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Abstract

The paper develops a method, calledbounding regenerative transformation, for the compu-

tation with numerical stability and well-controlled errorof bounds for the interval availability

distribution of systems modeled by finite (homogeneous) continuous-time Markov chain mod-

els with a particular structure. The method requires the selection of a regenerative state and is

targeted at a class of models, classC′

1
, with a “natural” selection for the regenerative state. For

classC′

1
models, bounds tightness can be traded-off with computational cost through a control

parameterDC , with the optionDC = 1 yielding the smallest computational cost. For large

classC′

1
models and the selectionDC = 1, the method will often have a small computational

cost relative to the model size and, with additional conditions, seems to yield tight bounds for

any time interval or not small time intervals, depending on the initial probability distribution of

the model. ClassC′

1
models with those additional conditions include both exactand bounding

failure/repair models of coherent fault-tolerant systemswith exponential failure and repair time

distributions and repair in every state with failed components with failure rates much smaller

than repair rates.
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Figure 1: State diagram of continuous time Markov chain modeling a repairable fault-tolerant system

using the pair-and-spare technique (left) and behavior ofIAVCD(t, p) (right).

1 Introduction

The distribution of the interval availability, i.e. the distribution of the fraction of time in a time

interval in which a system is up, is a dependability measure of practical interest. This is because

the measure quantifies the probability with which a given availability level over a time interval can

be guaranteed by the provider of a system to the system’s user. To illustrate a typical behavior

of the measure, Figure 1 plots the interval availability complementary distributionIAVCD(t, p)

(probability that the fraction of time in the time interval[0, t] in which the system is up is> p) of

a fault-tolerant system using the pair and spare technique [8] in which active modules fail with rate

λM = 10−3 h−1, the spare module does not fail, the failure of an active module is covered with

probabilityCM = 0.95, failed modules are repaired by a single repairman with rateµM = 1 h−1,

and modules do not fail when the system is down, for several values oft and values ofp around

the steady-state availabilitySSA = 0.9999, assuming that initially all modules are unfailed. The

figure also gives the state diagram of the (homogeneous) continuous-time Markov chain (CTMC)

modeling the system. The up states are the states 1, 3, and 5. As predicted by renewal reward

process and regenerative process theories (see, for instance, [10]), fort → ∞, IAVCD(t, p) has an

asymptotic shape withIAVCD(t, p) = 1 for p < SSA and IAVCD(t, p) = 0 for p > SSA, but

the convergence to that asymptotic shape is very slow, making meaningful the computation of the

measure for very large values oft.

Computing the interval availability distribution of a fault-tolerant system modeled by a CTMC

is a challenging problem [3, 7, 10, 11, 12, 13, 14, 15, 17]. Thefirst effort is reported in [17], where

a closed form integral expression was obtained for a two-state model. In [10], randomization was

used to obtain the distribution of the up time in a time interval of the same two-state model. The

first method able to deal with arbitrary finite CTMC models wasdeveloped by de Souza e Silva and

Gail [15] using randomization. Goyal and Tantawi [7] developed a numerical approximate method

without error bounds. Sericola [14] obtained a closed form solution in terms of growing size ma-

trices. Rubino and Sericola [11] developed an efficient numerical method for the particular case
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in which up and down periods are independent one by one and of each other. Rubino and Sericola

[12] developed two algorithms reducing the computational requirements of the randomization-based

method developed in [15]. The first of such algorithms reduces the time requirements; the second

one reduces the storage requirements. This second algorithm was reviewed in [13] as Algorithm A,

where it was taken as starting point to develop another algorithm (Algorithm B), which is competi-

tive when the number of up states of the model is small and, furthermore, can deal with some class

of CTMC models with denumerable infinite state spaces. Finally, a method, which will be called

in this paperregenerative transformation, has been developed by Carrasco [3] which covers finite

CTMC models with a particular structure. In the method, a truncated transformed CTMC model is

built which, with an appropriate subset of up states, has thesame interval availability distribution

as the original model with an arbitrarily small error and that truncated transformed CTMC model is

solved using Algorithm A of [13]. The method requires the selection of a regenerative state and, as

Algorithm A of [13] and all other randomization-based methods, is numerically stable and computes

IAVCD(t, p) with well-controlled error. For a class of models, classC1, including both exact and

bounding failure/repair models of coherent fault-tolerant systems with exponential failure and repair

time distributions and repair in every state with failed components with failure rates much smaller

than repair rates, and a given “natural” selection for the regenerative state, theoretical results are

available assessing the performance of the method in terms of visible model characteristics, and,

for large models of that class, the method can be significantly less costly than previously available

methods capable of dealing with arbitrary finite CTMC models.

All currently available methods for computingIAVCD(t, p) tend to be expensive for large

t. With that motivation, in this paper, we take the regenerative transformation method as starting

point to develop a potentially less costly method, calledbounding regenerative transformation, for

computing bounds for the measure. The method requires the selection of a regenerative state and is

targeted at a class of models, classC′
1, which is a subclass of model classC1, with a given “natural”

selection for the regenerative state. In the method, the original CTMC model is transformed into

lower bounding and upper bounding models by scaling the transition rates from up states different

from the regenerative state according to a parameterDC controlling the tightness of the bounds, and

those models are solved by regenerative transformation. A more efficient implementation exists for

the caseDC = 1 when both bounds have to be computed and an additional condition is satisfied.

For classC′
1 models, bounds tightness can be traded-off with computational cost through the control

parameterDC , with the optionDC = 1 yielding the smallest computational cost. For large classC′
1

models and the selectionDC = 1, the method will often have a small computational cost relative

to the model size and, with additional conditions, seems to yield tight bounds for any time interval

or not small time intervals, depending on the initial probability distribution of the model. ClassC′
1

models with those additional conditions include both exactand bounding failure/repair models of

coherent fault-tolerant systems with exponential failureand repair time distributions and repair in

every state with failed components with failure rates much smaller than repair rates.

The rest of the paper is organized as follows. Section 2 discusses the computational cost of

Algorithm A of [13], which broadly speaking can be considered the current randomization-based

state-of-the-art method for computing the interval availability distribution for arbitrary finite CTMC
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models, and reviews the regenerative transformation method. Section 3 describes the bounding re-

generative transformation method, specifying the CTMC models covered by the method, describing

the model classC′
1 at which the method is targeted, motivating the method, showing that it indeed

obtains bounds, and arguing that it can be relatively inexpensive. Within that section, Section 3.2 jus-

tifies and describes the more efficient particular implementation of the method. Section 4 analyzes

the performance of the method using a representative large classC′
1 model and compares using that

example the computational cost of the method with those of Algorithm A of [13] and regenerative

transformation. We also illustrate in that section that, often, bounding regenerative transformation

with DC = 1 will provide bounds for largeC′
1 models at a small computational cost relative to the

model size and that, under additional conditions, the bounds seem to be tight for any time inter-

val or not small time intervals, depending on the initial probability distribution of the model. The

Appendix includes three lengthy proofs.

2 Preliminaries

LetX = {X(t); t ≥ 0} be a CTMC with state spaceΩ partitioned into the set of up statesU and

the set of down statesD. The interval availability at timet, IAV(t), is defined as the fraction of time

in the time interval[0, t] in which the system is up, i.e.

IAV(t) =
1

t

∫ t

0
1X(τ)∈U dτ ,

where1c denotes the indicator function returning the value 1 when condition c is satisfied and the

value 0 otherwise. In this paper, we target the computation of bounds for the interval availability

complementary distribution

IAVCD(t, p) = P [IAV(t) > p] ,

wheret > 0 and0 < p < 1.

Algorithm A of [13] (Algorithm A in the sequel) can, broadly speaking, be considered the

current randomization-based state-of-the-art method forcomputing the measure for arbitrary finite

CTMC models with infinitesimal generator. Assumemaxi∈Ω λi > 0, whereλi is the output rate

from statei of X. That method, as most of currently available methods for computing the measure,

is based on the randomization construct. In that construct (see, for instance, [9]), the given CTMCX

is interpreted in terms of a discrete-time Markov chain subordinated to a Poisson process with arrival

rateΛ ≥ maxi∈Ω λi. For not too smallX, the method has an approximate flop countNC ′(2T +

2|Ω|), whereN andC ′ are truncation parameters andT is the number of transitions ofX. An

important feature of the method is that it is numerically stable, the only important error source being

the truncation error. The truncation parametersN andC ′ are given by

N = min

{
n ≥ 0 :

∞∑

k=n+1

(Λt)k

k!
e−Λt ≤

ε

2

}
,

3



C ′′ =






max

{
c : 0 ≤ c ≤ N ∧

c∑

k=0

((1 − p)Λt)k

k!
e−(1−p)Λt ≤

ε

4

}
if e−(1−p)Λt ≤

ε

4

−1 if e−(1−p)Λt >
ε

4

,

C ′ =






min

{
N,min

{
c ≥ 0 :

∞∑

k=c+1

((1 − p)Λt)k

k!
e−(1−p)Λt ≤

ε

4

}}
if C ′′ 6= −1

min

{
c ≥ 0 :

∞∑

k=c+1

((1 − p)Λt)k

k!
e−(1−p)Λt ≤

ε

2

}
if C ′′ = −1

,

whereε is the required truncation error. The truncation parameters N andC ′ increase withΛ,

makingΛ = maxi∈Ω λi the best selection forΛ. Using the well-known result (see, for instance, [10,

Theorem 3.3.5] that the number of arrivals in the time interval [0, t] of a Poisson process with arrival

rateΛ has forΛt → ∞ an asymptotic normal distribution with mean and varianceΛt, for largeΛt

andε � 1, the requiredN will be ≈ Λt and, then, the method will be very costly if the model is

large. As an example, for the model considered in Section 4, which has 646,646 states, 15,578,290

transitions, andΛ ≈ 2.25 h−1, we can estimate a flop count of8.25 × 1013 when the method is run

with a single target(t, p) pair with t = 20,000h andp = 0.9995 and a truncation error requirement

ε = 10−8, which yieldsN = 46,241 andC ′ = 55.

The regenerative transformation method developed in [3] was an effort to reduce the high rela-

tive computational cost in terms of CPU time of Algorithm A. The method requires the selection of

a regenerative stater and is targeted at a particular class of models, classC1, including both exact

and bounding failure/repair models of coherent fault-tolerant systems with exponential failure and

repair time distributions and repair in every state with failed components with failure rates much

smaller than repair rates, with a “natural” selection for the regenerative state. Since the method

developed in this paper for computing bounds forIAVCD(t, p) is based on regenerative transfor-

mation, in the remaining of this section we will review the regenerative transformation method. Let

αi = P [X(0) = i] and letλi,j denote the transition rate ofX from statei to statej. GivenB ⊂ Ω,

letαB =
∑

i∈B αi denote the initial probability ofX in subsetB and, giveni ∈ Ω andB ⊂ Ω−{i},

letλi,B =
∑

j∈B λi,j denote the transition rate ofX from statei to subsetB. LettingS′ = S−{r},

US = U ∩ S,DS = D ∩ S, U ′
S = US − {r}, andD′

S = DS − {r}, the method will cover CTMCs

X with infinitesimal generator and selections forr satisfying the conditions

C1. Ω is finite.

C2. EitherΩ = S or Ω = S ∪ {f}, f being an absorbing state.

C3. |S| ≥ 2.

C4. Either all states inS are transient orX has a single recurrent class of statesF ⊂ S.

C5. All states are reachable (from some state with nonnull initial probability).

C6. U 6= ∅ andD 6= ∅.

C7. maxi∈U λi > 0 andmaxi∈D λi > 0.
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C8. r ∈ S and, ifX has a single recurrent class of statesF ⊂ S, r ∈ F .

C9. If U ′
S 6= ∅, λr,U ′

S
> 0.

C10. IfU ′
S 6= ∅, αD′

S
> 0 andαU ′

S
= 0, λi,U ′

S
> 0 for somei ∈ D′

S with αi > 0.

Note that conditions C2, C4 and C8 and the required specification of the regenerative stater “force”

the subsetS and, if existent, the statef . More specifically, ifX does not have any absorbing state,

S must beΩ andf does not exist; ifX has a single absorbing statea andr 6= a, thenS must be

Ω−{a} andf must bea; if X has a single absorbing statea andr = a, thenS must beΩ andf does

not exist; ifX has two absorbing statesa, b andr is one of them, saya, thenS must beΩ−{b} and

f must beb; finally, if X has more than two absorbing states or has two absorbing states but none of

them isr, then no selections forS andf exist satisfying the conditions. Conditions C3, C6 and C7

are mild, in the sense that when they are not satisfied computation of IAVCD(t, p) either is trivial

or can be reduced to a simpler problem. Thus, assumingU 6= ∅ andmaxi∈U λi = 0, all up states

would be absorbing andIAVCD(t, p) would be equal toP [X((1 − p)t) ∈ U ]. Similarly, assuming

D 6= ∅ andmaxi∈D λi = 0, all down states would be absorbing andIAVCD(t, p) would be equal to

P [X(pt) ∈ U ]. Condition C5 can be trivialized by deleting unreachable states. Finally, conditions

C9 and C10 can be circumvented by adding toX a tiny transition rateλ ≤ 10−10ε/(2tmax) between

an appropriate pair of states, whereε is the allowed error andtmax is the largest timet at which

IAVCD(t, p) has to be computed, with a negligible impact onIAVCD(t, p) no greater than10−10ε

(see [3]). The possibility thatX has an absorbing statef is allowed to cover bounding models [16],

which are useful for systems for which an exact model would have a state space of unmanageable

size. A bounding model would have a state spaceΩ = S ∪ {f}, whereS is a subset of the state

space of the exact model andf is an absorbing state in which the bounding model is wheneverthe

exact model has visited some state outsideS. The initial probability distribution inS would be as

in the exact model and the initial probability off would be the probability that initially the exact

model is outsideS. Consideringf to be a down/up state results in anIAVCD(t, p) measure for the

bounding model which bounds from below/above theIAVCD(t, p) measure of the exact model.

The model classC1 at which the regenerative transformation method is targeted includes all

CTMCsX with infinitesimal generator satisfying conditions C1–C7 and the condition

C11. A partitionU0 ∪ U1 ∪ · · · ∪ UNC
for US exists satisfying the properties

P1. U0 = {o} (i.e. |U0| = 1).

P2. IfX has a single recurrent class of statesF ⊂ S, o ∈ F .

P3. If |US | ≥ 2, λo,U1∪···∪UNC
> 0.

P4. If |US | ≥ 2, αDS
> 0 andαU1∪···∪UNC

= 0, λi,U1∪···∪UNC
> 0 for somei ∈ DS

with αi > 0.

P5. IfNC > 0, max0≤k≤NC
maxi∈Uk

λi,Uk−{i}∪Uk+1∪···∪UNC
∪DS

is significantly smaller

thanmin0<k≤NC
mini∈Uk

λi,U0∪···∪Uk−1
> 0 if Ω = S

or min0<k≤NC
mini∈Uk

λi,U0∪···∪Uk−1∪{f} > 0 if Ω = S ∪ {f}.
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The natural selection for the regenerative state for classC1 models isr = o. With that natural

selection, properties P2, P3 and P4 imply the fulfillment of conditions C8, C9 and C10. Model class

C1 includes both exact and bounding failure/repair models of coherent fault-tolerant systems with

exponential failure and repair time distributions and repair in every state with failed components

with failure rates much smaller than repair rates. A partition forUS showing that those models are

in classC1 would be the partition in whichUk includes the up states with a given number of failed

components, with the subsetsUk sorted following increasing numbers of failed components.Models

of non-coherent fault-tolerant systems may not belong to model classC1 due to the possibility that

there may be a fast repair transition going from some state inUS toDS and, then, property P5 may

not be satisfied. Properties P2, P3 and P4 were not mentioned in [3], but they are implicitly enforced

for the natural selectionr = o by conditions C8, C9 and C10. The condition|US | ≥ 2 was enforced

for classC1 models in [3], but the taken-out particular case|US | = 1 was discussed there, and we

have decided to include it here.

The regenerative transformation method includes two phases. In the first one, a truncated trans-

formed CTMC model,VT , is built which, with an appropriate subset of up states, hasthe same inter-

val availability complementary distribution asX with absolute error≤ ε/2. In the second one,VT

is solved with absolute error≤ ε/2 using Algorithm A. Informally,VT is obtained by characterizing

the behavior ofX from S′ = S − {r} until either hit of stater or, if existing, hit of the absorbing

statef , and fromr until either next hit of stater or, if existing, hit of the absorbing statef , while

keeping track of the amount of time spent inUS.

We now start describingVT as a blackbox and how can it be built fromX at the detail required

by the developments to follow in Section 3. Let̂X = {X̂n, n = 0, 1, 2, . . .} be the randomized

discrete-time Markov chain (DTMC) ofX with randomization rateΛU = (1 + θ)maxi∈U λi > 0

in the states inU and randomization rateΛD = (1 + θ)maxi∈D λi > 0 in the states inD, whereθ

is a small quantity> 0, sayθ = 10−4. The DTMCX̂ has same state space and initial probability

distribution asX and transition matrixP = (Pi,j)i,j∈Ω, wherePi,j = λi,j/ΛU , i ∈ U , j 6= i,

Pi,i = 1 − λi/ΛU , i ∈ U , Pi,j = λi,j/ΛD, i ∈ D, j 6= i, andPi,i = 1 − λi/ΛD, i ∈ D. Let

X̂ ′ denote a version of̂X with initial stater, and, given a DTMCY , let Ym1:m2c, m1,m2 ≥ 0,

denote the predicate which is true whenYn satisfies conditionc for all n, m1 ≤ n ≤ m2 (by

conventionYm1:m2c is true form2 < m1) and let#(Ym1:m2c) denote the number of indicesn,

m1 ≤ n ≤ m2 for which Yn satisfies conditionc. Let the row vectorsπππ(n, k) = (πi(n, k))i∈S ,

n ≥ 0, 0 ≤ k ≤ n + 1, whereπi(n, k) = P [X̂ ′
n = i ∧ X̂ ′

1:n 6= r ∧ #(X̂ ′
0:n ∈ U) = k], and

let the row vectorsπππ′(n, k) = (π′i(n, k))i∈S′ , n ≥ 0, 0 ≤ k ≤ n + 1, whereπ′i(n, k) = P [X̂n =

i ∧ X̂0:n 6= r ∧ #(X̂0:n ∈ U) = k]. In words,πi(n, k) is the probability that in the firstn

stepsX̂ ′ will not have entered stater and has visitedk up states, and at stepn is in statei, i ∈ S;

andπ′i(n, k) is the probability that in the firstn stepsX̂ has not visited stater and has visitedk up

states, and at stepn is in statei, i ∈ S′. Let a(n, k) =
∑

i∈S πi(n, k), am(k) =
∑k+m−1

n=k−1 a(n, k),

a′(n, k) =
∑

i∈S′ π′i(n, k), anda′m(k) =
∑k+m−1

n=k−1 a
′(n, k). The truncated transformed CTMCVT

is defined by up to three truncation parameters,K, L, andC. The truncation parameterC is given

6



by

C = min

{
c ≥ 1 :

∞∑

m=c+1

(Λ tqmax)
m

m!
e−Λ tqmax ≤ ε1

}
, (1)

whereΛ = max{ΛU ,ΛD}, tqmax is the largest value oftq = t(1− p) at whichIAVCD(t, p) has to

be computed, andε1 = ε/4 if U ′
S 6= ∅ andε1 = ε/2 if U ′

S = ∅. For the caseU ′
S 6= ∅ andαS′ > 0,

the truncation parametersK andL are given by

K = min

{
k ≥ 2 : αSaC(k)

∞∑

m=k

(m− k + 2)
(ΛU tmax)

m

m!
e−ΛU tmax ≤

ε

8

}
, (2)

L = min

{
k ≥ 2 : a′C(k)

∞∑

m=k

(ΛU tmax)
m

m!
e−ΛU tmax ≤

ε

8

}
, (3)

and, for the caseU ′
S 6= ∅ andαS′ = 0, the truncation parameterK is given by

K = min

{

k ≥ 2 : αSaC(k)

∞∑

m=k

(m− k + 2)
(ΛU tmax)

m

m!
e−ΛU tmax ≤

ε

4

}

, (4)

wheretmax is the largest value oft at whichIAVCD(t, p) has to be computed. Then,x
B denoting the

restriction of the row vectorx to the subset of indicesB and0 denoting a row vector of appropriate

dimension with all components null,f , a andb being absorbing states, and∪c denoting an union

to be performed when conditionc is satisfied,VT has, for the caseαS′ > 0, state space (note that

conditions C2, C6 and C7 implyUS 6= ∅ andDS 6= ∅)

ΩT =
{
su
n,k : (n, k) ∈ DT ∧ πππ(n, k)US 6= 0

}⋃ {
sd
n,k : (n, k) ∈ DT ∧ πππ(n, k)DS 6= 0

}

⋃
U ′

S
6=∅

{
s′un,k : (n, k) ∈ D′

T ∧ πππ′(n, k)U
′

S 6= 0

}

⋃
D′

S
6=∅

{
s′dn,k : (n, k) ∈ D′

T ∧ πππ′(n, k)D
′

S 6= 0

}

⋃
Ω=S∪{f} {f}

⋃
{a}

⋃
U ′

S
6=∅ {b} ,

and, for the caseαS′ = 0, state space

ΩT =
{
su
n,k : (n, k) ∈ DT ∧ πππ(n, k)US 6= 0

}⋃ {
sd
n,k : (n, k) ∈ DT ∧ πππ(n, k)DS 6= 0

}

⋃
Ω=S∪{f} {f}

⋃
{a}

⋃
U ′

S
6=∅ {b} ,

where, forU ′
S 6= ∅,

DT = {(n, k) : 0 ≤ k ≤ K ∧ max{0, k − 1} ≤ n ≤ k + C − 1}

and

D′
T = {(n, k) : 0 ≤ k ≤ L ∧ max{0, k − 1} ≤ n ≤ k + C − 1} ;

for U ′
S = ∅ andr ∈ US ,

DT = {(n, 1) : 0 ≤ n ≤ C} ;

for U ′
S = ∅ andr ∈ DS ,

DT = {(n, 0) : 0 ≤ n ≤ C − 1} ;
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kK k = n+ 1 k = n �C + 1C � 1 K + C � 1K � 1 n1
Figure 2: DomainDT for the caseU ′

S 6= ∅ (the domain includes the points in the frontier).

and, forU ′
S = ∅,

D′
T = {(n, 0) : 0 ≤ n ≤ C − 1} .

Figure 2 depicts the domainDT for the caseU ′
S 6= ∅. The domainD′

T for the caseU ′
S 6= ∅ is

identical withK replaced byL. The initial probability distribution ofVT is P [VT = s·0,·] = αr,

P [VT = s′u0,1] = αU ′

S
, P [VT = s′d0,0] = αD′

S
, P [VT = f ] = αf , andP [VT = i] = 0, i 6∈

{s·0,·, s
′u
0,1, s

′d
0,0, f}, wheres·0,· denotes statesu

0,1 if r ∈ US and statesd
0,0 if r ∈ DS . Note that,

according to the definition ofπππ(n, k), for r ∈ US , the only statesu
0,k or sd

0,k present inΩT is state

su
0,1, and, forr ∈ DS , the only statesu

0,k or sd
0,k present inΩT is statesd

0,0. It is that single state

which is denoted bys·0,·.

With Pi,B, B ⊂ Ω denoting
∑

j∈B Pi,j, the transition rates inVT are as follows. Let

wuu
n,k =

∑
i∈US

πi(n, k)Pi,U ′

S
/
∑

i∈US
πi(n, k), wud

n,k =
∑

i∈US
πi(n, k)Pi,D′

S
/
∑

i∈US
πi(n, k),

wdu
n,k =

∑
i∈DS

πi(n, k)Pi,U ′

S
/
∑

i∈DS
πi(n, k), wdd

n,k =
∑

i∈DS
πi(n, k)Pi,D′

S
/
∑

i∈DS
πi(n, k),

qu
n,k =

∑
i∈US

πi(n, k)Pi,r/
∑

i∈US
πi(n, k), qd

n,k =
∑

i∈DS
πi(n, k)Pi,r/

∑
i∈DS

πi(n, k),

vu
n,k =

∑
i∈US

πi(n, k)Pi,f/
∑

i∈US
πi(n, k), vd

n,k =
∑

i∈DS
πi(n, k)Pi,f/

∑
i∈DS

πi(n, k),

w′uu
n,k =

∑
i∈U ′

S
π′i(n, k)Pi,U ′

S
/
∑

i∈U ′

S
π′i(n, k), w

′ud
n,k =

∑
i∈U ′

S
π′i(n, k)Pi,D′

S
/
∑

i∈U ′

S
π′i(n, k),

w′du
n,k =

∑
i∈D′

S
π′i(n, k)Pi,U ′

S
/
∑

i∈D′

S
π′i(n, k), w

′dd
n,k =

∑
i∈D′

S
π′i(n, k)Pi,D′

S
/
∑

i∈D′

S
π′i(n, k),

q′un,k =
∑

i∈U ′

S
π′i(n, k)Pi,r/

∑
i∈U ′

S
π′i(n, k), q

′d
n,k =

∑
i∈D′

S
π′i(n, k)Pi,r/

∑
i∈D′

S
π′i(n, k),

v′un,k =
∑

i∈U ′

S
π′i(n, k)Pi,f/

∑
i∈U ′

S
π′i(n, k), v

′d
n,k =

∑
i∈D′

S
π′i(n, k)Pi,f/

∑
i∈D′

S
π′i(n, k). Then,

• if U ′
S 6= ∅, each statesu

n,k, 0 ≤ k < K, has a transition ratewuu
n,kΛU to statesu

n+1,k+1, a

transition ratewud
n,kΛU to statesd

n+1,k if n ≤ k + C − 2 and to statea otherwise, a transition

ratequ
n,kΛU to states·0,· if su

n,k 6= s·0,·, and, ifΩ = S ∪{f}, a transition ratevu
n,kΛU to statef .

• If U ′
S 6= ∅, each statesu

n,K has a transition rateΛU to stateb.

• If U ′
S = ∅, each statesu

n,k has a transition ratewud
n,kΛU to statesd

n+1,k if n ≤ k + C − 2 and

to statea otherwise, a transition ratequ
n,kΛU to states·0,· if su

n,k 6= s·0,·, and, ifΩ = S ∪ {f}, a

transition ratevu
n,kΛU to statef .

• If U ′
S 6= ∅, each statesd

n,k, 0 ≤ k < K, has a transition ratewdu
n,kΛD to statesu

n+1,k+1, a

transition ratewdd
n,kΛD to statesd

n+1,k if n ≤ k + C − 2 and to statea otherwise, a transition

rateqd
n,kΛD to states·0,· if sd

n,k 6= s·0,·, and, ifΩ = S ∪ {f}, a transition ratevd
n,kΛD to state

f .

• If U ′
S 6= ∅, each statesd

n,K has a transition rateΛD to stateb.
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• If U ′
S = ∅, each statesd

n,k has a transition ratewdd
n,kΛD to statesd

n+1,k if n ≤ k + C − 2 and

to statea otherwise, a transition rateqd
n,kΛD to states·0,· if sd

n,k 6= s·0,·, and, ifΩ = S ∪ {f},

a transition ratevd
n,kΛD to statef .

• If U ′
S 6= ∅, each states′un,k, 0 ≤ k < L has a transition ratew′uu

n,kΛU to states′un+1,k+1, a

transition ratew′ud
n,kΛU to states′dn+1,k if n ≤ k + C − 2 and to statea otherwise, a transition

rateq′un,kΛU to states·0,·, and, ifΩ = S ∪ {f}, a transition ratev′un,kΛU to statef .

• If U ′
S 6= ∅, each states′un,L has a transition rateΛU to stateb.

• If U ′
S 6= ∅, each states′dn,k, 0 ≤ k < L has a transition ratew′du

n,kΛD to states′un+1,k+1, a

transition ratew′dd
n,kΛD to states′dn+1,k if n ≤ k + C − 2 and to statea otherwise, a transition

rateq′dn,kΛD to states·0,·, and, ifΩ = S ∪ {f}, a transition ratev′dn,kΛD to statef .

• If U ′
S 6= ∅, each states′dn,L has a transition rateΛD to stateb.

• If U ′
S = ∅, each states′dn,k has a transition ratew′dd

n,kΛD to states′dn+1,k if n ≤ k+C−2 and to

statea otherwise, a transition rateq′dn,kΛD to states·0,·, and, ifΩ = S ∪ {f}, a transition rate

v′dn,kΛD to statef .

The states which have to be considered up inVT are the statessu
n,k, the statess′un,k and statef

if Ω = S ∪ {f} andf is an up state inX.

To illustrate the “structure” ofVT , Figure 3 gives an sketch of the state diagram ofVT for

the caseΩ = S ∪ {f}, r ∈ US, U ′
S 6= ∅, D′

S 6= ∅, αU ′

S
> 0, andαD′

S
> 0, with truncation

parametersK = 3, L = 3, andC = 3. In that case, sincer ∈ US , s·0,· = su
0,1 and statesd

0,0 is not

present. We include in the state space all possible candidate statessu
n,k, sd

n,k, s′un,k, s′dn,k subject to the

considered particular case, taking into account the formaldefinition ofΩT . Statessu
n,k, (n, k) ∈ DT

and statessd
n,k, (n, k) ∈ DT which are always (for the considered particular case) outside ΩT are

indicated by dotted circles. Similarly, statess′un,k, (n, k) ∈ D′
T and statess′dn,k, (n, k) ∈ D′

T which

are always outsideΩT are indicated with dotted circles. The initial probabilitydistribution ofVT is

P [VT (0) = su
0,1] = αr, P [VT (0) = s′u0,1] = αU ′

S
, P [VT (0) = s′d0,0] = αD′

S
, P [VT (0) = f ] = αf ,

P [VT (0) = i] = 0, i 6∈ {su
0,1, s

′u
0,1, s

′d
0,0, f}. For the sake of readability, we do not plot the arrows

corresponding to the transition rates to statesf andsu
0,1. There is a transition rate with valuequ

n,kΛU

from every statesu
n,k, n > 0, k < K = 3 to statesu

0,1, a transition rate with valueqd
n,kΛD from

every statesd
n,k, k < K = 3 to statesu

0,1, a transition rate with valueq′un,kΛU from every states′un,k,

k < L = 3 to statesu
0,1, and a transition rate with valueq′dn,kΛD from every states′dn,k, k < L = 3 to

statesu
0,1. Finally, there is a transition rate with valuevu

n,kΛU from every statesu
n,k, k < K = 3 to

statef , a transition rate with valuevd
n,kΛD from every statesd

n,k, k < K = 3 to statef , a transition

rate with valuev′un,kΛU from every states′un,k, k < L = 3 to statef , and a transition rate with value

v′dn,kΛD from every states′dn,k, k < L = 3 to statef .

The construction ofVT requires the computation ofπππ(n, k), (n, k) ∈ DT and, if αS′ > 0,

πππ′(n, k), (n, k) ∈ D′
T . PB,C denoting the subblock ofP collecting the elements with index pairs
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. . .

. . .

. . .

w′uu
2,2 ΛU

f

su
0,0 sd

0,0 su
1,0 sd

1,0 su
2,0 sd

2,0

su
0,1 sd

0,1 su
1,1 sd

1,1 su
2,1 sd

2,1 su
3,1 sd

3,1

su
1,2 sd

1,2 su
2,2 sd

2,2 su
3,2 sd

3,2 su
4,2 sd

4,2

su
2,3 sd

2,3 su
3,3 sd

3,3 su
4,3 sd

4,3 su
5,3 sd

5,3

s′u0,0 s′d0,0 s′u1,0 s′d1,0 s′d2,0s′u2,0

s′u0,1 s′d0,1 s′u1,1 s′d1,1 s′u2,1 s′d2,1 s′u3,1 s′d3,1

s′u1,2 s′d1,2 s′u2,2 s′d2,2 s′u3,2 s′d3,2 s′u4,2 s′d4,2

s′u5,3

a

a

s′d2,3s′u2,3 s′d3,3s′u3,3 s′d4,3s′u4,3 s′d5,3

ΛU
ΛU ΛU

ΛU

wdd
4,2ΛD

wdd
3,1ΛD

ΛU

ΛU ΛU

ΛU

w′dd
4,2ΛD

w′ud
4,2 ΛU

wud
4,2ΛU

wdu
4,2ΛDwuu

3,2ΛUwdu
2,2ΛD wdu

3,2ΛD wuu
4,2ΛU

wud
0,1ΛU

wdd
1,1ΛD wdd

2,1ΛD

wdu
1,1ΛD wdu

2,1ΛD wdu
3,1ΛD

wud
3,2ΛUwud

1,2ΛU wud
2,2ΛU

wdd
2,2ΛD wdd

3,2ΛD

w′uu
4,2 ΛUw′uu

3,2 ΛU

w′uu
1,1 ΛU

w′ud
1,2 ΛU w′ud

2,2 ΛU

w′uu
2,1 ΛUw′du

1,1 ΛD
w′dd

2,2ΛDw′du
2,1 ΛD w′uu

3,1 ΛU
w′dd

3,2ΛD

w′ud
3,1 ΛU

w′du
3,1 ΛD

w′dd
3,1ΛD

w′dd
2,0ΛD

w′dd
0,0ΛD w′dd

1,0ΛD

w′du
1,0 ΛD w′du

2,0 ΛDw′du
0,0 ΛD

w′ud
1,1 ΛU w′ud

2,1 ΛU
w′dd

1,1ΛD w′dd
2,1ΛD

w′ud
3,2 ΛU

wuu
0,1ΛU

wuu
1,2ΛU

b

w′uu
0,1 ΛU

w′uu
1,2 ΛU

w′ud
0,1 ΛU

b

w′du
4,2 ΛD

wuu
2,2ΛU

w′du
2,2 ΛD w′du

3,2 ΛD

Figure 3: Sketch of the state diagram ofVT for the caseΩ = S ∪ {f}, r ∈ US , U ′
S 6= ∅, D′

S 6= ∅,

αU ′

S
> 0, andαD′

S
> 0, with truncation parametersK = 3, L = 3, andC = 3.
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in B × C, the required row vectorsπππ(n, k) can be obtained, for increasingk and for eachk for

increasingn, using the recurrences

πππ(n, k)U
′

S = πππ(n− 1, k − 1) PS,U ′

S
, n ≥ 1, 1 ≤ k ≤ n+ 1 , (5)

πππ(n, k)D
′

S = πππ(n− 1, k) PS,D′

S
, n ≥ 1, 0 ≤ k ≤ n (6)

and

πr(n, k) = 0, n ≥ 1 , 0 ≤ k ≤ n+ 1 , (7)

πr(0, 0) = 1r∈DS
, (8)

πr(0, 1) = 1r∈US
, (9)

πππ(0, k)U
′

S = 0, 0 ≤ k ≤ 1 , (10)

πππ(n, 0)U
′

S = 0, n ≥ 1 , (11)

πππ(0, k)D
′

S = 0, 0 ≤ k ≤ 1 . (12)

πππ(n, n+ 1)D
′

S = 0, n ≥ 1 . (13)

Similarly,ααα denoting the row vector(αi)i∈Ω, the required row vectorsπππ′(n, k) can be obtained, for

increasingk and for eachk for increasingn, using the recurrences

πππ′(n, k)U
′

S = πππ′(n− 1, k − 1) PS′,U ′

S
, n ≥ 1, 1 ≤ k ≤ n+ 1 , (14)

πππ′(n, k)D
′

S = πππ′(n− 1, k) PS′,D′

S
, n ≥ 1, 0 ≤ k ≤ n (15)

and

πππ′(0, 0)U
′

S = 0 , (16)

πππ′(0, 1)U
′

S = αααU ′

S , (17)

πππ′(n, 0)U
′

S = 0, n ≥ 1 , (18)

πππ′(0, 0)D
′

S = αααD′

S , (19)

πππ′(0, 1)D
′

S = 0 , (20)

πππ′(n, n+ 1)D
′

S = 0, n ≥ 1 . (21)

For the caseU ′
S 6= ∅ and not too small models, the model transformation phase hasan approxi-

mate flop countCK(2T+M |Ω|)+1αS′>0CL(2T+M |Ω|), whereT is the number of transitions of

X,M = 11 if Ω = S ∪ {f} andM = 9 if Ω = S. A salient feature is that, in that case, the trunca-

tion parametersK andL are smooth functions oft. More specifically,K isO(log(ΛU t/ε)) and, for

αS′ > 0, L isO(log(ΛU t/ε)). For classC1 models with|US | ≥ 2 and the selectionr = o we have

the following additional result [3], wherec(n) ∼ d(n) for n→ ∞ denoteslimn→∞ c(n)/d(n) = 1.

Theorem 1. For classC1 models with|US | ≥ 2 and the selectionr = o, aC(n) ≤ (C + 1)h(n)

anda′C(n) ≤ αS′(C + 1)h′(n), where, forn → ∞, h(n) ∼ B
(
n−1
p−1

)
ρn andh′(n) ∼ B′

(
n−1
p′−1

)
ρ′n,

withB > 0, B′ > 0, p, p′ integers≥ 1, ρ, ρ′ ≈ 1 − 1/R′, andR′ = maxi∈US
λi/mini∈US−{o} λi.
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According to Theorem 1, for classC1 models with|US | ≥ 2 and the selectionr = o, the values

of the truncation parametersK andL should be mainly determined by the parameterR′: the closer

R′ to 1, the smaller the truncation parametersK andL should be. In fact [3], as a rule of thumb,

for R′ � 1, K andL can be roughly bounded from above by30R′. Often,maxi∈Ω λi tqmax will

be moderate and the truncation parameterC will be moderate. In that case, both the computational

cost in terms of CPU time of the model transformation phase relative to the size ofX and the

size ofVT will be moderate ifR′ has a moderate value, and, ifX is large, the method will have

a moderate computational cost in terms of CPU time relative to the size ofX, much smaller than

the computational cost of Algorithm A whenmaxi∈Ω λit is large. For the case|US | = 1, the

selectionr = o yields U ′
S = ∅, and both the computational cost in terms of CPU time of the

model transformation phase relative to the size ofX and the size ofVT will be always small if

maxi∈Ω λi tqmax is moderate, and, for largeX, the method will also have a small computational cost

in terms of CPU time relative to size ofX, much smaller than the computational cost of Algorithm

A.

3 The Bounding Regenerative Transformation Method

We will start by identifying the CTMC models covered by bounding regenerative transformation

and the model classC′
1 at which the method is targeted. Then, we will motivate and justify the

method and will describe it in the general case. A separate subsection will be dedicated to justify

and describe a more efficient implementation of the method which is a available for the caseDC = 1

when both bounds have to be computed and an additional condition is satisfied.

3.1 Motivation and general case

The bounding regenerative transformation method covers the same class of CTMC models and se-

lections for the regenerative stater as the regenerative transformation method (conditions C1–C10)

with the additional condition:

C12. U ′
S 6= ∅.

The additional condition is imposed because forU ′
S = ∅ there is no up state whose transition rates

have to be scaled and the bounding regenerative transformation method would be reduced to the

regenerative transformation method.

The method is targeted at a model classC′
1 with a “natural” selection for the regenerative state

r. Model classC′
1 is a subclass of model classC1 defined by conditions C1–C7 and the conditions

C13. |US | ≥ 2.

12



C14. A partitionU0 ∪ U1 ∪ · · · ∪ UNC
for US exists satisfying the properties:

P1. U0 = {o} (i.e. |U0| = 1).

P2. IfX has a single recurrent class of statesF ⊂ S, o ∈ F .

P3. λo,U1∪···∪UNC
> 0.

P4. IfαDS
> 0 andαU1∪···∪UNC

= 0, λi,U1∪···∪UNC
> 0 for somei ∈ DS with αi > 0.

P5. max0≤k≤NC
maxi∈Uk

λi,Uk−{i}∪Uk+1∪···∪UNC
∪DS

is significantly smaller than

min0<k≤NC
mini∈Uk

λi,U0∪···∪Uk−1
> 0 if Ω = S

or min0<k≤NC
mini∈Uk

λi,U0∪···∪Uk−1∪{f} > 0 if Ω = S ∪ {f}.

P6. λo ≤ mini∈U1∪···∪UNC
λi.

The natural selection for the regenerative state for classC′
1 models isr = o. Since classC′

1 is a

subclass of classC1 and, for any model in classC′
1, |US | ≥ 2 andmaxi∈US

λi = maxi∈US−{o} λi

because of property P6 of the partition forUS , we have, from Theorem 1:

Theorem 2. For classC′
1 models and the selectionr = o, aC(n) ≤ (C + 1)h(n) anda′C(n) ≤

αS′(C + 1)h′(n), where, forn → ∞, h(n) ∼ B
(
n−1
p−1

)
ρn andh′(n) ∼ B′

(
n−1
p′−1

)
ρ′n, withB > 0,

B′ > 0, p, p′ integers≥ 1, ρ, ρ′ ≈ 1 − 1/R′′, andR′′ = maxi∈US−{o} λi/mini∈US−{o} λi.

The bounding regenerative transformation method is motivated by Theorem 2 and is based on

the following result. See, for instance, [9] for the definitions of conservative and uniformizable

CTMCs with denumerable state space. They are CTMCs with denumerable state space in which

the output rate from any statei is equal to the sum of the transition rates fromi and in which the

output rates are uniformly bounded from above. Any finite CTMC with infinitesimal generator is

both conservative and uniformizable. Although we will onlyuse the result for finite CTMCs with

infinitesimal generator, that restriction does not lead to asimpler proof.

Theorem 3. LetW be a conservative, uniformizable CTMC with denumerable state spaceΩ, sub-

set of “up” statesU and transition ratesλi,j, i, j ∈ Ω, j 6= i and letW ′ be another conservative,

uniformizable CTMC with same state space, same initial probability distribution, same subset of

“up” states, same transition rates from non-“up” states asX, and transition rates from “up” states

λ′i,j = βiλi,j, i ∈ U , j ∈ Ω, j 6= i, 0 < βi ≤ 1. Let IAVCD(t, p) be the complementary

interval availability distribution ofW , i.e. IAVCD(t, p) = P [(
∫ t

0 1W (τ)∈Udτ)/t > p], t > 0,

0 < p < 1. Let IAVCD′(t, p) be the complementary interval availability distribution of W ′,

i.e. IAVCD′(t, p) = P [(
∫ t

0 1W ′(τ)∈Udτ)/t > p], t > 0, 0 < p < 1. Then,IAVCD′(t, p) ≥

IAVCD(t, p).

Proof. See the Appendix.

Essentially, the reason why Theorem 3 holds is that scaling transition rates from up states keeping

their relative values will not modify the embedded DTMCΠ ofW . Since (see, for instance, [9]) both

W andW ′ can be interpreted in terms ofΠ by associating with the states visited byΠ independent
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1W ′(τ)∈U

τ
t

1

0

1

0

1W (τ)∈U

Figure 4: Comparison of corresponding realizations ofW andW ′.

exponential holding times with parameter equal to the output rate from the visited state, the output

rates from down states are equal inW andW ′ and the output rates from up states are smaller in

W ′ than inW , each realization ofW will have a corresponding realization ofW ′ differing from the

former only in that the holding times in the up states will be non-smaller and, as Figure 4 illustrates,

this will cause the up time in the time interval[0, t] of the realization ofW ′ to be non-smaller than

the up time in the same interval of the corresponding realization ofW . Being the up time ofW ′ in

the time interval[0, t] for a realization ofW ′ non-smaller than the up time ofW in the same time

interval for the corresponding realization ofW , the probability that the interval availability ofW ′

in the time interval[0, t] is greater thanp will be non-smaller than the probability that the interval

availability ofW in the same time interval is greater thanp.

According to Theorem 3, scaling up the transition rates fromsome up states will result

in a CTMC model whoseIAVCD(t, p) measure,IAVCDlb(t, p), will bound from below the

IAVCD(t, p) measure of the original model. Conversely, scaling down thetransition rates from

some up states will result in a CTMC model whoseIAVCD(t, p) measure,IAVCDub(t, p), will

bound from above theIAVCD(t, p) measure of the original model. The bounding regenerative

transformation method performs such scalings in the statesin U ′
S = US − {r} of X, wherer is

the selected regenerative state, and solves the scaled models by regenerative transformation with

regenerative stater. The scaling is performed so that for classC′
1 models with the selectionr = o

the scaled models still belong to model classC′
1 and have anR′′ parameter equal to a given control

parameterDC . Then, according to Theorem 2, the computational efficiencyof the method should

increase asDC decreases. Also, in the frequent case in whichmaxi∈Ω λi tqmax is moderate, since

the scalings do not increasemaxi∈Ω λi, the truncation parameterC associated with the solution of

the bounding models by regenerative transformation will bemoderate, and, since withDC = 1 the

truncation parametersK andL associated with the solution of the bounding models should be small,

for large classC′
1 models and with the selectionsr = o andDC = 1, the method will often obtain

bounds at a small computational cost relative to the model size.

Let λmin = mini∈U ′

S
λi and λmax = maxi∈U ′

S
λi. Note that, for the CTMC models and

selections for the regenerative stater covered by bounding regenerative transformation,S cannot

include any absorbing state: by condition C4 it can include at most one and by condition C8 that
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one should ber, in contradiction withλr,U ′

S
> 0 (conditions C9 and C12). Then,U ′

S ⊂ S does not

include any absorbing state andλmax ≥ λmin > 0. The control parameterDC is required to satisfy

1 ≤ DC < λmax/λmin. The scaling up yielding the lower bounding model,X lb, is defined by

λlb
i,j = λi,j(λ

lb
i /λi), λlb

i = max{λi, λmax/DC}, i ∈ U ′
S , j 6= i, whereλlb

i andλlb
i,j are, respectively,

the output rates and transition rates ofX lb. The scaling down yielding the upper bounding model,

Xub, is defined byλub
i,j = λi,j(λ

ub
i /λi), λub

i = min{λi,DCλmin}, i ∈ U ′
S , j 6= i, whereλub

i and

λub
i,j are, respectively, the output rates and transition rates ofXub. Note that, since larger values of

DC potentially yield smaller values for the output rates from some up states inX lb and potentially

yield larger values for the output rates from some up states in Xub, according to Theorem 3, the

larger the control parameterDC the tighter the obtained bounds will be. Thus, for classC′
1 models

with the selectionr = o, the control parameterDC allows to trade off computational cost with

bounds tightness. In the caseλmax = λmin no selection forDC would be possible, but, in that case,

for classC′
1 models and the selectionr = o the parameterR′′ will be equal to 1 and, by Theorem 2,

the truncation parametersK andL should be small. Then, whenmaxi∈Ω λi tqmax is moderate, the

truncation parameterC will be moderate and the regenerative transformation method should have

small computational cost in terms of CPU time relative to thesize ofX whenX is large.

Since regenerative transformation is numerically stable and has good error control [3], bound-

ing regenerative transformation will compute the bounds with numerical stability and well-controlled

error.

3.2 Particular implementation

The particular case in which both the lower bound and the upper bound forIAVCD(t, p) have to

be computed,DC = 1 and, if r ∈ US , λr ≤ mini∈U ′

S
λi allows a computationally more effi-

cient implementation of the bounding regenerative transformation method than the one described

in the previous section. That more efficient implementationis based on the fact that the truncated

transformed CTMC model corresponding to the solution ofXub by regenerative transformation can

be constructed without analyzing the randomized DTMC ofXub if some quantities related to the

construction of the truncated transformed CTMC model builtduring the application of regenerative

transformation to the solution ofX lb are saved. We will denote with the superscriptlb (ub) the

quantities corresponding to the first phase of regenerativetransformation applied toX lb (Xub).

The justification of the particular implementation is quiteelaborated. However, for theC′
1

model class at which the bounding regenerative transformation method is targeted, the caseDC = 1

is the most interesting one, since it is in that case that the method will often have a relatively small

computational cost. Also, with the natural selectionr = o, the additional conditionλr ≤ mini∈U ′

S
λi

will be satisfied because of property P6 of the partition forUS , and, often, both bounds will be of

interest to “bracket” the exact solution of the model.

Let (for the CTMC models and selections forr covered by bounding regenerative transforma-

tion,US 6= ∅,DS 6= ∅ ,U ′
S 6= ∅, andDT = {(n, k) : 0 ≤ k ≤ K∧max{0, k−1} ≤ n ≤ k+C−1},
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D′
T = {(n, k) : 0 ≤ k ≤ L ∧ max{0, k − 1} ≤ n ≤ k + C − 1})

ET,u = {(n, k) : (n, k) ∈ DT ∧ k < K ∧ πππ(n, k)US 6= 0} ,

ET,d = {(n, k) : (n, k) ∈ DT ∧ k < K ∧ πππ(n, k)DS 6= 0} ,

and, assumingαS′ > 0, let

E′
T,u = {(n, k) : (n, k) ∈ D′

T ∧ k < L ∧ πππ′(n, k)U
′

S 6= 0}

and, ifD′
S 6= ∅, let

E′
T,d = {(n, k) : (n, k) ∈ D′

T ∧ k < L ∧ πππ′(n, k)D
′

S 6= 0} .

Note thatET,u (ET,d) collects the pairs(n, k) corresponding to the statessu
n,k (sd

n,k) in ΩT with

k < K andE′
T,u (E′

T,d) collects the pairs(n, k) corresponding to statess′un,k (s′dn,k) in ΩT with

k < L. Then, the quantities corresponding to the first phase of regenerative transformation applied

toX lb which have to be saved areΛlb
U ; Λlb

D; alb(n, k), (n, k) ∈ Dlb
T , k ≥ 2; if αS′ > 0, a′lb(n, k),

(n, k) ∈ D′lb
T , k ≥ 2; wuulb

n,k ,wudlb
n,k , qulb

n,k, (n, k) ∈ Elb
T,u; if Ω = S∪{f}, vulb

n,k, (n, k) ∈ Elb
T,u; wdulb

n,k ,

wddlb
n,k , qdlb

n,k, (n, k) ∈ Elb
T,d; if Ω = S ∪ {f}, vdlb

n,k, (n, k) ∈ Elb
T,d; if αS′ > 0, w′uulb

n,k , w′udlb
n,k , q′ulb

n,k ,

(n, k) ∈ E′lb
T,u; if αS′ > 0 andΩ = S ∪ {f}, v′ulb

n,k , (n, k) ∈ E′lb
T,u; if αS′ > 0 andD′

S 6= ∅, w′dulb
n,k ,

w′ddlb
n,k , q′dlb

n,k , (n, k) ∈ E′lb
T,d; and, ifαS′ > 0,D′

S 6= ∅ andΩ = S ∪ {f}, v′dlb
n,k , (n, k) ∈ E′lb

T,d.

Construction of the truncated transformed CTMC model ofXub from those quantities is pos-

sible because: 1)Cub ≤ C lb; Kub ≤ K lb; for αS′ > 0, Lub ≤ Llb; πππub(n, k)US 6= 0 if and

only if πππlb(n, k)US 6= 0 andπππub(n, k)DS 6= 0 if and only if πππlb(n, k)DS 6= 0; for αS′ > 0,

πππ′ub(n, k)U
′

S 6= 0 if and only ifπππ′lb(n, k)U
′

S 6= 0; and, forαS′ > 0 andD′
S 6= ∅, πππ′ub(n, k)D

′

S 6= 0

if and only if πππ′lb(n, k)D
′

S 6= 0, implying (see Figure 2 and the definition ofΩT in Section 2)

Dub
T ⊂ Dlb

T , if αS′ > 0, D′ub
T ⊂ D′lb

T , andΩub
T ⊂ Ωlb

T ; and 2) there exist simple relationships be-

tweenΛub
U , Λub

D , aub(n, k), a′ub(n, k),wuuub
n,k ,wudub

n,k , quub
n,k , vuub

n,k ,wduub
n,k ,wddub

n,k , qdub
n,k , vdub

n,k ,w′uuub
n,k ,

w′udub
n,k , q′uub

n,k , v′uub
n,k , w′duub

n,k , w′ddub
n,k , q′dub

n,k , v′dub
n,k and the corresponding quantities forX lb. Using

those relationships, it is possible to determine (1)–(4)Cub, Kub and, ifαS′ > 0, Lub, and to build

the truncated transformed model corresponding to the solution ofXub by regenerative transforma-

tion. In the remaining of this section we will prove 1) and will obtain the mentioned relationships.

The relationships are established in terms of the parameterR = λmax/λmin, with, we remember,

λmin = mini∈U ′

S
λi andλmax = maxi∈U ′

S
λi. Note thatR > 1, sinceDC < λmax/λmin and

DC = 1 for the particular implementation to apply.

We start by relatingΛU , ΛD, Λ = max{ΛU ,ΛD} and the transition probabilities of the ran-

domized DTMCs ofX lb andXub:

Theorem 4. AssumeDC = 1 and, if r ∈ US , λr ≤ λmin. Then,Λub
U = Λlb

U /R, Λub
D = Λlb

D,

Λub ≤ Λlb, if r ∈ US , P ub
r,j = RP lb

r,j, j 6= r, if r ∈ DS , P ub
r,j = P lb

r,j, j 6= r, andP ub
i,j = P lb

i,j, i ∈ S′.

Proof. Since bounding regenerative transformation only modifies the transition rates from states in

U ′
S , λub

r = λlb
r = λr, λub

r,j = λlb
r,j = λr,j, j 6= r and, fori ∈ DS , λub

i = λlb
i = λi, λub

i,j = λlb
i,j = λi,j,
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j 6= i. BeingDC = 1, for i ∈ U ′
S , λub

i = λmin andλlb
i = λmax, implying, for i ∈ U ′

S , λub
i = λlb

i /R

andλub
i,j = λlb

i,j/R, j 6= i. Usingλub
r = λlb

r = λr, λub
i = λmin, i ∈ U ′

S , λlb
i = λmax, i ∈ U ′

S , and

λr ≤ λmin if r ∈ US,

Λub
U = (1 + θ)max

i∈US

λub
i = (1 + θ)max

{
1r∈US

λub
r , max

i∈U ′

S

λub
i

}

= (1 + θ)max {1r∈US
λr, λmin} = (1 + θ)λmin = (1 + θ)

λmax

R

=
1

R
(1 + θ)max {1r∈US

λr, λmax} =
1

R
(1 + θ)max

{
1r∈US

λlb
r , max

i∈U ′

S

λlb
i

}

=
1

R
(1 + θ)max

i∈US

λlb
i =

Λlb
U

R
.

Usingλub
i = λlb

i , i ∈ DS , Λub
D = (1 + θ)maxi∈DS

λub
i = (1 + θ)maxi∈DS

λlb
i = Λlb

D. The result

Λub ≤ Λlb follows immediately fromΛub = max{Λub
U ,Λub

D }, Λlb = max{Λlb
U ,Λ

lb
D}, Λub

U < Λlb
U ,

and Λub
D = Λlb

D. If r ∈ US, for j 6= r, usingλub
r,j = λlb

r,j and Λub
U = Λlb

U /R, we getP ub
r,j =

λub
r,j/Λ

ub
U = Rλlb

r,j/Λ
lb
U = RP lb

r,j. If r ∈ DS , for j 6= r, usingλub
r,j = λlb

r,j andΛub
D = Λlb

D, we get

P ub
r,j = λub

r,j/Λ
ub
D = λlb

r,j/Λ
lb
D = P lb

r,j. For i ∈ U ′
S andj 6= i, usingλub

i,j = λlb
i,j/R andΛub

U = Λlb
U /R,

we getP ub
i,j = λub

i,j/Λ
ub
U = λlb

i,j/Λ
lb
U = P lb

i,j, which implies, since
∑

j∈Ω P
ub
i,j =

∑
j∈Ω P

lb
i,j = 1,

P ub
i,i = P lb

i,i , i ∈ U ′
S . Finally, for i ∈ D′

S andj 6= i, usingλub
i,j = λlb

i,j andΛub
D = Λlb

D, we get

P ub
i,j = λub

i,j/Λ
ub
D = λlb

i,j/Λ
lb
D = P lb

i,j, which, as before, impliesP ub
i,i = P lb

i,i , i ∈ D′
S .

Using Theorem 4, it is possible to prove the following result, which relates the vectorsπππ(n, k)

andπππ′(n, k).

Proposition 1. AssumeDC = 1 and, ifr ∈ US , λr ≤ λmin. Then, ifr ∈ US ,πππub(0, k) = πππlb(0, k),

0 ≤ k ≤ 1 andπππub(n, k) = Rπππlb(n, k), n ≥ 1, 0 ≤ k ≤ n+ 1; if r ∈ DS , πππub(n, k) = πππlb(n, k),

n ≥ 0, 0 ≤ k ≤ n+ 1; and, forαS′ > 0, πππ′ub(n, k) = πππ′lb(n, k), n ≥ 0, 0 ≤ k ≤ n+ 1.

Proof. See the Appendix.

Note that Proposition 1 implies, as required, thatπππub(n, k)US 6= 0 if and only if πππlb(n, k)US 6= 0,

πππub(n, k)DS 6= 0 if and only if πππlb(n, k)DS 6= 0, for αS′ > 0, πππ′ub(n, k)U
′

S 6= 0 if and only if

πππ′lb(n, k)U
′

S 6= 0, and, forαS′ > 0 andD′
S 6= ∅, πππ′ub(n, k)D

′

S 6= 0 if and only ifπππ′lb(n, k)D
′

S 6= 0.

The following result, relating the quantitiesa(n, k) anda′(n, k) is an immediate consequence of

Proposition 1, taking into accounta(n, k) =
∑

i∈S πi(n, k) anda′(n, k) =
∑

i∈S′ π′i(n, k).

Theorem 5. AssumeDC = 1 and, if r ∈ US , λr ≤ λmin. Then, ifr ∈ US , aub(0, k) = alb(0, k),

0 ≤ k ≤ 1 andaub(n, k) = Ralb(n, k), n ≥ 1, 0 ≤ k ≤ n+ 1; if r ∈ DS , aub(n, k) = alb(n, k),

n ≥ 0, 0 ≤ k ≤ n+ 1; and, forαS′ > 0, a′ub(n, k) = a′lb(n, k), n ≥ 0, 0 ≤ k ≤ n+ 1.

The following lemma is needed to prove the sought result concerning the truncation parameters

C,K andL. A similar lemma was used in [1].

Lemma 1. For x > 0, k ≥ 2 andR > 1,

1

R

∞∑

m=k

(m− k + 2) e−Rx (Rx)m

m!
>

∞∑

m=k

(m− k + 2) e−x x
m

m!
.
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Proof. See the Appendix.

Using Theorems 4 and 5 and Lemma 1, it is possible to prove the following theorem, which

relatesCub with C lb,Kub with K lb and, forαS′ > 0, Lub with Llb.

Theorem 6. AssumeDC = 1 and, ifr ∈ US , λr ≤ λmin. Then,Cub ≤ C lb, Kub ≤ K lb and, for

αS′ > 0, Lub ≤ Llb.

Proof. ThatCub ≤ C lb follows from (1), the fact that
∑∞

m=c+1 e
−Λ tqmax(Λ tqmax)

m/m!, c ≥ 1

is increasing withΛ (because it is the probability that the number of arrivals ofa Poisson process

with rate 1 in the time interval[0,Λ tqmax] will be greater thanc) and (Theorem 4)Λub ≤ Λlb.

Assumer ∈ US. Using, then, Theorem 5, fork ≥ 2, aub
Cub(k) =

∑k+Cub−1
n=k−1 aub(n, k) =

R
∑k+Cub−1

n=k−1 alb(n, k) ≤ R
∑k+Clb−1

n=k−1 alb(n, k) = Ralb
Clb(k), which, combined with (Theorem 4)

Λub
U = Λlb

U /R and Lemma 1 withx = Λub
U tmax gives

αSa
lb
Clb(k)

∞∑

m=k

(m− k + 2)
(Λlb

U tmax)
m

m!
e−Λlb

U
tmax

≥ αS

aub
Cub(k)

R

∞∑

m=k

(m− k + 2)
(RΛub

U tmax)
m

m!
e−R Λub

U
tmax

> αSa
ub
Cub(k)

∞∑

m=k

(m− k + 2)
(Λub

U tmax)
m

m!
e−Λub

U tmax , k ≥ 2 ,

and, then, it follows from (2) and (4) that, forr ∈ US , Kub ≤ K lb. Assume nowr ∈ DS .

Using, then, Theorem 5, fork ≥ 2, aub
Cub(k) =

∑k+Cub−1
n=k−1 aub(n, k) =

∑k+Cub−1
n=k−1 alb(n, k) ≤

∑k+Clb−1
n=k−1 alb(n, k) = alb

Clb(k), which, combined withΛub
U = Λlb

U /R and usingR > 1 gives

αSa
lb
Clb(k)

∞∑

m=k

(m− k + 2)
(Λlb

U tmax)
m

m!
e−Λlb

U
tmax

≥ αSa
ub
Cub(k)

∞∑

m=k

(m− k + 2)
(RΛub

U tmax)
m

m!
e−R Λub

U tmax

= αSa
ub
Cub(k)

∞∑

n=k

∞∑

m=n

(RΛub
U tmax)

m

m!
e−R Λub

U tmax +
∞∑

m=k

(RΛub
U tmax)

m

m!
e−RΛub

U tmax

> αSa
ub
Cub(k)

∞∑

n=k

∞∑

m=n

(Λub
U tmax)

m

m!
e−Λub

U tmax +
∞∑

m=k

(Λub
U tmax)

m

m!
e−Λub

U tmax

= αSa
ub
Cub(k)

∞∑

m=k

(m− k + 2)
(Λub

U tmax)
m

m!
e−Λub

U tmax , k ≥ 2 ,

and, then, it similarly follows from (2) and (4) that, forr ∈ DS , Kub ≤ K lb. Fi-

nally, for αS′ > 0, using Theorem 5, fork ≥ 2, a′ub
Cub(k) =

∑k+Cub−1
n=k−1 a′ub(n, k) =

∑k+Cub−1
n=k−1 a′lb(n, k) ≤

∑k+Clb−1
n=k−1 a′lb(n, k) = a′lb

Clb(k) and, then, it follows from (3), the fact that
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∑∞
m=k e

−ΛU tmax(ΛU tmax)
m/m! is increasing withΛU andΛub

U < Λlb
U (because, by Theorem 4,

Λub
U = Λlb

U /R, andR > 1) thatLub ≤ Llb.

Finally, the following theorem relates the quantitieswuu
n,k, wud

n,k, qu
n,k, vu

n,k, wdu
n,k, wdd

n,k, qd
n,k,

vd
n,k, w′uu

n,k , w′ud
n,k, q′un,k, v′un,k, w′du

n,k, w′dd
n,k, q′dn,k, v′dn,k. Its proof uses Theorem 4 and Proposition 1.

Theorem 7. AssumeDC = 1 and, if r ∈ US , λr ≤ λmin. Then, ifr ∈ US , wuuub
0,1 = Rwuulb

0,1 ,

wudub
0,1 = Rwudlb

0,1 and, ifΩ = S ∪ {f}, vuub
0,1 = Rvulb

0,1 ; if r ∈ DS , wduub
0,0 = wdulb

0,0 , wddub
0,0 = wddlb

0,0

and, ifΩ = S ∪ {f}, vdub
0,0 = vdlb

0,0 ; for (n, k) ∈ Eub
T,u − {(0, 1)}, wuuub

n,k = wuulb
n,k , wudub

n,k = wudlb
n,k ,

quub
n,k = qulb

n,k, and, ifΩ = S ∪ {f}, vuub
n,k = vulb

n,k; and for (n, k) ∈ Eub
T,d − {(0, 0)}, wduub

n,k = wdulb
n,k ,

wddub
n,k = wddlb

n,k , qdub
n,k = qdlb

n,k, and, if Ω = S ∪ {f}, vdub
n,k = vdlb

n,k. Finally, if αS′ > 0, for

(n, k) ∈ E′ub
T,u,w′uuub

n,k = w′uulb
n,k ,w′udub

n,k = w′udlb
n,k , q′uub

n,k = q′ulb
n,k , and, ifΩ = S∪{f}, v′uub

n,k = v′ulb
n,k ;

and, for (n, k) ∈ E′ub
T,d, w′duub

n,k = w′dulb
n,k , w′ddub

n,k = w′ddlb
n,k , q′dub

n,k = q′dlb
n,k , and, if Ω = S ∪ {f},

v′dub
n,k = v′dlb

n,k .

Proof. An immediate consequence of the equations forwuu
n,k, wud

n,k, wdu
n,k, wdd

n,k, qu
n,k, qd

n,k, vu
n,k,

vd
n,k, w′uu

n,k , w′ud
n,k, w′du

n,k, w′dd
n,k, q′un,k, q′dn,k, v′un,k, andv′dn,k given in Section 2, Theorem 4, and Propo-

sition 1, noting that: 1) ifr ∈ US , according to (9), (10) and (12), the only non-null compo-

nent ofπππub(0, 1)US is πub
r (0, 1) and the only non-null component ofπππlb(0, 1)US is πlb

r (0, 1); 2) if

r ∈ DS , according to (8), (10) and (12), the only non-null component of πππub(0, 0)DS is πub
r (0, 0)

and the only non-null component ofπππlb(0, 0)DS is πlb
r (0, 0); 3) according to (7), forn ≥ 1,

πub
r (n, k) = πlb

r (n, k) = 0; and 4) all(n, k) pairs inElb
T,u − {(0, 1)} andEub

T,u − {(0, 1)} ver-

ify n ≥ 1 and all(n, k) pairs inElb
T,d − {(0, 0)} andEub

T,d − {(0, 0)} verify n ≥ 1.

4 Numerical Analysis

In this section we show, using a representative large model in that class, that, for large classC′
1

models whenmaxi∈Ω λi tqmax is moderate, bounding regenerative transformation with the selection

DC = 1 will compute bounds for theIAVCD(t, p) measure at a small computational cost in terms

of CPU time relative to the size ofX, much smaller than the computational costs at which both

regenerative transformation and Algorithm A are able to compute the measure whenmaxi∈Ω λit is

large. We also discuss under which conditions the obtained bounds with the selectionDC = 1 are

tight and illustrate the trade-off in those models between bounds tightness and computational cost

controlled by the parameterDC .

The example is a CTMC model of a fault-tolerant storage system made up of ten 5-level RAID

subsystems, each one comprising eight disks, two redundantdisk controllers and two redundant

power supplies (see Figure 5). The power supplies work in cold standby redundancy. The system is

up if all RAID subsystems are up. A RAID subsystem is up if, ignoring coverage faults, at least one

controller is unfailed, at least one power supply is unfailed, and at least seven disks have updated

data (when a failed disk is repaired in an up subsystem, a reconstruction process fills the repaired

disk with data consistent with the data stored in the remaining seven disks). Disks in up subsystems
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Figure 5: Architecture of the RAID subsystem.

fail with rate4× 10−6 h−1 if no disk is under reconstruction and with rate6× 10−6 h−1 if one disk

is under reconstruction, controllers in up subsystems failwith rate2 × 10−5 h−1 if the subsystem

has two unfailed controllers and with rate3×10−5 h−1 if the subsystem has one unfailed controller,

the active power supply of an up subsystem fails with rate2 × 10−5 h−1, the coverage to controller

failures is0.95, and the coverage to power supply failures is0.98. Disks are reconstructed with

rate0.125 h−1. Components of down subsystems do not fail. It is assumed theavailability of an

unlimited number of repairmen to repair failed components in up RAID subsystems. However, there

is only a repairman to recover down RAID subsystems. The repair rate of failed components in up

RAID subsystems is0.05 h−1 and down subsystems are brought to a fully operational statewith

no component failed and all disks with consistent data with rate0.10 h−1. In case several RAID

subsystems are down, the repairman selects at random the oneto be brought up. Advantage is taken

of the fact that all RAID subsystems have identical behaviorto reduce the size of the state space of

the model. A more detailed description of the model can be found in [2]. The model is quite large:

646,646 states and 15,578,290 transitions. The model has noabsorbing state and, then, illustrates

the caseΩ = S. A partition for the subset of up states,US , showing that the model is in classC′
1

is US = U0 ∪ U1 ∪ · · · ∪ U40, Uk = {s ∈ US : NC(s) + 2ND(s) + NP(s) + NR(s) = k},

whereNC(s) is the number of up RAID subsystems with one failed controller in states, ND(s)

is the number of up RAID subsystems with one failed disk in state s, NP(s) is the number of up

RAID subsystems with one failed power supply in states, andNR(s) is the number of up RAID

subsystems with one disk under reconstruction in states. We will start by assuming that the system

is initially in the state in which all RAID subsystems are in their fully operational state. That state

is the single stateo belonging to the subsetU0 and is taken as regenerative state in both bounding

regenerative transformation and regenerative transformation. The steady-state availability of the

system is 0.99975425, making them reasonable the choices 0.9995 and 0.9999 which we will take

for p. All methods are run with a single target(t, p) pair and an allowed errorε = 10−8. The

bounding regenerative transformation method is requestedto compute both the lower bound and

the upper bound. CPU times are measured/estimated in/for a workstation with a Sun-Blade 1000

processor and 4 GB of memory (significantly larger than the memory consumption for all methods).

To estimate the CPU times for Algorithm A and larget we used the approximate flop count of that

method given in Section 2.
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Figure 6: CPU times of bounding regenerative transformation (BRT) withDC = 1, regenerative

transformation (RT) and Algorithm A (A) forp = 0.9995 (left) andp = 0.9999 (right).

We start by considering the selectionDC = 1 for bounding regenerative transformation. For

the considered example andr = o, λr is smaller thanλmin = mini∈U ′

S
λi, and, thus, bounding

regenerative transformation will use the particular, moreefficient implementation discussed in Sec-

tion 3.2. Table 1 gives the bounds obtained by bounding regenerative transformation (BRT), the

values of the truncation parametersC lb andK lb defining the truncated transformed CTMC model

built when, in BRT, the lower bounding modelX lb is solved by regenerative transformation (as dis-

cussed, the truncation parametersCub andKub defining the truncated transformed CTMC model

built when the upper bounding modelXub is solved are non-greater than, respectively,C lb and

K lb), the values of the truncation parametersC andK defining the truncated transformed CTMC

model built by regenerative transformation (RT), and the values of the truncation parametersC ′ and

N for Algorithm A (A), for p = 0.9995 andp = 0.9999 and increasing values oft. Figure 6

gives the CPU times consumed by the methods (for larget the CPU times of Algorithm A are enor-

mous and they were estimated using approximate flop counts).As predicted theoretically,K lb has

small values. Sincemaxi∈Ω λit(1 − p) has moderate values (forp = 0.9995 andt = 20,000h,

maxi∈Ω λit(1 − p) ≈ 22.5)C lb has also moderate values. All this makes the CPU times consumed

by BRT relatively small: for the largestt considered, 5,494 s (about 92 minutes) forp = 0.9995 and

1,883 s (about 31 minutes) forp = 0.9999. SinceC is identical toC lb (this will always be the case),

the CPU times for RT compared with those of BRT scale approximately as the truncation parameter

K scales withK lb and are, therefore, significantly larger for larget: for the largestt considered,

399,853 s (about 111 hours) forp = 0.9995 and 103,290 s (about 29 hours) forp = 0.9999. The

values ofK satisfy the rough upper bound30R′ mentioned at the end of Section 2, since for the

exampleR′ ≈ 2.25/0.05 = 45 and30R′ ≈ 1,350. Finally, being the model large, the truncation

parameterN significantly larger thanK lb andK for larget, and the truncation parameterC ′ very

similar toC lb andC (this will almost always be the case) the CPU times of Algorithm A are sig-

nificantly larger than the CPU times of both BRT and RT: for thelargestt considered, the estimated

CPU time for Algorithm A is1.158 × 107 s (about 134 days) forp = 0.9995 and4.482 × 106 s

(about 52 days) forp = 0.9999, and thus for large values oft and a conventional hardware platform,

the example can be considered out of reach of Algorithm A.

Figure 7 gives the breakdown of the CPU times consumed by BRT into its three main com-
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Table 1: Results for bounding regenerative transformation(BRT) withDC = 1, regenerative trans-

formation (RT) and Algorithm A (A).

BRT RT A

t (h) p IAVCDlb(t, p) IAVCDub(t, p) C lb K lb C K C ′ N

1 0.9995 0.99997543 0.99997600 2 8 2 13 2 15

10 0.9995 0.99975017 0.99975927 3 13 3 47 3 55

100 0.9995 0.99751052 0.99757828 6 15 6 278 5 316

1,000 0.9995 0.97644748 0.97700453 12 16 12 884 11 2,528

10,000 0.9995 0.85732856 0.86048627 36 18 36 1,009 35 23,375

20,000 0.9995 0.81889809 0.82303294 55 18 55 1,041 55 46,241

1 0.9999 0.99997542 0.99997599 2 8 2 13 2 15

10 0.9999 0.99974996 0.99975907 2 13 2 47 2 55

100 0.9999 0.99749956 0.99755676 4 15 4 278 4 316

1,000 0.9999 0.97548885 0.97606827 7 16 7 884 6 2,528

10,000 0.9999 0.79696265 0.80124391 16 18 16 1,009 15 23,375

20,000 0.9999 0.66211670 0.66861207 22 18 22 1,041 21 46,241

ponents: generation of the truncated transformed CTMC model of X lb: trans (lb), solution of the

truncated transformed model ofX lb by Algorithm A: sol (lb), and solution of the truncated trans-

formed model ofXub by Algorithm A: sol (ub). The particular implementation of BRT applies and

the construction of the truncated transformed CTMC model ofXub from the quantities saved during

the construction of the truncated transformed CTMC model ofX lb consumes negligible CPU times

and those CPU times are not shown. For the considered values of t, most of the CPU time consumed

by the method is due to the generation of the truncated transformed CTMC model ofX lb, but the

CPU times due to the solution by Algorithm A of the truncated transformed CTMC models increase

with t faster than the CPU time consumed in the generation of the truncated transformed CTMC

model ofX lb and, for large enought, would dominate the computational cost of the method. As the

figure clearly illustrates, the importance of those components also increases with1 − p.

The bounds obtained by BRT withDC = 1 are quite tight. Intuitively, for larget, this is

because allX,X lb andXub spent most of the time inUS in stateo and the three models only differ

in the holding times in the states inUS − {o}. This will be the case for any classC′
1 model with the

selectionr = o provided that the partition forUS satisfies the additional properties

P7. For eachi ∈ Uk, 0 < k ≤ NC , λi,Uk−{i}∪Uk+1∪···∪UNC
∪DS

if Ω = S

or λi,Uk−{i}∪Uk+1∪···∪UNC
∪DS∪{f} if Ω = S ∪ {f} is significantly smaller than

λi,U0∪···∪Uk−1
.

P8. λo � mini∈U1∪···∪UNC
λi.

The reason is that P7 implies that, from any statei ∈ US − {o}, the embedded DTMC
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Figure 7: Breakdown of CPU times of BRT withDC = 1 for p = 0.9995 (left) andp = 0.9999

(right).

Table 2: Bounds obtained by BRT withDC = 1 for an initial probability distribution non concen-

trated in stateo.

p = 0.9995 p = 0.9999

t (h) IAVCDlb(t, p) IAVCDub(t, p) IAVCDlb(t, p) IAVCDub(t, p)

1 0.99905631 0.99994872 0.99905616 0.99994870

10 0.99870751 0.99954032 0.99870689 0.99953997

100 0.99647487 0.99703209 0.99645977 0.99701923

1,000 0.97547825 0.97648897 0.97448111 0.97553219

10,000 0.85677215 0.86018960 0.79620927 0.80084126

20,000 0.81853341 0.82283871 0.66154598 0.66830577

will go towards stateo with almost one probability and P8 implies that each holding

time in a statei ∈ US − {o} will be much smaller than each holding time in state

o. Properties P7 and P8 are satisfied moderately by the example, since for the partition

for US previously discussedmax0<k≤40 maxi∈Uk
λi,Uk−{i}∪Uk+1∪···∪DS

= 1.08 × 10−3 h−1,

min0<k≤40 mini∈Uk
λi,U0∪···∪Uk−1

= 0.05h−1, λo = 9.2×10−4 h−1, andmin0<k≤40 mini∈Uk
λi ≈

0.05 h−1. ClassC′
1 models with the additional properties P7 and P8 for the partition forUS include

both exact and bounding failure/repair models of coherent fault-tolerant systems with exponential

failure and repair time distributions and repair in every state with failed components with failure

rates much smaller than repair rates. The fact that the bounds are also tight for smallt seems to have

to do with the fact that all the initial probability of the CTMC model inUS is concentrated in stateo.

Table 2 gives the bounds obtained by BRT withDC = 1 when the initial state of the CTMC model

is the state in which one RAID subsystem has one unfailed controller, no other component failed

and no disk under reconstruction and the remaining RAID subsystems are in their fully operational

state. In that case, the bounds are not so tight for small values oft.

Finally, we analyze the trade-off in BRT between bounds accuracy and computational cost in

terms of CPU time controlled by the parameterDC . Table 3 gives the bounds obtained by BRT and
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Table 3: Trade-off in BRT between bounds tightness and computational cost fort = 10,000 h and

p = 0.9995 and initial state, stateo.

DC IAVCDlb(t, p) IAVCDub(t, p) C lb K lb Cub Kub CPU time (s)

1 0.85732856 0.86048627 36 18 35 18 3,002

2 0.85740339 0.86005160 36 48 35 37 13,429

10 0.85799895 0.85996905 36 277 35 221 80,027

20 0.85869229 0.85996905 36 520 35 452 158,420

the respective CPU times fort = 10,000 h,p = 0.9995 and increasing values ofDC , assuming

that the initial state is stateo. We also giveC lb, K lb, Cub, andKub. We can note that the bounds

become moderately tighter asDC increases but, as a result of a significant increase ofK lb andKub,

the computational cost of the method increases sharply. Thus, the optionDC = 1 seems to be the

most attractive one for classC′
1 models with the partition forUS satisfying properties P7 and P8.

5 Conclusions

Based on a previously developed method for the computation of the interval availability distribu-

tion of systems modeled by CTMCs, the regenerative transformation method, we have developed

a method called bounding regenerative transformation for the computation of bounds for that mea-

sure. The method requires the selection of a regenerative state, is numerically stable and computes

the bounds with well-controlled error. For models belonging to a certain class, classC′
1, and a par-

ticular, “natural” selection for the regenerative state, the method allows to trade off bounds tightness

with computational cost through a control parameterDC . For large classC′
1 models, the less expen-

sive version will often provide bounds at a small computational cost in terms of CPU time relative

to the model size. When the model satisfies additional conditions, the bounds obtained by the less

expensive version of the method seem to be tight for any time interval or not small time intervals,

depending on whether the initial probability distributionof the model in up states different, if exist-

ing, from the absorbing state is concentrated in the naturalselection for the regenerative state or not.

ClassC′
1 models with those additional conditions include both exactand bounding failure/repair

models of coherent fault-tolerant systems with exponential failure and repair time distributions and

repair in every state with failed components with failure rates much smaller than repair rates.

Appendix

Proof of Theorem 3. As theoretical background for measure theory and Lebesgue integration we

use [6]. The characterization of the probability space underlying a discrete time Markov chain with

denumerable state space is discussed in [4]. The uniquenessof such probability space follows from

Kolmogorov’s extension theorem (see, for instance, [5]). That theorem also implies the existence
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and uniqueness of a denumerable product of probability spaces. LetΠ = {Πn;n = 0, 1, 2, . . .} be

the embedded discrete-time Markov chain ofW (see, for instance, [9]).Π has same state space and

initial probability distribution asW and transition probabilitiesψi,j = P [Πn+1 = j | Πn = i] =

λi,j/λi, j 6= i, ψi,i = P [Πn+1 = i | Πn = i] = 0 for the statesi with λi =
∑

j∈Ω−{i} λi,j > 0

andψi,j = P [Πn+1 = j | Πn = i] = 0, j 6= i, ψi,i = P [Πn+1 = i | Πn = i] = 1 for the states

i with λi = 0. The embedded DTMC ofW ′ has same state space, initial probability distribution

and transition probabilities asΠ and, therefore, is probabilistically identical toΠ. BothW andW ′

can be interpreted in terms ofΠ: Π gives the sequence of states visited byW (W ′) and each state

visit has a duration given by an independent holding time variable with exponential distribution with

parameter equal to the output rate from the visited state.

We start by constructing a common probability space(E ,A, Q) in terms of which bothW

andW ′ can be defined. This is done by combining the probability space underlyingΠ with the

probability space underlying a set of exponentially distributed independent random variables which

will account (with scaling in the case ofW ′) for the holding times. To simplify the proof, we will

associate with absorbing states exponentially distributed holding times with non-null parameter.

Let (EΠ,AΠ, QΠ) be the probability space underlyingΠ: EΠ is the set of infinite sequencesπ =

(sπ
0 , s

π
1 , . . .), s

π
i ∈ Ω, AΠ is theσ-algebra generated by the collection of subsetsEs0,...,sn

Π = {π =

(sπ
0 , s

π
1 , . . .) : sπ

0 = s0 ∧ sπ
1 = s1 ∧ · · · ∧ sπ

n = sn}, (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .

andQΠ[Es0,...,sn

Π ] = P [Π0 = s0]ψs0,s1· · ·ψsn−1,sn . LetHn,s, n = 0, 1, . . ., s ∈ Ω be independent

exponential random variables with parameterΛs, whereΛs = λs if λs > 0 andΛs = Λ∗ > 0 if λs =

0. For each random variableHn,s, n = 0, 1, . . ., s ∈ Ω, let ([0,∞),B[0,∞), µn,s) be the underlying

probability space:B[0,∞) is the Borelσ-algebra on[0,∞) andµn,s is the Borel probability measure

defined by the distribution function of the random variableHn,s. Let (EH ,AH , µ) be the product of

the probability spaces([0,∞),B[0,∞), µn,s), n = 0, 1, . . ., s ∈ Ω. The probability space(E ,A, Q)

is the product of the probability spaces(EΠ,AΠ, QΠ) and(EH ,AH , µ). With respect toEH , given

aω ∈ EH , hn,s(ω) will denote the coordinate ofω equal to the realization of the random variable

Hn,s. With respect toE , given aω ∈ E , π(ω) = (s
π(ω)
0 , s

π(ω)
1 , . . .) will denote theEΠ coordinate of

ω andhn,s(ω) will denote the coordinate ofω equal to the realization of the random variableHn,s.

The CTMCW can be defined in terms of(E ,A, Q) as follows. Eachω ∈ E gives a realization,

W (ω, t), ofW

W (ω, t) = s
π(ω)
0 , 0 ≤ t < h

0,s
π(ω)
0

(ω) ,

W (ω, t) = s
π(ω)
1 , h

0,s
π(ω)
0

(ω) ≤ t < h
0,s

π(ω)
0

(ω) + h
1,s

π(ω)
1

(ω) ,

...

W (ω, t) = sπ(ω)
m ,

m−1∑

n=0

h
n,s

π(ω)
n

(ω) ≤ t <
m∑

n=0

h
n,s

π(ω)
n

(ω) ,

...

LetL(ω), ω ∈ E be the random variable defined asL(ω) = min{l ≥ 0 :
∑l

n=0 hn,s
π(ω)
n

(ω) > t}.

It is well known (see, for instance, Kijima 1997) that, beingH0,H1, . . . independent exponential
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random variables with parametersλ0, λ1, . . . such thatλi > 0 andsupi≥0 λi < ∞, limn→∞H0 +

H1 + · · · +Hn = ∞ with probability 1, implying thatmin{n ≥ 0 : H0 +H1 + · · · +Hn > t} is

defined with probability 1. Then,

Q [{ω ∈ E : L(ω) is defined}] = Q

[{

ω ∈ E : min

{

l ≥ 0 :

l∑

n=0

h
n,s

π(ω)
n

(ω) > t

}

is defined

}]

=

∫

EΠ

µ

[{

ω′ ∈ EH : min

{

l ≥ 0 :

l∑

n=0

hn,sπ
n
(ω′) > t

}

is defined

}]

dQΠ(π)

=

∫

EΠ

dQΠ(π) = 1 .

LetA be the subset ofE

A =




ω ∈ E : L(ω) is defined∧
L(ω)−1∑

n=0

1
s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)

+ 1
s
π(ω)
L(ω)

∈U



t−
L(ω)−1∑

n=0

h
n,s

π(ω)
n

(ω)



 > pt




 .

SinceA collects, except for a subset with probability 0, all realizations ofW for which the “up”

time in the time interval[0, t] is> pt,

IAVCD(t, p) = Q[A] .

Since, givenβ > 0 and beingH an exponential random variable with parameterλ > 0, H/β

is an exponential random variable with parameterβλ, the CTMCW ′ can be defined in terms of

(E ,A, Q) as follows. Eachω ∈ E gives a realization,W ′(ω, t), ofW ′

W ′(ω, t) = s
π(ω)
0 , 0 ≤ t < 1

s
π(ω)
0 ∈U

h
0,s

π(ω)
0

(ω)

β
s
π(ω)
0

+ 1
s
π(ω)
0 6∈U

h
0,s

π(ω)
0

(ω) ,

W ′(ω, t) = s
π(ω)
1 , 1

s
π(ω)
0 ∈U

h
0,s

π(ω)
0

(ω)

β
s
π(ω)
0

+ 1
s
π(ω)
0 6∈U

h
0,s

π(ω)
0

(ω)

≤ t < 1
s
π(ω)
0 ∈U

h
0,s

π(ω)
0

(ω)

β
s
π(ω)
0

+ 1
s
π(ω)
0 6∈U

h
0,s

π(ω)
0

(ω)

+ 1
s
π(ω)
1 ∈U

h
1,s

π(ω)
1

(ω)

β
s
π(ω)
1

+ 1
s
π(ω)
1 6∈U

h
1,s

π(ω)
1

(ω)

...

W ′(ω, t) = sπ(ω)
m ,

m−1∑

n=0

(
1

s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
n,s

π(ω)
n

)

≤ t <

m∑

n=0

(

1
s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
n,s

π(ω)
n

)

.

...
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LetL′(ω), ω ∈ E be the random variable defined as

L′(ω) = min{l ≥ 0 :
∑l

n=0(1s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)/β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
n,s

π(ω)
n

(ω)) > t}. It can be

proved thatL′ is defined with probability 1 as it was proved thatL was defined with probability 1.

LetA′ be the subset ofE

A′ =




ω ∈ E : L′(ω) is defined∧
L′(ω)−1∑

n=0

1
s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)

β
s
π(ω)
n

+ 1
s
π(ω)

L′(ω)
∈U



t−
L′(ω)−1∑

n=0

(
1

s
π(ω)
n ∈U

h
n,s

π(ω)
n

(ω)

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
n,s

π(ω)
n

(ω)

))
> pt

}
.

SinceA′ collects, except for a subset with probability 0, all realizations ofW ′ for which the “up”

time in the time interval[0, t] is> pt,

IAVCD′(t, p) = Q[A′] .

To prove the theorem it suffices to show thatA ⊂ A′. In that proof, we will use the shorthandhπ(ω)
n

for h
n,s

π(ω)
n

(ω).

First note that, being0 < βi ≤ 1, i ∈ U ,
∑l

n=0(1s
π(ω)
n ∈U

h
π(ω)
n /β

s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
π(ω)
n ) ≥

∑l
n=0 h

π(ω)
n , implying thatL′(ω) is defined whenL(ω) is and that, in that case,L′(ω) ≤ L(ω).

AssumingL(ω) andL′(ω) defined, let

B(ω) =

L(ω)−1∑

n=0

1
s
π(ω)
n ∈U

hπ(ω)
n + 1

s
π(ω)
L(ω)

∈U



t−
L(ω)−1∑

n=0

hπ(ω)
n





and let

B′(ω) =

L′(ω)−1∑

n=0

1
s
π(ω)
n ∈U

h
π(ω)
n

β
s
π(ω)
n

+ 1
s
π(ω)

L′(ω)
∈U



t−
L′(ω)−1∑

n=0

(

1
s
π(ω)
n ∈U

h
π(ω)
n

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

hπ(ω)
n

)

 .

It suffices to showB′(ω) ≥ B(ω). Since

B(ω) = t− C(ω)

with

C(ω) =

L(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n + 1

s
π(ω)
L(ω)

6∈U



t−
L(ω)−1∑

n=0

hπ(ω)
n



 (22)

and

B′(ω) = t− C ′(ω)

with

C ′(ω) =

L′(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n

+1
s
π(ω)

L′(ω)
6∈U



t−
L′(ω)−1∑

n=0

(

1
s
π(ω)
n ∈U

h
π(ω)
n

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

hπ(ω)
n

)

 , (23)
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it suffices to show that, assumingL(ω) andL′(ω) defined andL′(ω) ≤ L(ω), C ′(ω) ≤ C(ω). Two

cases will be considered: a)L′(ω) = L(ω), and b)L′(ω) < L(ω).

In case a), using (22) and (23),

C ′(ω) =

L(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n + 1

s
π(ω)
L(ω)

6∈U



t−
L(ω)−1∑

n=0

(

1
s
π(ω)
n ∈U

h
π(ω)
n

β
s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

hπ(ω)
n

)



≤

L(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n + 1

s
π(ω)
L(ω)

6∈U



t−
L(ω)−1∑

n=0

hπ(ω)
n



 = C(ω) .

In case b), assumingsπ(ω)
L′(ω) 6∈ U ,

∑L′(ω)
n=0

(
1

s
π(ω)
n ∈U

h
π(ω)
n /β

s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
π(ω)
n

)
> t implies

∑L′(ω)−1
n=0

(
1

s
π(ω)
n ∈U

h
π(ω)
n /β

s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
π(ω)
n

)
+ h

π(ω)
L′(ω) > t and

(
t−

∑L′(ω)−1
n=0

(
1

s
π(ω)
n ∈U

h
π(ω)
n /β

s
π(ω)
n

+ 1
s
π(ω)
n 6∈U

h
π(ω)
n

))
< h

π(ω)
L′(ω)

. Using, then, (22) and (23),

C ′(ω) ≤

L′(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n + 1

s
π(ω)

L′(ω)
6∈U
h

π(ω)
L′(ω) ≤

L(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n

≤

L(ω)−1∑

n=0

1
s
π(ω)
n 6∈U

hπ(ω)
n + 1

s
π(ω)
L(ω)

6∈U



t−
L(ω)−1∑

n=0

hπ(ω)
n



 = C(ω) .

It remains to check thatLn, L
′
n ∈ A, n = 0, 1, . . ., whereLn = {ω ∈ E : L(ω) = n} and

L′
n = {ω ∈ E : L′(ω) = n} and thatA,A′ ∈ A.

We start by checking thatLn ∈ A, n = 0, 1, . . .. Let Fn = {ω ∈ E :
∑n

m=0 hm,s
π(ω)
m

(ω) >

t}, n = 0, 1, . . .. SinceL0 = F0 and, forn ≥ 1, Ln = Fn ∩ F c
n−1, it suffices to check that

Fn ∈ A, n = 0, 1, . . .. Let F s0,...,sn = {ω ∈ EH :
∑n

m=0 hm,sm(ω) > t}. SinceFn =

∪(s0,...,sn)∈Ωn+1Es0,...,sn

Π × F s0,...,sn , Ωn+1 is denumerable andEs0,...,sn

Π ∈ AΠ, it suffices to check

thatF s0,...,sn ∈ AH , (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .. This follows ifHn = {(h0, . . . , hn) ∈

[0,∞)n+1 :
∑n

m=0 hn > t} ∈
⊗n

m=0 B[0,∞) = B[0,∞)n+1, n = 0, 1, . . ., which can be proved

by induction onn as follows. The casen = 0 is trivial sinceH0 = (t,∞) ∈ B[0,∞). Assume the

result holds forn = i ≥ 0. We haveHi+1 = Gi+1 ∪ ∪i+1
j=0Jj , whereGi+1 = {(h0, . . . , hi+1) ∈

[0,∞)i+2 : h0 > 0 ∧ · · · ∧ hi+1 > 0 ∧
∑i+1

m=0 hm > t} andJj = {(h0, . . . , hi+1) ∈ [0,∞)i+2 :

hj = 0 ∧
∑i+1

m=0,m6=j hm > t}. ButGi+1 ∈ B[0,∞)i+2, sinceGi+1 is an open subset of[0,∞)i+2

andJj ∈ B[0,∞)i+2 = B[0,∞) ⊗ B[0,∞)i+1, since{0} ∈ B[0,∞) and, by the induction hypothesis,

Hi ∈ B[0,∞)i+1. ThatL′
n ∈ A, n = 0, 1, . . . can be checked similarly, the only difference being that

Hn has to be replaced byH ′
n = {(h0, . . . , hn) ∈ [0,∞)n+1 :

∑n
m=0 hm/αm > t}, 0 < αm ≤ 1,

which can be easily shown to belong toB[0,∞)n+1.

Let us check now thatA ∈ A. Let

An =

{

ω ∈ E :

n−1∑

m=0

1
s
π(ω)
m ∈U

h
m,s

π(ω)
m

(ω) + 1
s
π(ω)
n ∈U

(

t−
n−1∑

m=0

h
m,s

π(ω)
m

(ω)

)

> pt

}

.

28



SinceA = ∪∞
n=0(Ln ∩An), it suffices to check thatAn ∈ A, n = 0, 1, . . .. Let

As0,...,sn =

{

ω ∈ EH :

n−1∑

m=0

1sm∈Uhm,sm(ω) + 1sn∈U

(

t−
n−1∑

m=0

hm,sm(ω)

)

> pt

}

.

SinceAn = ∪(s0,...,sn)∈Ωn+1Es0,...,sn

Π × As0,...,sn , Ωn+1 is denumerable andEs0,...,sn

Π ∈ AΠ, it

suffices to check thatAs0,...,sn ∈ AH , (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .. We will consider two

cases: a)sn ∈ U and b)sn 6∈ U . In case a),As0,...,sn = {ω ∈ EH :
∑n−1

m=0 1sm 6∈Uhm,sm(ω) <

(1 − p)t} and the result follows ifKn = {(h0, . . . , hn) ∈ [0,∞)n+1 :
∑n

m=0 hm < t} ∈
⊗n

m=0 B[0,∞) = B[0,∞)n+1, n = 0, 1, . . ., which can be proved by induction onn as follows.

The casen = 0 is trivial, sinceK0 = [0, t) ∈ B[0,∞). Assume the result holds forn = i ≥

0. We haveKi+1 = Mi+1 ∪ ∪i+1
j=0Nj , whereMi+1 = {(h0, . . . , hi+1) ∈ [0,∞)i+2 : h0 >

0 ∧ · · · ∧ hi+1 > 0 ∧
∑i+1

m=0 hm < t} andNj = {(h0, . . . , hi+1) ∈ [0,∞)i+2 : hj =

0 ∧
∑i+1

m=0,m6=j hm < t}. But Mi+1 ∈ B[0,∞)i+2, sinceMi+1 is an open subset of[0,∞)i+2

andNj ∈ B[0,∞)i+2 = B[0,∞) ⊗ B[0,∞)i+1, since{0} ∈ B[0,∞) and, by the induction hypothesis,

Ki ∈ B[0,∞)i+1. In case b),As0,...,sn = {ω ∈ EH :
∑n−1

m=0 1sm∈Uhm,sm(ω) > pt} and the result

follows if Hn = {(h0, . . . , hn) ∈ [0,∞)n+1 :
∑n

m=0 hm > t} ∈
⊗n

m=0 B[0,∞), n = 0, 1, . . .,

which was proved previously. ThatA′ ∈ A can be checked similarly, the only difference being that,

in case b),Hn has to be replaced byH ′
n = {(h0, . . . , hn) ∈ [0,∞)n+1 :

∑n
m=0 hm/αm > t},

0 < αm ≤ 1, which belongs toB[0,∞)n+1.

Proof of Proposition 1. The resultπππub(0, k) = πππlb(0, k), 0 ≤ k ≤ 1 follows immediately from

(8), (9), (10), and (12).

Let stater be numbered first in all vectors indexed by a subset includingstater. The proof that,

for r ∈ US , πππub(n, k) = Rπππlb(n, k), n ≥ 1, 0 ≤ k ≤ n+ 1 is by induction onn. Consider first the

base casen = 1. From (11), we have

πππub(1, 0)U
′

S = πππlb(1, 0)U
′

S = 0 . (24)

Using (5), (8), (10), (12) and (Theorem 4)P ub
r,j = RP lb

r,j, j 6= r,

πππub(1, 1)U
′

S = πππub(0, 0) P
ub
S,U ′

S
= (1r∈DS

0 · · · 0) P
ub
S,U ′

S
= 1r∈DS

P
ub
{r},U ′

S

= 1r∈DS
RP

lb
{r},U ′

S
= R (1r∈DS

0 · · · 0) P
lb
S,U ′

S

= Rπππlb(0, 0) P
lb
S,U ′

S
= Rπππlb(1, 1)U

′

S . (25)

Using (5), (9), (10), (12) andP ub
r,j = RP lb

r,j, j 6= r,

πππub(1, 2)U
′

S = πππub(0, 1) P
ub
S,U ′

S
= (1r∈US

0 · · · 0) P
ub
S,U ′

S
= 1r∈US

P
ub
{r},U ′

S

= 1r∈US
RP

lb
{r},U ′

S
= R (1r∈US

0 · · · 0) P
lb
S,U ′

S

= Rπππlb(0, 1) P
lb
S,U ′

S
= Rπππlb(1, 2)U

′

S . (26)

29



Using (6), (8), (10), (12) andP ub
r,j = RP lb

r,j, j 6= r,

πππub(1, 0)D
′

S = πππub(0, 0) P
ub
S,D′

S
= (1r∈DS

0 · · · 0) P
ub
S,D′

S
= 1r∈DS

P
ub
{r},D′

S

= 1r∈DS
RP

lb
{r},D′

S
= R (1r∈DS

0 · · · 0) P
lb
S,D′

S

= Rπππlb(0, 0) P
lb
S,D′

S
= Rπππlb(1, 0)D

′

S . (27)

Using (6), (9), (10), (12) andP ub
r,j = RP lb

r,j, j 6= r,

πππub(1, 1)D
′

S = πππub(0, 1) P
ub
S,D′

S
= (1r∈US

0 · · · 0) P
ub
S,D′

S
= 1r∈US

P
ub
{r},D′

S

= 1r∈US
RP

lb
{r},D′

S
= R (1r∈US

0 · · · 0) P
lb
S,D′

S

= Rπππlb(0, 1) P
lb
S,D′

S
= Rπππlb(1, 1)D

′

S . (28)

From (13),

πππub(1, 2)D
′

S = πππlb(1, 2)D
′

S = 0 . (29)

From (7),

πub
r (1, k) = πlb

r (1, k) = 0 , 0 ≤ k ≤ 2 . (30)

Collecting (24)–(30), we have

πππub(1, k) = Rπππlb(1, k) , 0 ≤ k ≤ 2 ,

completing the base case. Assumeπππub(m,k) = Rπππlb(m,k), m ≥ 1, 0 ≤ k ≤ m + 1 and let us

proveπππub(m+ 1, k) = Rπππlb(m+ 1, k), 0 ≤ k ≤ m+ 2. From (7),

πub
r (m+ 1, k) = πlb

r (m+ 1, k) = 0 , 0 ≤ k ≤ m+ 2 . (31)

From (11),

πππub(m+ 1, 0)U
′

S = πππlb(m+ 1, 0)U
′

S = 0 . (32)

Using (5), (7), (Theorem 4)Pub
S′,U ′

S
= P

lb
S′,U ′

S
, and the induction hypothesis,

πππub(m+ 1, k)U
′

S = πππub(m,k − 1) P
ub
S,U ′

S
= πππub(m,k − 1)S

′

P
ub
S′,U ′

S

= Rπππlb(m,k − 1)S
′

P
lb
S′,U ′

S
= Rπππlb(m,k − 1) P

lb
S,U ′

S

= Rπππlb(m+ 1, k)U
′

S , 1 ≤ k ≤ m+ 2 . (33)

Using (6), (7), (Theorem 4)Pub
S′,D′

S

= P
lb
S′,D′

S

, and the induction hypothesis,

πππub(m+ 1, k)D
′

S = πππub(m,k) P
ub
S,D′

S
= πππub(m,k)S

′

P
ub
S′,D′

S

= Rπππlb(m,k)S
′

P
lb
S′,D′

S
= Rπππlb(m,k) P

lb
S,D′

S

= Rπππlb(m+ 1, k)D
′

S , 0 ≤ k ≤ m+ 1 . (34)

From (13),

πππub(m+ 1,m+ 2)D
′

S = πππlb(m+ 1,m+ 2)D
′

S = 0 . (35)

Collecting (31)–(35), we have

πππub(m+ 1, k) = Rπππlb(m+ 1, k) , 0 ≤ k ≤ m+ 2 ,

30



completing the induction step.

The proof of the resultπππub(n, k) = πππlb(n, k), n ≥ 1, 0 ≤ k ≤ n + 1 for the caser ∈ DS

follows step by step withR = 1 the proof of the resultπππub(n, k) = Rπππlb(n, k), n ≥ 1, 0 ≤ k ≤

n + 1 for the caser ∈ US by noting that, according to Theorem 4, the only difference between the

two cases is that, forr ∈ US , P ub
r,j = RP lb

r,j, j 6= r and, forr ∈ DS , P ub
r,j = P lb

r,j , j 6= r.

For αS′ > 0, the resultπππ′ub(n, k) = πππ′lb(n, k), n ≥ 0, 0 ≤ k ≤ n + 1 follows immedi-

ately from (14)–(21), noting thatαααub = αααlb and, according to Theorem 4,P
ub
S′,U ′

S
= P

lb
S′,U ′

S
and

P
ub
S′,D′

S
= P

lb
S′,D′

S
.

Proof of Lemma 1. Let the function

fy(z) =
1

z

∞∑

m=k

(m− k + 2) e−zy (zy)m

m!
,

with k ≥ 2. We have to showfx(R) > fx(1) for x > 0 andR > 1. Taking derivatives,

f ′y(z) = −
1

z2

∞∑

m=k

(m− k + 2) e−zy (zy)m

m!
−
y

z

∞∑

m=k

(m− k + 2) e−zy (zy)m

m!

+
y

z

∞∑

m=k

(m− k + 2) e−zy (zy)m−1

(m− 1)!
.

But,

∞∑

m=k

(m− k + 2) e−zy (zy)m−1

(m− 1)!
=

∞∑

m=k−1

(m− k + 3) e−zy (zy)m

m!

=
∞∑

m=k

(m− k + 2) e−zy (zy)m

m!
+ e−zy (zy)k−1

(k − 1)!
+

∞∑

m=k−1

e−zy (zy)m

m!
,

yielding

f ′y(z) =
y

z
e−zy (zy)k−1

(k − 1)!
+
y

z

∞∑

m=k−1

e−zy (zy)m

m!
−

1

z2

∞∑

m=k

(m− k + 2) e−zy (zy)m

m!
,

which gives

f ′y(1) = ye−y yk−1

(k − 1)!
+ y

∞∑

m=k−1

e−y y
m

m!
−

∞∑

m=k

(m− k + 2) e−y y
m

m!
.

The second and third terms can be rewritten as

y
∞∑

m=k−1

e−y y
m

m!
=

∞∑

m=1

e−y yk+m−1

(k +m− 2)!
,

∞∑

m=k

(m− k + 2) e−y y
m

m!
=

∞∑

m=1

(m+ 1) e−y yk+m−1

(k +m− 1)!
,
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yielding

f ′y(1) = ye−y yk−1

(k − 1)!
+

∞∑

m=1

e−y yk+m−1

(k +m− 2)!
−

∞∑

m=1

(m+ 1) e−y yk+m−1

(k +m− 1)!

= ye−y yk−1

(k − 1)!
+

∞∑

m=1

(k +m− 1) e−y yk+m−1

(k +m− 1)!
−

∞∑

m=1

(m+ 1) e−y yk+m−1

(k +m− 1)!

= e−y yk

(k − 1)!
+ (k − 2)

∞∑

m=k

e−y y
m

m!
.

This shows thatf ′y(1) is > 0 for y > 0. Let δ = min{f ′y(1), x ≤ y ≤ xR} > 0 (the minimum

exists becausef ′y(1) is continuous in the domain). We havef ′y(1) ≥ δ for x ≤ y ≤ xR.

Let ∆ > maxx≤y≤xR,1≤z≤R |f ′′y (z)| ≥ 0 (the maximum exists becausef ′′y (z) and, therefore,

|f ′′y (z)| is continuous in the domain). Letq = 2δ/∆ > 0. Taylor’s theorem applied tofy(z) at

z = 1 gives

fy(1 + r) = fy(1) + f ′y(1)r +
f ′′y (z)

2
r2, r > 0, z ∈ [1, 1 + r].

Then, forx ≤ y ≤ xR, 1 < 1 + r ≤ R, andr ≤ q, we have

fy(1 + r) − fy(1) = f ′y(1)r +
f ′′y (z)

2
r2 > δr −

∆

2
r2 = r

(
δ −

∆

2
r

)
≥ r

(
δ −

∆

2
q

)
= 0,

implying fy(1 + r) > fy(1) for x ≤ y ≤ xR, 1 < 1 + r ≤ R andr ≤ q.

The result asserted by the lemma can be proved from the fact that fy(1 + r) > fy(1) for

x ≤ y ≤ xR, 1 < 1 + r ≤ R andr ≤ q as follows. LetN be the minimum integern > 0 with

(1 + q)n ≥ R. We can writeR = (1 + q)N−1(1 + r) with r ≤ q, 1 < 1 + r ≤ R and, ifN > 1,

1 + q < R. Then,

fx(R) = fx((1 + q)N−1(1 + r)) =
1

(1 + q)N−1
fx(1+q)N−1(1 + r)

>
1

(1 + q)N−1
fx(1+q)N−1(1) =

1

(1 + q)N−2
fx(1+q)N−2(1 + q)

>
1

(1 + q)N−2
fx(1+q)N−2(1) > · · · > fx(1).
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