RMM2[1]

dv = 3 → 2 dv = 1 dv = 1 dv = 3 dv = 1 dv = 1

dv = 2 dv = 2 dv = 2

CPUC[2] PTC[2] RCM[2]

dv = 1 dv = 1

dv = 2

dv = 2

IC2[1]MC2[3]

Figure 4: Processing of the fault tree of the example system during the call update d(F =
MC1[1], ub = 2,CS). The distance variable values are given next to each node. The ‘→’
shows their changes.

is propagated up the fault tree to gate g1. Using (15), the potential new value for dv(g1) is
1, which is not smaller than ub = 1. Then, dv(g1) is not updated and because there is no
pending processing of the fault tree, the call update d(F = MC2[1]RMM2[1], ub = 1,CS ′)
ends and the call comp d(F = MC2[1]RMM2[1], lb = 0, ub = 1,CS ′) returns the value
min{dv(gr), ub} = min{2, 1} = 1. This results in d̃b(MC1[1]MC2[1]RMM2[1], gr) = 1. The
procedure finishes by making the calls restore d(CS ′) and restore d(CS), which leave the
fault tree with the distance variable dv(x) of each node x equal to d̃b(∅, x).

The remaining of this section proves the correctness of the procedures comp d (which
will be used to justify the algorithm for the generation of X ′ in SC-BM described in Sec-
tion 3.4) and comp all d . The proof consists of Propositions 5, 6, 7, and 8, and Theorems 5
and 6.

Proposition 5 Let F be a bag of component classes, ub a positive integer and CS a stack.
Let the distance variable dv(x) of each node x of the fault tree be initialized to d̃b(∅, x).
Then, after the call update d(F, ub,CS), for each x ∈ I ∪ P we have d̃b(F, x) = dv(x) if
dv(x) < ub and d̃b(F, x) ≥ ub if dv(x) ≥ ub.

Proof. We start by noting that, during the call, distance variables dv(x) can only decrease.
This is trivially true for x ∈ I and follows for x ∈ P by complete induction on lev(x) noting
that (14) and (15) with dv(y) instead of d̃b(F, y) are monotonic. The proof is by complete
induction on lev(x), x ∈ I ∪ P .

Base case (lev(x) = 0): Since lev(x) = 0, then x ∈ I. Given the way in which the
call processes the inputs, it is clear that, after the call, dv(x) = d̃b(F, x), showing that
d̃b(F, x) = dv(x) if dv(x) < ub and d̃b(F, x) ≥ ub if dv(x) ≥ ub.

Induction step: Assume that the proposition holds for all x ∈ I ∪ P , lev(x) ≤ l, l ≥ 0;

21

x6x5x4x3x2x1

g2 g3

g1

gr

x7 x8 x9

MC1[3] IC1[1] RMM1[1] RMM2[1]

dv = 1 dv = 1 dv = 1 dv = 1 → 0

dv = 2 dv = 2 dv = 2

CPUC[2] PTC[2] RCM[2]

dv = 1 dv = 1 → 0

dv = 2

dv = 2

IC2[1]MC2[3]

dv = 3 → 2

dv = 2

Figure 5: Processing of the fault tree of the example system during the call update d(F =
MC2[1] RMM2[1], ub = 1,CS ′). The distance variable values are given next to each node.
The ‘→’ shows their changes.

it has to be shown that the proposition also holds for all x ∈ P , lev(x) = l + 1 (x /∈ I

because l + 1 > 0). Let dv(n)(x), x ∈ I ∪ P denote the value of dv(x) after performing the
nth distance variable update. (the dv(0)(x) is the value of dv(x) at the beginning of the
call.) Let N be the number of distance variable updates during the call. Then, it has to be
shown that d̃b(F, x) = dv(N)(x) if dv(N)(x) < ub and d̃b(F, x) ≥ ub if dv(N)(x) ≥ ub for all
x ∈ P , lev(x) = l + 1 assuming d̃b(F, x) = dv(N)(x) if dv(N)(x) < ub and d̃b(F, x) ≥ ub if
dv(N)(x) ≥ ub for all x ∈ I ∪ P , lev(x) ≤ l.

Let x ∈ P , lev(x) = l + 1 and consider the partition fi(x) = α ∪ β with α = {y ∈
fi(x) | dv(N)(y) < ub} and β = fi(x) − α = {y ∈ fi(x) | dv(N)(y) ≥ ub}. Since distance
variables can only decrease

dv(n′)(y) ≤ dv(n)(y), n′ ≥ n, y ∈ fi(x) . (19)

Then,
dv(n)(y) ≥ dv(N)(y) ≥ ub, n = 0, 1, . . . , N, y ∈ β . (20)

Also, using the induction hypothesis,

d̃b(F, y) = dv(N)(y) < ub, y ∈ α (21)

and
d̃b(F, y) ≥ ub, y ∈ β . (22)

We consider four cases:

Case 1: type(x) = OR and α = ∅. We show d̃b(F, x) ≥ ub and dv(N)(x) ≥ ub. We have
fi(x) = β. Then, using (14) and (22), d̃b(F, x) = miny∈β d̃b(F, y) ≥ ub. Also, dv(x) is not

22

updated during the call because (20) miny∈fi(x) dv(n)(y) = miny∈β dv(n)(y) ≥ ub. Therefore,
dv(N)(x) = dv(0)(x) = miny∈fi(x) dv(0)(y) = miny∈β dv(0)(y), which (20) is ≥ ub.

Case 2: type(x) = OR and α �= ∅. We show dv(N)(x) = d̃b(F, x) < ub. We start by
showing dv(N)(x) = miny∈α dv(N)(y). We consider two cases: a) dv(x) has not been updated
during the call, and b) dv(x) has been updated during the call. In case a, dv(N)(x) =
dv(0)(x) = miny∈fi(x) dv(0)(y). But, if dv(x) has not been updated, then miny∈α dv(y)
cannot have decreased, because, using (20) and (21), this would imply that sooner or later
miny∈fi(x) dv(y) would have decreased to a value < ub and that dv(x) would have been
updated. Then, miny∈α dv(N)(y) = miny∈α dv(0)(y). But, since (21) miny∈α dv(N)(y) < ub,
this implies that miny∈α dv(0)(y) < ub and, using (20) and (21), that miny∈fi(x) dv(0)(y) =
miny∈α dv(0)(y) = miny∈α dv(N)(y), which, combined with dv(N)(x) = miny∈fi(x) dv(0)(y),
implies dv(N)(x) = miny∈α dv(N)(y). In case b, taking into account (20), some y ∈ α must
have been updated to a value < ub such that miny∈α dv(y) decreases to a value < ub. Let
n be the step at which miny∈α dv(n)(y) reaches the value miny∈α dv(N)(y) and let y′ ∈ α

be the node whose distance variable is updated at that step. Taking into account (20)
and (21), miny∈fi(x) dv(n′)(y) = miny∈α dv(n)(y) = miny∈α dv(N)(y), n′ ≥ n and dv(x) will
be last updated when following recursively the processing of node y′ and will be updated
to miny∈α dv(N)(y), implying dv(N)(x) = miny∈α dv(N)(y). This completes case b and,
therefore, proves dv(N)(x) = miny∈α dv(N)(y). Then (21), dv(N)(x) = miny∈α d̃b(F, y). On
the other hand, using (14), (21) and (22), we have d̃b(F, x) = miny∈α d̃b(F, y) < ub, and
both results imply dv(N)(x) = d̃b(F, x) < ub.

Case 3: type(x) = AND and β �= ∅. We show dv(N)(x) ≥ ub and d̃b(F, x) ≥ ub. Note
that it suffices that some dv(n)(y), y ∈ fi(x) = A(x) ∪B(x) ∪ C(x) is ≥ ub for

∑
y∈A(x)

dv(n)(y) + max
{ ∑

y∈B(x)

dv(n)(y), max
y∈C(x)

{0,dv(n)(y)}
}

≥ ub.

Then, using β �= ∅, (19) and (20),

dv(0)(x) =
∑

y∈A(x)

dv(0)(y) + max
{ ∑

y∈B(x)

dv(0)(y), max
y∈C(x)

{0,dv(0)(y)}
}

≥
∑

y∈A(x)

dv(n)(y) + max
{ ∑

y∈B(x)

dv(n)(y), max
y∈C(x)

{0,dv(n)(y)}
}

≥ ub,

n = 1, 2, . . . , N.

Therefore, dv(x) is never updated and dv(N)(x) = dv(0)(x) ≥ ub. Also, using (15), (22) and
β �= ∅,

d̃b(F, x) =
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{0, d̃b(F, y)}
}

≥ ub.

Case 4: type(x) = AND and β = ∅. In this case, A(x)∪B(x)∪C(x) = α. Then, using

23

(15) and (21),

d̃b(F, x) =
∑

y∈A(x)

d̃b(F, y) + max
{ ∑

y∈B(x)

d̃b(F, y), max
y∈C(x)

{0, d̃b(F, y)}
}

=
∑

y∈A(x)

dv(N)(y) + max
{ ∑

y∈B(x)

dv(N)(y), max
y∈C(x)

{0,dv(N)(y)}
}

= dv ′. (23)

We consider three cases: a) dv ′ ≥ ub, b) dv ′ < ub and dv(x) has been updated, and
c) dv ′ < ub and dv(x) has not been updated. In case a we show d̃b(F, x) ≥ ub and
dv(N)(x) ≥ ub. The first inequality follows trivially from (23) and dv ′ ≥ ub. Using (19) and
(23), ∑

y∈A(x)

dv(n)(y) + max
{ ∑

y∈B(x)

dv(n)(y), max
y∈C(x)

{0,dv(n)(y)}
}

≥
∑

y∈A(x)

dv(N)(y) + max
{ ∑

y∈B(x)

dv(N)(y), max
y∈C(x)

{0,dv(N)(y)}
}

= dv ′ ≥ ub , 0 ≤ n ≤ N , (24)

and dv(x) is never updated, implying

dv(N)(x) = dv(0)(x) =
∑

y∈A(x)

dv(0)(y) + max
{ ∑

y∈B(x)

dv(0)(y), max
y∈C(x)

{0,dv(0)(y)}
}

≥ ub

by (24). This completes case a. In case b we show dv(N)(x) = d̃b(F, x) < ub. Since
(23) d̃b(F, x) = dv ′ < ub, it suffices to show dv(N)(x) = dv ′. But, the last value
at which dv(x) has been updated must be the minimum value of

∑
y∈A(x) dv(n)(y) +

max{∑y∈B(x) dv(n)(y),maxy∈C(x){0,dv(n)(y)}}, which, using (19) is
∑

y∈A(x) dv(N)(y) +
max{∑y∈B(x) dv(N)(y),maxy∈C(x){0,dv(N)(y)}} = dv ′ (by (23)), implying dv(N)(x) =

dv ′. Finally, in case c we also show dv(N)(x) = d̃b(F, x) < ub. Again, since (23)
d̃b(F, x) = dv ′ < ub, it suffices to show dv(N)(x) = dv ′. Since dv(x) has not been up-
dated, dv(N)(x) = dv(0)(x). Then, it is enough to prove dv(0)(x) = dv ′. The fact that
dv(0)(x) ≤ dv ′ is trivial since, considering (23) and dv ′ < ub, dv(x) would otherwise have
been updated. But, using (19) and (23),

dv(0)(x) =
∑

y∈A(x)

dv(0)(y) + max
{ ∑

y∈B(x)

dv(0)(y), max
y∈C(x)

{0,dv(0)(y)}
}

≥
∑

y∈A(x)

dv(N)(y) + max
{ ∑

y∈B(x)

dv(N)(y), max
y∈C(x)

{0,dv(N)(y)}
}

= dv ′ ,

which, with dv(0)(x) ≤ dv ′, implies dv(0)(x) = dv ′.

Proposition 6 Let F , F ′ and F ′′ be bags of component classes with F = F ′+F ′′ and let ub,
ub ′ be positive integers with ub ′ ≤ ub; let CS, CS ′ be stacks. Let dv1(x), x ∈ I∪P be the val-
ues of the distance variables that will result after initializing them to d̃b(∅, x) and next making
the call update d(F, ub ′,CS ′); let dv2(x), x ∈ I ∪ P be the values of the distance variables
that result if after performing the same initialization, the call update d(F ′, ub,CS) is made
followed by the call update d(F ′′, ub ′,CS ′). Then, either dv1(x) = dv2(x) or dv1(x) ≥ ub ′

and dv2(x) ≥ ub ′, x ∈ I ∪ P .

24

Proof. For the sake of conciseness, let scenario 1 stand for “the distance variable of each
node x ∈ I ∪ P has been initialized to d̃b(∅, x) and next the call update d(F, ub ′,CS ′) has
been made” and let scenario 2 stand for “the distance variable of each node x ∈ I ∪ P has
been initialized to d̃b(∅, x) and next the call update d(F ′, ub,CS) has been made followed
by the call update d(F ′′, ub ′,CS ′).

Base case (lev(x) = 0): Since lev(x) = 0, then x ∈ I. Given the way in which the fault
tree is processed in both cases, it is clear that dv1(x) = d̃b(F, x) and, since F = F ′ + F ′′,
dv2(x) = d̃b(F, x), implying dv1(x) = dv2(x).

Induction step: Assume that the result holds for all x ∈ I ∪ P , lev(x) ≤ l, l ≥ 0; it
has to be shown that the result also holds for all x ∈ P , lev(x) = l + 1 (x cannot be an
input since l + 1 > 0). Let x ∈ P , lev(x) = l + 1 and consider the partition fi(x) = α + β

with α = {y ∈ fi(x) | dv1(y) = dv2(y)} and β = {y ∈ fi(x) | dv1(y) �= dv2(y)}. Using the
induction hypothesis, both dv1(y) and dv2(y), y ∈ β are ≥ ub′. This together with the fact
that the distance variables cannot increase yields the following two properties:

P1. dv(y) ≥ ub′, y ∈ β throughout the call update d(F, ub ′,CS ′) (scenario 1).

P2. dv(y) ≥ ub′, y ∈ β throughout the consecutive calls update d(F ′, ub,CS) and
update d(F ′′, ub ′,CS ′) (scenario 2).

We consider four cases:

Case 1: type(x) = OR and α = ∅. We show dv1(x) ≥ ub′ and dv2(x) ≥ ub ′. Since
α = ∅, then fi(x) = β. In scenario 1, property P1 implies dv1(x) ≥ ub′, since, initially,
dv(x) = miny∈β dv(y) ≥ ub′ and dv(x) can be made < ub ′ only if miny∈β dv(y) is made
< ub′. Likewise, in scenario 2, property P2 implies dv2(x) ≥ ub′.

Case 2: type(x) = OR and α �= ∅. We consider two cases: a) there exist y ∈ α such
that dv1(y) = dv2(y) < ub′, and b) for all y ∈ α, dv1(y) = dv2(y) ≥ ub′. In case a we show
dv1(x) = dv2(x). Given the way the procedure update d works and considering that distance
variables can only decrease and that ub ≥ ub′, it is clear that if miny∈fi(x) dv1(y) < ub′, then
dv1(x) = miny∈fi(x) dv1(y), and if miny∈fi(x) dv2(y) < ub′, then dv2(x) = miny∈fi(x) dv2(y).
But, in case a we clearly have miny∈fi(x) dv1(y) < ub′ and miny∈fi(x) dv2(y) < ub′ and, taking
into account properties P1 and P2 and dv1(y) = dv2(y), y ∈ α,

dv1(x) = min
y∈fi(x)

dv1(y) = min
y∈α

dv1(y)<ub ′
dv1(y) = min

y∈α

dv2(y)<ub′
dv2(y)

= min
y∈fi(x)

dv2(y) = dv2(x).

In case b we show dv1(x) ≥ ub′ and dv2(x) ≥ ub′. In that case, dv(y) ≥ ub′, y ∈ α

throughout the calls to update d in both scenario 1 and scenario 2. But, using properties
P1 and P2, this implies dv(y) ≥ ub′, y ∈ fi(x) throughout the calls to update d in both
scenarios and, hence, dv1(x) ≥ ub′ and dv2(x) ≥ ub′, since, in both scenarios, initially
dv(x) = miny∈fi(x) dv(y) and dv(x) can be made < ub ′ only if miny∈fi(x) dv(y) is made
< ub′.

25

Case 3: type(x) = AND and β �= ∅. We show dv1(x) ≥ ub ′ and dv2(x) ≥ ub ′. Since
it is enough dv(y) ≥ ub′ for some y ∈ fi(x) for

∑
y∈A(x) dv(y) + max{∑y∈B(x) dv(y),

maxy∈C(x){0,dv(y)}} ≥ ub′, properties P1 and P2 imply
∑

y∈A(x) dv(y) +
max{∑y∈B(x) dv(y),maxy∈C(x){0,dv(y)}} ≥ ub ′ throughout the calls to update d in both
scenarios, implying that dv(x) has not been updated to a value < ub′ in either scenario.
But, initially, dv(x) =

∑
y∈A(x) dv(y) + max{∑y∈B(x) dv(y),maxy∈C(x){0,dv(y)}} ≥ ub′ in

both scenarios by properties P1 and P2 and, then, dv1(x) ≥ ub′ and dv2(x) ≥ ub′.

Case 4: type(x) = AND and β = ∅. In this case we have fi(x) = α and dv1(y) = dv2(y),
y ∈ fi(x). We consider three cases: a) dv(x) is updated in scenario 1, b) dv(x) is not updated
in scenario 1 and is updated in scenario 2, and c) dv(x) is not updated in either scenario.
In case a we show dv1(x) = dv2(x). Since dv(x) is updated in scenario 1, necessarily∑

y∈A(x) dv(y)+max{∑y∈B(x) dv(y),maxy∈C(x){0,dv(y)}} has been made, in that scenario,
smaller than ub ′ and smaller than the initial value of dv(x). Then, since distance variables
can only decrease,

dv1(x) = d =
∑

y∈A(x)

dv1(y) + max
{ ∑

y∈B(x)

dv1(y), max
y∈C(x)

{0,dv1(y)}
}
< ub′ . (25)

Hence, at this point we have:

F1. d =
∑

y∈A(x) dv2(y) + max{∑y∈B(x) dv2(y),maxy∈C(x){0,dv2(y)}} < ub′ since
dv2(y) = dv1(y), y ∈ fi(x) and (25);

F2. ub ≥ ub′.

F3. the initial value of dv(x) in scenario 1 is > d;

F4. the initial value of dv(x) is the same in both scenarios;

Then, F3 and F4 imply that the initial value of dv(x) in scenario 2 is > d, F1 and F2 imply
that d < ub ′ ≤ ub, and both results along with the way update d works and the fact that
distance variables can only decrease result in dv2(x) = dv1(x).

In case b we show dv1(x) ≥ ub ′ and dv2(x) ≥ ub ′. Since dv(x) is updated in scenario
2, necessarily

∑
y∈A(x) dv(y)+max{∑y∈B(x) dv(y),maxy∈C(x){0,dv(y)}} has been made, in

that scenario, smaller than the initial value of dv(x). Then, given that distance variables
can only decrease and that ub ≥ ub′, we have

dv2(x) =
∑

y∈A(x)

dv2(y) + max
{ ∑

y∈B(x)

dv2(y), max
y∈C(x)

{0,dv2(y)}
}
,

smaller than the initial value of dv(x), with either dv2(x) < ub′ or ub ′ ≤ dv2(x) <

ub. If dv2(x) < ub′, using dv1(y) = dv2(y), y ∈ fi(x), we have
∑

y∈A(x) dv1(y)
+ max{∑y∈B(x) dv1(y),maxy∈C(x){0,dv1(y)}} =

∑
y∈A(x) dv2(y) + max{∑y∈B(x) dv2(y),

maxy∈C(x){0,dv2(y)}} < ub′ and, since the initial value of dv(x) in scenario 1 (equal to
the initial value of dv(x) in scenario 2) is greater than this value, dv(x) would have been
updated in scenario 1, a contradiction. Therefore, necessarily, dv2(x) ≥ ub′. Since dv(x)

26

has not been updated in scenario 1, the only way in which dv1(x) could be < ub′ is that
initially dv(x) were < ub′ in scenario 1, but the initial value of dv(x) is the same in both
scenarios and we have shown that value to be > dv2(x) ≥ ub ′. Therefore, dv1(x) ≥ ub′.
Finally, in case c both dv1(x) and dv2(x) are equal to the common initial value of dv(x) in
scenarios 1 and 2, implying dv1(x) = dv2(x).

Proposition 7 Let F , F ′ and F ′′ be bags of component classes with F = F ′ + F ′′ and
let ub, ub ′ be positive integers with ub′ ≤ ub; let CS, CS ′ be stacks. Let the distance
variable dv(x) of each node x of the fault tree be initialized to d̃b(∅, x). Then, after the call
update d(F ′, ub,CS) followed by the call update d(F ′′, ub ′,CS ′), for each x ∈ I∪P we have
d̃b(F, x) = dv(x) if dv(x) < ub ′ and d̃b(F, x) ≥ ub ′ if dv(x) ≥ ub ′.

Proof. Let x ∈ I ∪ P and let dv1(x) and dv2(x) be as in Proposition 6. It has to be
shown that d̃b(F, x) = dv2(x) if dv2(x) < ub′ and d̃b(F, x) ≥ ub ′ if dv2(x) ≥ ub′. Using
Proposition 6, either dv1(x) = dv2(x) or dv1(x) ≥ ub′ and dv2(x) ≥ ub′. This implies that
dv1(x) = dv2(x) if dv2(x) < ub′ and dv1(x) ≥ ub′ if dv2(x) ≥ ub ′. Using Proposition 5 with
ub = ub′ and CS = CS ′ we have d̃b(F, x) = dv1(x) if dv1(x) < ub′ and d̃b(F, x) ≥ ub′ if
dv1(x) ≥ ub′, implying d̃b(F, x) = dv2(x) if dv2(x) < ub′ and d̃b(F, x) ≥ ub′ if dv2(x) ≥ ub′.

Proposition 8 Let F , F ′ and F ′′ be bags of component classes with F = F ′+F ′′; let lb and
ub ′ be non-negative integers and let ub be a positive integer with lb ≤ d̃b(F, gr) ≤ ub ′ ≤ ub;
let CS and CS ′ be stacks. Let the distance variable dv(x) of each node x of the fault
tree be initialized to d̃b(∅, x). Then, after making the call comp d(F ′, 0, ub,CS), the call
comp d(F ′′, lb, ub ′,CS ′) returns d̃b(F, gr).

Proof. If lb = ub ′, the call comp d(F ′′, lb, ub ′,CS ′) returns lb, which is equal to d̃b(F, gr)
because, as assumed, lb ≤ d̃b(F, gr) ≤ ub ′. If lb < ub ′, the call comp d(F ′′, lb, ub ′,CS ′)
results in the call update d(F ′′, ub ′,CS ′) and returns min{dv(gr), ub ′}. Two cases are
possible: a) dv(gr) < ub ′ and b) dv(gr) ≥ ub ′. The inequality ub > 0 implies
that the call comp d(F ′, 0, ub,CS) results in making the call update d(F ′, ub,CS). Also,
lb ≥ 0 and lb < ub ′ implies ub ′ > 0 and Proposition 7 can be invoked. In case a,
the call comp d(F ′′, lb, ub ′,CS ′) returns min{dv(gr), ub ′} = dv(gr), which, according to
Proposition 7, is equal to d̃b(F, gr); in case b, the call comp d(F ′′, lb, ub ′,CS ′) returns
min{dv(gr), ub ′} = ub ′, but Proposition 7 asserts d̃b(F, x) ≥ ub′, which with, as assumed,
d̃b(F, gr) ≤ ub ′ implies ub ′ = d̃b(F, gr).

Theorem 5 Let F be a bag of component classes, let lb and ub be non-negative integers
with lb ≤ d̃b(F, gr) ≤ ub, and let CS be a stack. Let the distance variable dv(x) of each
node x of the fault tree be initialized to d̃b(∅, x). Then, the call comp d(F, lb, ub,CS) returns
d̃b(F, gr).

Proof. If lb = ub, the call comp d(F, lb, ub,CS) returns lb, which is equal to d̃b(F, gr)
because, as assumed, lb ≤ d̃b(F, gr) ≤ ub. If lb < ub, the call comp d(F, lb, ub,CS) results
in the call update d(F, ub,CS) and returns min{dv(gr), ub}. Two cases are possible: a)
dv(gr) < ub and b) dv(gr) ≥ ub. Since lb ≥ 0, then ub > 0 and Proposition 5 can be

27

invoked. In case a, the call comp d(F, lb, ub,CS) returns min{dv(gr), ub} = dv(gr), which,
according to Proposition 5, is equal to d̃b(F, gr); in case b, the call comp d(F, lb, ub,CS)
returns min{dv(gr), ub} = ub, but Proposition 5 asserts d̃b(F, gr) ≥ ub, which with, as
assumed, d̃b(F, gr) ≤ ub implies ub = d̃b(F, gr).

Theorem 6 Let F be a bag of component classes, let d̃ = d̃b(F, gr) > 0, and let E′ ⊂ E. Let
the distance variable dv(x) of each node x of the fault tree be initialized to d̃b(∅, x). Then,
the call comp all d(F, d̃, E′, η̃(e), e ∈ E′) computes correctly the lower bounds d̃b(F + e, gr),
e ∈ E′.

Proof. The call restore d(CS ′) done in step 7 of comp all d restores the distance variables
to the values they had before the previous call comp d(e, s, t,CS ′) done in step 6. Therefore,
the value returned by the call to comp d in that step is the same as the value that would
be returned by making, for each e ∈ E′ and with the distance variable dv(x) of each node
x of the fault tree initialized to d̃b(∅, x), the call to comp d of step 2 followed by the call to
comp d of step 6.

Next, it is shown that the s and t computed, respectively, in steps 4 and 5 of comp all d
satisfy s ≤ d̃b(F + e, gr) ≤ t ≤ d̃. Regarding the first inequality, Theorem 4 with F ′ = F ,
F ′′ = e and x = gr gives d̃b(F +e, gr) ≥ d̃−S(e, gr); the same theorem with F ′ = e, F ′′ = F

and x = gr yields d̃b(F + e, gr) ≥ η̃(e) − S(F, gr); in addition, from the definition of S(·) it
is clear that S(e, gr) ≤ |e| and S(F, gr) ≤ |F |. Combining these results, taking into account
that d̃b(F + e, gr) ≥ 0, we have d̃b(F + e, gr) ≥ max{0, d̃− |e|, η̃(e)− |F |} = s. To show the
second inequality, it is enough to recall that d̃ = d̃b(F, gr) and η̃(e) = d̃b(e, gr), and to note
that, according to (13–15), F ′ ⊃ F implies d̃b(F ′, x) ≤ d̃b(F, x). The third inequality is
trivial: t = min{d̃, η̃(e)} ≤ d̃. Then, the result follows invoking Proposition 8 with F ′ = F ,
F ′′ = e, lb = s ≥ 0, ub ′ = t ≥ 0, and ub = d̃ > 0.

3.4 Generation of the CTMC X ′ in SC-BM

To describe with detail the generation of the CTMCX ′ in SC-BM we assume that the failure
behavior of the fault-tolerant system is described by a high-level specification made up of a
set of rules. Each rule is composed of a guard condition that determines when the rule is
enabled in a given (current) state, an execution part that allows to obtain a next state from
the current one, and a rate specification that determines the rate with which the next state
is reached. Each rule r has associated with it a failure bag e(r) meaning that the rule models
the failure of the components in e(r). Different rules can have associated with them the
same failure bag. We assume the availability of three procedures named enabled , rate and
successor , which provide the interface with the high-level specification required for model
generation. The procedure enabled has as inputs a state a and returns the set of rules R(a)
enabled in a. The procedure rate takes as inputs a state a and a rule r and returns the rate
λr,a with which the next state is reached from a following rule r. The procedure successor
takes as inputs a state a and a rule r and returns the state b reached from a following r.
Although the interface with the high-level specification could be provided by other sets of
procedures, the assumed one is reasonable, matches our implementation, and leads to an

28

efficient generation of X ′, allowing a fair comparison between SC-BM and T-SC-BM.

The L̃ and η̃(e), e ∈ E are computed before the generation of X ′. To do that, first
the distance variable dv(x) of each node x of the fault tree is initialized to d̃b(∅, x) by
traversing the fault tree depth-first left-most, starting at gr and using (13)–(15). Since
L̃ = d̃b(∅, gr), after the initialization dv(gr) holds L̃. The η̃(e), e ∈ E are computed using
comp d and restore d . Note that η̃(e) = d̃b(e, gr) ≥ 0 and, according to the definition
of d̃b(·), η̃(e) ≤ d̃b(∅, gr) = L̃. This allows the computing of η̃(e), e ∈ E by creating an
empty stack CS and, for each e ∈ E, making the call comp d(e, 0, L̃,CS) followed by the
call restore d(CS). Using Theorem 5 with F = e, lb = 0 and ub = L̃, the value returned by
the call comp d(e, 0, L̃,CS) is η̃(e). After computing η̃(e), e ∈ E, the distance variable of
each node x of the fault tree holds its initial value d̃b(∅, x).

The CTMC X ′ is generated breadth-first using L̃, η̃(e), e ∈ E, and a FIFO queue Q, by
calling the procedures comp all d , enabled , rate, and successor . The queue Q holds triplets
(s, F (s), d̃(s)) corresponding to the states s that have to be processed. The generation of X ′

starts by creating the states f and ui, 0 ≤ i ≤ L̃, adding the transition rates fi from ud to
umax{0,d−i} (see Section 2.1) and making Q = {(o, ∅, L̃)} and G = {o}. Then, while Q �= ∅, a
triplet (a, F (a), d̃(a)) is pulled out of Q and processed as follows. First, R(a) is obtained by
making the call enabled(a). Next, letting E(a) = {e(r)}r∈R(a), the lower bounds d̃(a, e) =
d̃b(F (a)+ e, gr) for the failure distance from the states with bag of failed component classes
F (a) + e, e ∈ E(a) are obtained by making the call comp all d(F (a), d̃(a), E(a), η̃(e), e ∈
E(a)). The lower bound for the failure distance from the state reached from a following rule
r ∈ R(a) is d̃(a, e(r)). Then, each r ∈ R(a) is processed as follows. First, λr,a is computed
by making the call rate(a, r). Second, if d̃(a, e(r)) = 0, the state reached from a following
r is a down state and a transition rate λr,a from a to f is added. If d̃(a, e(r)) > 0 and
|F (a) + e(r)| > K, the state reached from a following r belongs to Ũd, d = d̃(a, e(r)) and a
transition rate λr,a from a to ud is added. Finally, if d̃(a, e(r)) > 0 and |F (a)+e(r)| ≤ K, the
state reached from a following r belongs to the subset of states that have to be generated. In
that case, the reached state, b, is obtained by making the call successor(a, r) and, if b /∈ G, b is
added to G, a transition rate λr,a from a to b is added and the triplet (b, F (a)+e(r), d̃(a, e(r)))
is put into Q; if b ∈ G, a transition rate λr,a from a to b is added.

4 Generation of X ′′ in T-SC-BM and Comparison of SC-BM

with T-SC-BM

This section describes T-SC-BM and shows that, when L̃ = 1, the cost (in terms of CPU
time) of SC-BM is at most identical to the cost of T-SC-BM.

T-BM requires knowledge of the operational/down state of the successors b of an op-
erational state a. T-SC-BM makes use of a procedure, eval all ft , to determine, using the
fault tree, whether the states reached from a given state following the rules enabled in it
are operational or down. The procedure eval all ft is built on top of two procedures: eval ft
and restore ft .

29

Each input x of the fault tree has associated with it a distance variable dv(x), and each
node z of the fault tree has associated with it a value variable vv(z). The procedure eval ft
takes as inputs a bag of failed component classes F and a stack CS , and works as follows.
For each input x, b(x) = c[n] for which c[n′] is part of F , dv(x) is set to max{0,dv(x)−n′}
and, if dv(x) becomes 0, x is implied to 1 (ie vv(x) is set to 1). Each implication to 1 of an
input x is propagated up the fault tree while the visited gate becomes implied to 1. When a
distance variable changes, the corresponding input and the old value of the variable are put
in CS . Gates that become implied to 1 are put in CS too. The procedure returns vv(gr).

The procedure restore ft has as input a stack CS . For each input x of the fault tree
held in CS , the procedure restores dv(x) to its old value, setting vv(x) to 0 if the restored
value is > 0. For each gate x kept in CS , the procedure sets vv(x) to 0. After the call to
restore ft , CS becomes empty.

The procedure eval all ft takes as inputs a bag of failed component classes F and a
subset E′ ⊂ E, and for each e ∈ E′, computes the value, vF+e, of the root gate of the fault
tree when the bag of failed component classes is F + e. For the procedure to work properly,
the distance variable dv(x) of each input x, b(x) = c[n] of the fault tree must have been
initialized to n, and the value variable vv(x) of each node of the fault tree must have been
set to 0. The procedure is as follows.

P1. Let CS and CS ′ be empty stacks.

P2. eval ft(F,CS)

P3. for (each e ∈ E′) {
P4. vF+e = eval ft(e,CS ′)

P5. restore ft(CS ′)

}
P6. restore ft(CS)

Note that after calling the procedure, dv(x) = n for each input x, b(x) = c[n] of the fault
tree and val(z) = 0 for each node z of the fault tree.

The CTMC X ′′ is generated breadth-first using a FIFO queue Q and calling the pro-
cedure eval all ft and the procedures enabled , rate and successor described in Section 3.4.
The queue Q holds pairs (s, F (s)) corresponding to the states s that have to be processed.
The generation of X ′′ starts by creating the states f and u0, and making Q = {(o, ∅)} and
G = {o}. Then, while Q �= ∅, a pair (a, F (a)) is pulled out of Q and processed as follows.
First, the set of rules enabled in a, R(a), is obtained by making the call enabled(a). Next,
denoting by e(r) the failure bag associated with rule r and letting E(a) = {e(r)}r∈R(a), the
values of the root gate of the fault tree, vF (a)+e, for the states with bag of failed component
classes F (a)+e, e ∈ E(a) are obtained by making the call eval all ft(F (a), E(a)). The value
of the root gate of the fault tree for the state reached from a following rule r ∈ R(a) is
vF (a)+e(r). Then, each r ∈ R(a) is processed as follows. First, the rate λr,a with which the
next state is reached from a following rule r is computed by making the call rate(a, r). Sec-
ond, if vF (a)+e(r) = 1, the state reached from a following r is a down state and a transition

30

rate λr,a from a to f is added. If vF (a)+e(r) = 0 and |F (a) + e(r)| > K, the state reached
from a following r belongs to U and a transition rate λr,a from a to u0 is added. Finally, if
vF (a)+e(r) = 0 and |F (a) + e(r)| ≤ K, the state reached from a following r belongs to the
subset of states that have to be generated. In that case, the reached state, b, is obtained
by making the call successor(a, r) and, if b /∈ G, b is added to G, a transition rate λr,a from
a to b is added, and the pair (b, F (a) + e(r)) is put into Q; if b ∈ G, a transition rate λr,a

from a to b is added.

This section finishes by comparing the cost (in terms of CPU time) of SC-BM with the
cost of T-SC-BM for the particular case L̃ = 1. The comparison is done with the aid of the
following theorem.

Theorem 7 Let F be a bag of component classes, let d̃ = d̃b(F, gr) > 0, and let E′ ⊂ E.
If L̃ = 1, then the cost of the call comp all d(F, d̃, E′, η̃(e), e ∈ E′) after setting dv(x) =
d̃b(∅, gr), x ∈ I ∪ P is at most equal to the cost of the call eval all ft(F,E′) after setting
dv(x) = n, x ∈ I, b(x) = c[n], and vv(x) = 0, x ∈ I ∪ P .

Proof. The proof starts by showing that L̃ = 1 implies d̃ = 1 and 0 ≤ η̃(e) ≤ 1, e ∈ E′.
Let F ′ and F ′′ with F ′ ⊂ F ′′ be bags of component classes and let x ∈ I ∪ P . Then,
d̃b(F ′′, x) ≤ d̃b(F ′, x). Also, it has been assumed d̃ > 0 and L̃ = 1. Then, 0 < d̃ =
d̃b(F, gr) ≤ d̃b(∅, gr) = L̃ = 1 and, thereby, d̃ = 1. Regarding η̃(e) = d̃b(e, gr), e ∈ E′, they
are always ≥ 0, and, therefore, 0 ≤ d̃b(e, gr) ≤ d̃b(∅, gr) = L̃ = 1.

Since (13)–(15), then dv(x) = n for inputs x with b(x) = c[n], and dv(x) > 0, x ∈ P

before the call comp all d(F, d̃, E′, η̃(e), e ∈ E′). Therefore, the distance variable of each
input of the fault tree has the same value before both the call to comp all d and the call to
eval all ft .

Comparison of the costs of the calls comp all d(F, d̃, E′, η̃(e), e ∈ E′) and eval all ft(F,E′)
is done in four steps:

P1. Comparison of the cost of the call comp d(F, 0, d̃,CS) done in step 2 of comp all d
with the cost of the call eval ft(F,CS) done in step P2 of eval all ft .

P2. Comparison of the cost of each call comp d(e, s, t,CS ′) done in step 6 of comp all d
with the cost of each call eval ft(e,CS ′) done in step P4 of eval all ft .

P3. Comparison of the cost of each call restore d(CS ′) done in step 7 of comp all d with
the cost of each call restore ft(CS ′) done in step P5 of eval all ft .

P4. Comparison of the cost of the call restore d(CS) done in step 8 of comp all d with the
cost of the call restore ft(CS) done in step P6 of eval all ft .

In case 1, d̃ = 1 implies that the call comp d(F, 0, d̃,CS) results in the call update d(F, 1,CS).
That call processes the inputs x of the fault tree that have associated with them a bag b(x)
related to some part of F , and updates the distance variable dv(x) of the gates x such that
d̃b(F, x) = 0. The call eval ft(F,CS) processes the same inputs as the call update d(F, 1,CS),

31

and sets vv(x) = 1 for the nodes x that become implied. The dv(x), x ∈ I is the same
before either call, and (13) is updated alike in both calls. Also, vv(x) = 1, x ∈ I ∪ P if
and only if d̃b(F, x) = 0. Then, the set of nodes whose value variable is updated in the
call eval ft(F,CS) is the same as the set of nodes whose distance variable is updated in the
call update d(F, 1,CS). Therefore, the cost of the call comp d(F, 0, d̃,CS) done in step 2 of
comp all d is essentially the same as the cost of the call eval ft(F,CS) done in step P2 of
eval all ft .

In case 2, d̃ = 1 and 0 ≤ η̃(e) ≤ 1, e ∈ E′ imply that the variables s and t computed
in steps 4 and 5 of comp all d satisfy 0 ≤ s, t ≤ 1. Because s ≤ t, the only possibilities are
s = 0, t = 0; s = 0, t = 1; and s = 1, t = 1. In cases s = 0, t = 0 and s = 1, t = 1,
the call comp d(e, s, t,CS ′) does not make any processing on the fault tree, whereas the call
eval ft(e,CS ′) may or may not result in processing the fault tree. In case s = 0, t = 1, the
call comp d(e, 0, 1,CS ′) results in the call update d(e, 1,CS ′). Reasoning as it has been done
in case 1, the cost of that call is essentially the same as the cost of the call eval ft(e,CS ′).
Therefore, the cost of each call comp d(e, s, t,CS ′) done in step 6 of comp all d is at most
equal to the cost of each call eval ft(e,CS ′) done in step P4 of eval all ft .

In cases 3 and 4, the sizes of the stacks CS and CS ′ in comp all d are not larger than the
sizes of the corresponding stacks in eval all ft . Therefore, the cost of each call restore d(CS ′)
done in step 7 of comp all d is at most equal to the cost of each call restore ft(CS ′) done in
step P5 of eval all ft ; and the cost of the call restore d(CS) done in step 8 of comp all d is
essentially the same as the cost of the call restore ft(CS) done in step P6 of eval all ft .

In summary, the cost of the call comp all d(F, d̃, E′, η̃(e), e ∈ E′) is at most equal to
the cost of the call eval all ft(F,E′) when L̃ = 1.

The subset G generated by both methods is the same. Then, taking into account the
description of the generation of X ′ in SC-BM done in Section 3.4 and the description of
the generation of X ′′ in T-SC-BM done in this section, the former differs basically from
the latter only in that a call to comp all d is done during the generation of X ′ whenever
a call to eval all ft is done during the generation of X ′′. Then, since solution of X ′ and
X ′′ takes negligible time compared with their generation, comparison of the costs of both
methods can be roughly done by comparing, for a given a ∈ G and E(a) ⊂ E, the cost
of the call comp all d(F (a), d̃(a), E(a), η̃(e), e ∈ E(a)) done in SC-BM with the cost of the
corresponding call eval all ft(F (a), E(a)) done in T-SC-BM. Therefore, invoking Theorem 7
with F = F (a), d̃ = d̃b(F (a), gr) = d̃(a) > 0 and E′ = E(a), it follows that, for the
particular case L̃ = 1, the cost of SC-BM is at most equal to the cost of T-SC-BM.

5 Analysis and Comparison

This section analyzes SC-BM and compares it with BM-1 and T-SC-BM by means of two
large examples representing two scenarios:

1. The fault tree satisfies the condition of Theorem 3 and L̃ > 1.

32

spare

spare

spare spare

101 2 8. . .

spares

9

C
M

1

C
M

2

C
M

3

MMi,2 MMi,3MMi,1

CPUCi PTCi

ICi,j

MCi,j

Figure 6: Architecture of example 1.

2. The fault tree does not satisfy the condition of Theorem 3 and L̃ > 1.

In both examples, the state o is the initial state of X. The CTMC are solved in all methods
using the randomization method [14]. In example 1, SC-BM and BM-1 give exactly the
same bounds because Theorem 3 guarantees d̃(a) = d(a). In example 2, SC-BM gives less
tighter bounds than BM-1. Since L̃ > 1 for both examples, SC-BM could have a higher
cost (in terms of CPU time) than T-SC-BM. The parameter R of the algorithms for the
computation of failure distances used in BM-1 [1] was set to 2 for both examples.

5.1 Example 1 (Scenario 1)

The system, adapted from [6], has 114 components, and its architecture is shown in Figure 6.
The system has three computing modules CMi, 1 ≤ i ≤ 3, one of which is spare. The CMi

includes three memory modules MMi,j, 1 ≤ j ≤ 3, three s-identical CPU chips CPUCi and
two s-identical port chips PTCi. One MMi,j, one CPUCi and one PTCi are spares. The
MMi,j has ten s-identical memory chips MCi,j, two of which are spares, and one interface
chip ICi,j. Memory modules MMi,j and MMi′,j are s-identical (eg MM1,1 and MM2,1).

Active MCi,j and active ICi,j fail, respectively, with rates λMCj and λICj . Active PTCi

and active CPUCi fail, respectively, with rates λPTCi and λCPUCi . Spare chips fail with
rates ν × λMCj , ν × λICj , ν × λPTCi , and ν × λCPUCi , where ν, 0 < ν < 1 is a dormancy
factor. Components of non-operational memory modules and non-operational computing
modules do not fail.

33

Recovery is hierarchical. A fault in a MCi,j is covered with probability CMC. Failure
of MMi,j, a CPUCi and a PTCi is successfully covered with probabilities CMM, CCPUC and
CPTC, respectively. Failure of CMi is covered with probability CCM.

Coverage faults are modeled by introducing fictitious components as explained in Sec-
tion 2. An uncovered fault in a MCi,j is propagated to a fictitious component RMMi,j. An
uncovered failure in MMi,j, a CPUCi or a PTCi is propagated to two fictitious components
RCMi. An uncovered failure in CMi is propagated to four fictitious components RSYS.

The MMi,j is operational if at least eight MCi,j, the ICi,j and the RMMi,j are unfailed.
The CMi is operational if at least two memory modules are operational and two CPUCi,
one PTCi, and one RCMi are unfailed. The system is operational if at least two computing
modules are operational and one RSYS is unfailed.

The fault tree has 37 inputs, all of which are modules, 25 gates, 13 of which are modules,
and 73 edges. The fault tree is defined by the logical expressions:

FM i,j = Ti,j ∨ Ui,j ∨ Vi,j , 1 ≤ i, j ≤ 3 ;

FMM i,l,k = FM i,l ∧ FM i,k , 1 ≤ i ≤ 3, 1 ≤ l < k ≤ 3 ;

FC i = FMM i,1,2 ∨ FMM i,1,3 ∨ FMM i,2,3 ∨Wi ∨Xi ∨ Yi , 1 ≤ i ≤ 3 , ;

FCC i,j = FC i ∧ FC j , 1 ≤ i < j ≤ 3 ;

gr = Z ∨ FCC 1,2 ∨ FCC 1,3 ∨ FCC 2,3 .

The bags associated with the inputs of the fault tree are: b(Ti,j) = MCi,j [3], b(Ui,j) =
ICi,j[1], b(Vi,j) = RMMi,j[1], b(Wi) = CPUCi[2], b(Xi) = PTCi[2], b(Yi) = RCMi[2], and
b(Z) = RSYS[4]. Also, L = L̃ = 4 and |MC | = 2,701.

The numerical results have been obtained for the parameter values: λMC1 = 10−7 h−1,
λMC2 = 2×10−7 h−1, λMC3 = 3×10−7 h−1, λIC1 = 2×10−7 h−1, λIC2 = 4×10−7 h−1, λIC3 =
6 × 10−7 h−1, λCPUC1 = 6 × 10−7 h−1, λCPUC2 = 1.2 × 10−6 h−1, λCPUC3 = 1.8 × 10−6 h−1,
λPTC1 = 6×10−7 h−1, λPTC2 = 1.2×10−6 h−1, λPTC3 = 1.8×10−6 h−1, ν = 0.2, CMC = 0.99,
CMM = 0.95, CCPUC = 0.99, CPTC = 0.97, and CCM = 0.95.

5.2 Example 2 (Scenario 2)

The system has 60 components and its architecture is sketched in Figure 7. The system has
four processing clusters that communicate through two independent double-ring networks,
A and B; both networks have the same structure.

Processing cluster i, 0 ≤ i ≤ 3 includes three s-identical processing units PUi. Network
A includes eight nodes NAi, 0 ≤ i ≤ 7. Nodes NAi and NA(i+1) mod 8 communicate through
direct (clockwise) and reverse (counter-clockwise) links DAi and RAi, respectively. Network
B includes eight nodes NBi, 0 ≤ i ≤ 7. Nodes NBi and NB(i+1) mod 8 communicate through
direct and reverse links DBi and RBi, respectively.

The operational configuration of the system includes two processing units from the
processing clusters with two or three unfailed processing units, one processing unit from the

34

NBi

PUi/2

NBi+3

NBi+2

NAi+2

DBi NBi+1

PUi/2+1

DAi

NAi+1

NAi NAi+3
RBi

RAi

Figure 7: Architecture of example 2.

processing clusters with one unfailed processing unit, and the components of network A or
B, with priority given to network A, required to build one of the operational configurations
of the networks, described next in the order they are tried:
· A direct ring including all nodes and direct links.
· A reverse ring including all nodes and reverse links.
· A configuration, which is used when parallel direct and reverse links i are failed, including

all nodes and links except the two failed links.
· A configuration, which is used when, for instance, node i fails, including all nodes except

node i, and all links except those between node i and nodes (i± 1) mod 8.

When one of those network operational configurations is built, the corresponding net-
work is said to be operational. The components included in the system operational config-
uration are called active. Active processing units, active nodes and active links fail with
rates λPU, λN and λL, respectively. Inactive processing units fail with rate ν × λPU, where
ν, 0 < ν < 1 is a dormancy factor. Inactive nodes and links of network A fail, respectively,
with rate ν × λN and ν × λL when the network is operational and do not fail otherwise.
Inactive nodes and links of network B fail, respectively, with rate ν × λN and ν × λL.
Coverage is perfect for link faults. Faults in active processing units and nodes are covered
with probabilities CPU and CN , respectively. Coverage faults are modeled by adding three
fictitious components RSYS as explained in Section 2 and propagating to all of them any
uncovered fault.

The system is operational if each processing cluster has at least one unfailed processing
unit, one of the previously described operational network configurations for either network
A or network B can be built, and at least one RSYS is unfailed.

The system fault tree has 53 inputs, all of which are modules, 40 gates, 4 of which are

35

modules, and 764 edges. The fault tree is described by:

DRA =
7∨

i=0

(
Si ∨ Ti

)
,

DRB =
7∨

i=0

(
Vi ∨Wi

)
,

RRA =
7∨

i=0

(
Si ∨ Ui

)
,

RRB =
7∨

i=0

(
Vi ∨Xi

)
,

FRAi =
7∨

j=0

Sj ∨
7∨

j=0
j �=i

(
Tj ∨ Uj

)
,

FRB i =
7∨

j=0

Vj ∨
7∨

j=0
j �=i

(
Wj ∨Xj

)
,

FRA∗
i =

7∨
j=0
j �=i

Sj ∨
7∨

j=0
j �=i,(i−1) mod 8

(
Tj ∨ Uj

)
,

FRB∗
i =

7∨
j=0
j �=i

Vj ∨
7∨

j=0
j �=i,(i−1) mod 8

(
Wj ∨Xj

)
,

NETA = DRA ∧ RRA ∧
7∧

i=0

FRAi ∧
7∧

i=0

FRA∗
i ,

NETB = DRB ∧ RRB ∧
7∧

i=0

FRB i ∧
7∧

i=0

FRB∗
i ,

NET = NETA ∧NETB ,

gr = NET ∨ Z ∨
3∨

i=0

Yi ,

The bags associated with the inputs of the fault tree are: b(Si) = NAi[1], b(Ti) = DAi[1],
b(Ui) = RAi[1], b(Vi) = NBi[1], b(Wi) = DBi[1], b(Xi) = RBi[1], b(Yi) = PUi[3], and
b(Z) = RSYS[3]. Also, L = 3, L̃ = 2 and |MC | = 32,405.

The numerical results have been obtained for the parameter values: λPU = 10−6 h−1,
λN = 5 × 10−7 h−1, λL = 3 × 10−7 h−1, ν = 0.2, CPU = 0.99 and CN = 0.99.

5.3 Results and Discussion

We use K = 2, 3, 4, 5 for example 1 and K = 2, 3, 4 for example 2.

Figures 8 and 9 show the unreliability bounds obtained using SC-BM for examples 1

36

1e-05

0.0001

0.001

0.01

1 2 3 4 5

K=2 (|G|=325)
K=3 (|G|=2,922)
K=4 (|G|=20,256)
K=5 (|G|=114,243)

Figure 8: Unreliability bounds for example 1 as a function of time (years) and K.

0.0001

0.001

0.01

1 2 3 4 5

K=2 (|G|=1,383)
K=3 (|G|=23,231)
K=4 (|G|=251,920)

Figure 9: Unreliability bounds for example 2 as a function of time (years) and K.

& 2, respectively, as a function of time (in years).2 The bounds degrade as time increases.
In both examples, however, SC-BM achieves tight bounds for mission times up to 5 years
using affordable numbers of states.

Tables 3 and 4 compare, for, respectively, examples 1 & 2, and several mission times,
the relative unreliability band obtained with SC-BM,

urb(t) =
[ur(t)]ub − [ur(t)]lb

[ur(t)]lb

against that obtained with BM-1,

urb′(t) =
[ur(t)]′ub − [ur(t)]lb

[ur(t)]lb
21 month = 730 hours;1 year = 8,760 hours.

37

Table 3: Example 1: relative unreliability band obtained with SC-BM, urb(t) (top), and
T-SC-BM, urb′′(t) (bottom).

K (|G|)
time 2 (325) 3 (2,922) 4 (20,256) 5 (114,243)

1 month 5.6074 × 10−3 9.0751 × 10−4 2.4718 × 10−5 2.4558 × 10−7

1.9121 × 101 5.3599 × 10−1 5.9234 × 10−3 5.1234 × 10−5

2 months 1.4916 × 10−2 3.4877 × 10−3 1.1790 × 10−4 1.7226 × 10−6

1.9310 × 101 7.5534 × 10−1 1.4218 × 10−2 1.9082 × 10−4

6 months 8.8675 × 10−2 3.0034 × 10−2 1.7085 × 10−3 5.1856 × 10−5

2.0721 × 101 1.6262 7.0069 × 10−2 2.0870 × 10−3

1 year 3.0844 × 10−1 1.1625 × 10−1 1.0286 × 10−2 5.2415 × 10−4

2.4590 × 101 2.9683 2.1744 × 10−1 1.1154 × 10−2

2 years 1.1610 4.4492 × 10−1 6.3144 × 10−2 5.5772 × 10−3

3.7307 × 101 6.0617 7.2137 × 10−1 6.4111 × 10−2

5 years 7.9242 2.6360 6.0118 × 10−1 1.0547 × 10−1

9.5814 × 101 1.9943 × 101 3.6513 6.0539 × 10−1

and that obtained with T-SC-BM,

urb′′(t) =
[ur(t)]′′ub − [ur(t)]lb

[ur(t)]lb
.

The relative band urb′(t) is not shown in Table 3 because, for example 1, [ur(t)]′ub = [ur(t)]ub

and, therefore, urb′(t) = urb(t).

SC-BM outperforms significantly T-SC-BM in terms of bounds tightness. Thus, for
mission times up to 1 year, the ratio urb′′(t)/urb(t) is greater than or equal to 21 for
example 1 and 30 for example 2. In addition, SC-BM can compute bounds that are almost as
tight or even tighter than those given by T-SC-BM using appreciably fewer states. Thus, for
example 1 and t = 2 years, the relative band obtained by SC-BM with K = 4 (|G| = 20,256)
is better than that obtained by T-SC-BM with K = 5 (|G| = 114,243). For example 2 and
t = 2 years, the relative band obtained by SC-BM with K = 3 (|G| = 23,231) is only slightly
worse than that obtained by T-SC-BM with K = 4 (|G| = 251,920).

For example 1, SC-BM and BM-1 give exactly the same bounds. For example 2, the
bounds obtained by SC-BM are only slightly worse than the bounds obtained by BM-1.

Table 5 gives the CPU times in seconds for t = 5 years for examples 1 & 2 and all three
methods. The times were measured on a 167 MHz, 128 MB SPARC Ultra 1 workstation.
As discussed in Section 4, with respect to T-SC-BM, SC-BM can introduce a significant
CPU time overhead due to computing lower bounds for failure distances from states only
when L̃ > 1. That is the case for examples 1 & 2 and the results given in Table 5 indicate
that the overhead is reasonable, ranging from 20% for example 2 and K = 4 to 40% for
example 1 and K = 3. In addition, SC-BM is always significantly faster than BM-1.

38

Table 4: Example 2: relative unreliability band obtained with SC-BM, urb(t) (top), BM-1,
urb′(t) (middle), and T-SC-BM, urb′′(t) (bottom).

K (|G|)
time 2 (1,383) 3 (23,231) 4 (251,920)

8.0995 × 10−6 2.7765 × 10−8 5.9186 × 10−11

1 month 4.2519 × 10−6 1.9822 × 10−8 5.1065 × 10−11

3.4966 × 10−3 1.0013 × 10−5 2.1062 × 10−8

6.4332 × 10−5 4.3975 × 10−7 1.8731 × 10−9

2 months 3.4014 × 10−5 3.1450 × 10−7 1.6169 × 10−9

1.3816 × 10−2 7.9310 × 10−5 3.3356 × 10−7

1.6870 × 10−3 3.4190 × 10−5 4.3531 × 10−7

6 months 9.1670 × 10−4 2.4625 × 10−5 3.7652 × 10−7

1.1952 × 10−1 2.0576 × 10−3 2.5930 × 10−5

1.2903 × 10−2 5.1391 × 10−4 1.3015 × 10−5

1 year 7.2810 × 10−3 3.7395 × 10−4 1.1291 × 10−5

4.5153 × 10−1 1.5491 × 10−2 3.8967 × 10−4

9.4070 × 10−2 7.2234 × 10−3 3.6184 × 10−4

2 years 5.6666 × 10−2 5.3589 × 10−3 3.1572 × 10−4

1.6114 1.0930 × 10−1 5.4737 × 10−3

1.0991 1.8392 × 10−1 2.1999 × 10−2

5 years 7.6243 × 10−1 1.4348 × 10−1 1.9505 × 10−2

7.1970 1.1300 1.3744 × 10−1

Table 5: CPU time in seconds to generate the CTMC and compute the unreliability bounds
for t = 5 years for both examples using SC-BM (top), BM-1 (middle) and T-SC-BM (bot-
tom).

K

example 2 3 4 5

0.271 2.12 14.8 90.4
first 1.72 4.38 29.3 268.

0.197 1.52 11.0 73.2
3.21 44.8 510. —

second 16.4 68.8 998. —
2.42 36.4 427. —

39

To conclude, SC-BM seems to give significantly tighter bounds than T-SC-BM and
seems to be only slightly slower than T-SC-BM, when it is not as fast or faster (L̃ = 1).
Compared with BM-1, when the condition of Theorem 3 is satisfied or L = 1, SC-BM
is guaranteed to give exactly the same bounds as BM-1, and, in those cases, SC-BM is
definitely better, since it does not require the computation of MC , does not incur the
memory overhead associated with the holding of MC and related data structures for failure
distance computation [1], and seems to be faster. When the condition of Theorem 3 is not
satisfied and L > 1, SC-BM will give, in general, less tighter bounds than BM-1, but, since
SC-BM does not require the computing of MC , which is an NP-hard problem, there are
cases in which SC-BM applies while BM-1 does not. In addition, even when MC can be
computed, the memory overhead in BM-1 associated with MC is large if |MC | is large, and,
then, SC-BM might be better than BM-1 when considering the tradeoff between memory
consumption and bounds tightness.

Acknowledgments

This work was partially supported by the “Comisión Interministerial de Ciencia y Tec-
noloǵıa” (CICYT) of the Ministry of Science and Technology of Spain under the research
grant TIC95-0707-C02-02.

References

[1] V. Suñé and J. A. Carrasco, “A method for the computation of reliability bounds
for non-repairable fault-tolerant systems,” in Proc. 5th IEEE Int. Symp. on Model-
ing, Analysis and Simulation of Computers and Telecommunication Systems (MAS-
COTS’97), (Haifa, Israel), pp. 221–228, January 1997.

[2] M. A. Boyd, M. Veeraraghavan, J. B. Dugan, and K. Trivedi, “An approach to solving
large reliability models,” in Proc. of the AIAA/IEEE 8th Conf. on Embedded Digital
Avionics, pp. 243–250, 1988.

[3] J. L. Peterson, “Computation sequence sets,” Journal of Computer and System Sci-
ences, vol. 13, pp. 223–252, August 1976.

[4] S. M. Ross, Stochastic Processes. John Wiley & Sons, 1983.

[5] R. A. Sahner and K. S. Trivedi, “Reliability modeling using SHARPE,” IEEE Trans-
actions on Reliability, vol. R-36, pp. 186–193, June 1987.

[6] D. Lee, J. Abraham, D. Rennels, and G. Gilley, “A numerical technique for the hier-
archical evaluation of large, closed fault-tolerant systems,” in Proc. 3rd Working Conf.
on Dependable Computing for Critical Applications, pp. 95–114, Springer-Verlag, 1992.

[7] J. B. Dugan, “Fault trees and imperfect coverage,” IEEE Transactions on Reliability,
vol. 38, pp. 177–185, June 1989.

40

[8] S. A. Doyle and J. B. Dugan, “Dependability assessment using binary decision dia-
grams (BDDs),” in Proc. 25th IEEE Int. Symp. on Fault-Tolerant Computing FTCS-25,
pp. 249–258, 1995.

[9] J. Carrasco and V. Suñé, “An algorithm to find minimal cuts of coherent fault trees
with event classes, using a decision tree,” IEEE Transactions on Reliability, vol. 48,
pp. 31–41, March 1999.

[10] A. Rosenthal, “A computer scientist looks at reliability computations,” in Reliability
and Fault Tree Analysis (R. Barlow, J. Fusell, and N. Singpurwalla, eds.), pp. 133–152,
Philadelphia, USA: SIAM, 1975.

[11] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research. McGraw-Hill,
1982.

[12] T. Kohda, E. J. Henley, and K. Inoue, “Finding modules in fault trees,” IEEE Trans-
actions on Reliability, vol. 38, pp. 165–176, June 1989.

[13] Y. Dutuit and A. Rauzy, “A linear-time algorithm to find modules of fault trees,” IEEE
Transactions on Reliability, vol. 45, pp. 422–425, September 1996.

[14] D. Gross and D. Miller, “The randomization technique as a modeling tool and solution
procedure for transient Markov processes,” Operations Research, vol. 32, pp. 343–361,
March-April 1984.

41

