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Abstract

The paper develops a method, callelinding regenerative transformatigdior the compu-
tation with numerical stability and well-controlled errof bounds for the interval availability
distribution of systems modeled by finite (homogeneous)inanus-time Markov chain mod-
els with a particular structure. The method requires thecsiein of a regenerative state and is
targeted at a class of models, cl&%s with a “natural” selection for the regenerative state. For
classC} models, bounds tightness can be traded-off with compurtakicost through a control
parameterDs, with the optionDs = 1 yielding the smallest computational cost. For large
classC} models and the selectiab = 1, the method will often have a small computational
cost relative to the model size and, with additional cond#i seems to yield tight bounds for
any time interval or not small time intervals, dependinglominitial probability distribution of
the model. Clas§’} models with those additional conditions include both exenct bounding
failure/repair models of coherent fault-tolerant systevith exponential failure and repair time
distributions and repair in every state with failed compasewith failure rates much smaller
than repair rates.
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Figure 1: State diagram of continuous time Markov chain ninde repairable fault-tolerant system
using the pair-and-spare technique (left) and behavidAWICD(¢, p) (right).

1 Introduction

The distribution of the interval availability, i.e. the dibution of the fraction of time in a time
interval in which a system is up, is a dependability meastingractical interest. This is because
the measure quantifies the probability with which a giverilalgdity level over a time interval can
be guaranteed by the provider of a system to the system’s Ugeillustrate a typical behavior
of the measure, Figure 1 plots the interval availability ptementary distributiodAVCD(t, p)
(probability that the fraction of time in the time intervél ¢] in which the system is up is p) of

a fault-tolerant system using the pair and spare techni@i@ vhich active modules fail with rate
AM = 1073 h~!, the spare module does not fail, the failure of an active rfeoducovered with
probability Cy; = 0.95, failed modules are repaired by a single repairman with gate= 1 h—!,
and modules do not fail when the system is down, for sevelakgeoft and values op around
the steady-state availabilitySA = 0.9999, assuming that initially all modules are unfailed. The
figure also gives the state diagram of the (homogeneousjncoois-time Markov chain (CTMC)
modeling the system. The up states are the states 1, 3, and fredicted by renewal reward
process and regenerative process theories (see, foréas{dl]), fort — oo, IAVCD(t, p) has an
asymptotic shape withAVCD(¢,p) = 1 for p < SSA andIAVCD(t,p) = 0 for p > SSA, but
the convergence to that asymptotic shape is very slow, rgakieaningful the computation of the
measure for very large values of

Computing the interval availability distribution of a fablerant system modeled by a CTMC
is a challenging problem [3, 7, 10, 11, 12, 13, 14, 15, 17]. fits¢ effort is reported in [17], where
a closed form integral expression was obtained for a twie-steodel. In [10], randomization was
used to obtain the distribution of the up time in a time inémf the same two-state model. The
first method able to deal with arbitrary finite CTMC models waseloped by de Souza e Silva and
Gail [15] using randomization. Goyal and Tantawi [7] deyeld a numerical approximate method
without error bounds. Sericola [14] obtained a closed foattgon in terms of growing size ma-
trices. Rubino and Sericola [11] developed an efficient micakmethod for the particular case



in which up and down periods are independent one by one anaicbf@her. Rubino and Sericola
[12] developed two algorithms reducing the computatioeglirements of the randomization-based
method developed in [15]. The first of such algorithms redube time requirements; the second
one reduces the storage requirements. This second algosi#is reviewed in [13] as Algorithm A,
where it was taken as starting point to develop another éhgor(Algorithm B), which is competi-
tive when the number of up states of the model is small anthdumore, can deal with some class
of CTMC models with denumerable infinite state spaces. FKinalmethod, which will be called
in this papemregenerative transformatiorhas been developed by Carrasco [3] which covers finite
CTMC models with a particular structure. In the method, adaied transformed CTMC model is
built which, with an appropriate subset of up states, haséme interval availability distribution
as the original model with an arbitrarily small error andttinancated transformed CTMC model is
solved using Algorithm A of [13]. The method requires theestibn of a regenerative state and, as
Algorithm A of [13] and all other randomization-based meathois numerically stable and computes
TAVCD(t, p) with well-controlled error. For a class of models, cl&ss including both exact and
bounding failure/repair models of coherent fault-toleérsystems with exponential failure and repair
time distributions and repair in every state with failed gaments with failure rates much smaller
than repair rates, and a given “natural” selection for ttgenerative state, theoretical results are
available assessing the performance of the method in tefmisible model characteristics, and,
for large models of that class, the method can be significdetls costly than previously available
methods capable of dealing with arbitrary finite CTMC models

All currently available methods for computind\VCD(¢, p) tend to be expensive for large
t. With that motivation, in this paper, we take the regeneeatiansformation method as starting
point to develop a potentially less costly method, cabbednding regenerative transformatiofor
computing bounds for the measure. The method requires kbetise of a regenerative state and is
targeted at a class of models, cl&§s which is a subclass of model claSs, with a given “natural”
selection for the regenerative state. In the method, thggnali CTMC model is transformed into
lower bounding and upper bounding models by scaling thesittian rates from up states different
from the regenerative state according to a parametecontrolling the tightness of the bounds, and
those models are solved by regenerative transformationo#e mfficient implementation exists for
the caseDs = 1 when both bounds have to be computed and an additional comdkt satisfied.
For classC) models, bounds tightness can be traded-off with compualticost through the control
parametetD, with the optionD¢ = 1 yielding the smallest computational cost. For large c{&lss
models and the selectiob~ = 1, the method will often have a small computational cost iedat
to the model size and, with additional conditions, seemsetal tight bounds for any time interval
or not small time intervals, depending on the initial prabghbdistribution of the model. Clas€’
models with those additional conditions include both exaw bounding failure/repair models of
coherent fault-tolerant systems with exponential failanel repair time distributions and repair in
every state with failed components with failure rates muohlter than repair rates.

The rest of the paper is organized as follows. Section 2 dg@sithe computational cost of
Algorithm A of [13], which broadly speaking can be considktbe current randomization-based
state-of-the-art method for computing the interval avality distribution for arbitrary finite CTMC



models, and reviews the regenerative transformation rdetSection 3 describes the bounding re-
generative transformation method, specifying the CTMC et®dovered by the method, describing
the model clas€’| at which the method is targeted, motivating the method, sipthat it indeed
obtains bounds, and arguing that it can be relatively inegpe. Within that section, Section 3.2 jus-
tifies and describes the more efficient particular implertgm of the method. Section 4 analyzes
the performance of the method using a representative léage(, model and compares using that
example the computational cost of the method with those gbAthm A of [13] and regenerative
transformation. We also illustrate in that section thatef bounding regenerative transformation
with Do = 1 will provide bounds for larg€”} models at a small computational cost relative to the
model size and that, under additional conditions, the bswsaem to be tight for any time inter-
val or not small time intervals, depending on the initial lpability distribution of the model. The
Appendix includes three lengthy proofs.

2 Prdiminaries

Let X = {X(¢);¢t > 0} be a CTMC with state spade partitioned into the set of up statésand
the set of down statelS. The interval availability at time, IAV (¢), is defined as the fraction of time
in the time interval0, ¢] in which the system is up, i.e.

1 t
IAV(t) = Z/o Lx(rev dr,

wherel,. denotes the indicator function returning the value 1 wherddmn c is satisfied and the
value 0 otherwise. In this paper, we target the computatfdmoands for the interval availability
complementary distribution

IAVCD(t,p) = P[IAV(t) > p],

wheret > 0 and0 < p < 1.

Algorithm A of [13] (Algorithm A in the sequel) can, broadlysaking, be considered the
current randomization-based state-of-the-art metho@darputing the measure for arbitrary finite
CTMC models with infinitesimal generator. Assumex;cq A; > 0, where)\; is the output rate
from state; of X. That method, as most of currently available methods forpging the measure,
is based on the randomization construct. In that constsee, for instance, [9]), the given CTME
is interpreted in terms of a discrete-time Markov chain sdipated to a Poisson process with arrival
rate A > max;cq A\;. For not too smallX, the method has an approximate flop codit’ (27" +
2|Q2|), where N and C’ are truncation parameters afidis the number of transitions of. An
important feature of the method is that it is numericallyoktathe only important error source being
the truncation error. The truncation paramet®randC’ are given by

N:min{n>0: Z (A7) e_At<E}’

k! -2
k=n+1



o max{c :0<c<NA : ﬁﬂ e~ (1-PAt < Z} if e~(1-PIAL < Z
I Y >Z - 7
Y min{N, min{c >0 : k:i::rl ((l_kw e~ (I=PIAL < Z}} if C"# -1
- min{c >0 : kil ((:l_kﬂ e~ (I-pAL < %} if C"=-1 ’

wheree is the required truncation error. The truncation paramsedérand C’ increase withA,
makingA = max;c A; the best selection fak. Using the well-known result (see, for instance, [10,
Theorem 3.3.5] that the number of arrivals in the time iraéj®, ¢] of a Poisson process with arrival
rate A has forAt — oo an asymptotic normal distribution with mean and variah¢efor large At
ande < 1, the requiredV will be ~ At and, then, the method will be very costly if the model is
large. As an example, for the model considered in Sectionv;iwhas 646,646 states, 15,578,290
transitions, and\ ~ 2.25 h—!, we can estimate a flop count&P5 x 10'3 when the method is run
with a single targett, p) pair witht = 20,000h andp = 0.9995 and a truncation error requirement
e = 1078, which yieldsN = 46,241 and”’ = 55.

The regenerative transformation method developed in [3]aveeffort to reduce the high rela-
tive computational cost in terms of CPU time of Algorithm A& method requires the selection of
a regenerative stateand is targeted at a particular class of models, dlassncluding both exact
and bounding failure/repair models of coherent faultrai¢ systems with exponential failure and
repair time distributions and repair in every state withef@icomponents with failure rates much
smaller than repair rates, with a “natural” selection fog tlegenerative state. Since the method
developed in this paper for computing bounds FAVCD(¢, p) is based on regenerative transfor-
mation, in the remaining of this section we will review thgeaerative transformation method. Let
a; = P[X(0) = i] and let); ; denote the transition rate of from statei to statej. GivenB C (2,
letap = ) ;. 5 «; denote the initial probability ok in subsetB and, giveni € Q andB C Q—{i},
let \; 5 = 3, Ai,j denote the transition rate of from statei to subset3. Letting S’ = S — {r},
Us=UNS,Ds=DNS, U, =Ug— {r},andDy = Dg — {r}, the method will cover CTMCs
X with infinitesimal generator and selections fasatisfying the conditions

C1. Qis finite.

C2. EitherQ = SorQ = SU{f}, f being an absorbing state.

C3.|S| > 2.

C4. Either all states il are transient oX has a single recurrent class of statég” S.
C5. All states are reachable (from some state with nonnitihirprobability).

C6. U +# (andD # 0.

C7. max;cy A >0 andmaxieD A > 0.



C8. r € S and, if X has a single recurrent class of statés- S, r € F.
Co. IfUg # 0, AT,U/S > 0.

C10. IfUg # 0, ap, > 0 anday,, = 0, A; y;, > 0 for somei € Dig with a; > 0.

Note that conditions C2, C4 and C8 and the required spedificaf the regenerative state‘force”

the subseft and, if existent, the statg. More specifically, ifX does not have any absorbing state,
S must be() and f does not exist; ifX has a single absorbing stateandr # a, thenS must be
Q—{a} andf must bey; if X has a single absorbing statandr = a, thenS must be2 and f does
not exist; if X has two absorbing statesb andr is one of them, say, thenS must be2 — {b} and

f must beb; finally, if X has more than two absorbing states or has two absorbing stasteone of
them isr, then no selections fo§ and f exist satisfying the conditions. Conditions C3, C6 and C7
are mild, in the sense that when they are not satisfied cortnputaf IAVCD(¢, p) either is trivial

or can be reduced to a simpler problem. Thus, assuiiing () andmax;cy \; = 0, all up states
would be absorbing andAVCD(¢, p) would be equal taP[ X ((1 — p)t) € U]. Similarly, assuming
D # () andmax;cp A; = 0, all down states would be absorbing d@d/CD(¢, p) would be equal to
P[X (pt) € U]. Condition C5 can be trivialized by deleting unreachabégest Finally, conditions
C9 and C10 can be circumvented by addingta tiny transition rate\ < 107%¢/(2t,,.,) between
an appropriate pair of states, wherés the allowed error and,,. is the largest time at which
TAVCD(t, p) has to be computed, with a negligible impactlé&®vVCD(¢, p) no greater than0~ ¢
(see [3]). The possibility thak’ has an absorbing stafeis allowed to cover bounding models [16],
which are useful for systems for which an exact model woulttrastate space of unmanageable
size. A bounding model would have a state sp@ce- S U {f}, whereS is a subset of the state
space of the exact model arfds an absorbing state in which the bounding model is whenier
exact model has visited some state outsideThe initial probability distribution inS would be as

in the exact model and the initial probability gfwould be the probability that initially the exact
model is outsides. Consideringf to be a down/up state results in BlVCD(¢, p) measure for the
bounding model which bounds from below/above tA& CD(¢, p) measure of the exact model.

The model clas€’; at which the regenerative transformation method is tadyeteludes all
CTMCs X with infinitesimal generator satisfying conditions C1-Qiddhe condition

C11. ApartitionUy U U U --- U Uy, for Ug exists satisfying the properties

P1. Uy = {o} (i.e.|Up| = 1).

P2. If X has a single recurrent class of statés” S, 0 € F.

P3. If|Us| > 2, Ao thu-uy, > 0.

P4. If|Us| > 2, apgy > 0 andaUlu...UUNc =0, /\z‘,Ulu--UUNC > 0 for somei € Dg
with a;; > 0.

P5. If N¢ > 0, maxo<j< N, Max;ey, )\iyUk*{i}UUk+1U"'UUNCUDS is significantly smaller
thanming << n, min;ey, Aivou-.vv, , > 0if Q=S
OF ming< k< N MiNiey, Ai vou..uv,_u{f} > 01f Q= SU{f}.



The natural selection for the regenerative state for dlassnodels isr = o. With that natural
selection, properties P2, P3 and P4 imply the fulfilmentafditions C8, C9 and C10. Model class
C; includes both exact and bounding failure/repair modelsobiecent fault-tolerant systems with
exponential failure and repair time distributions and repaevery state with failed components
with failure rates much smaller than repair rates. A pantitior Us showing that those models are
in classC; would be the partition in whicl/;, includes the up states with a given number of failed
components, with the subséfg sorted following increasing numbers of failed componektedels

of non-coherent fault-tolerant systems may not belong tdeholassC; due to the possibility that
there may be a fast repair transition going from some stalgito Dg and, then, property P5 may
not be satisfied. Properties P2, P3 and P4 were not mentinrigf] but they are implicitly enforced
for the natural selection = o by conditions C8, C9 and C10. The conditifdfs| > 2 was enforced
for classC; models in [3], but the taken-out particular caég| = 1 was discussed there, and we
have decided to include it here.

The regenerative transformation method includes two ghdsehe first one, a truncated trans-
formed CTMC model)/7, is built which, with an appropriate subset of up states thasame inter-
val availability complementary distribution &8 with absolute erroK /2. In the second oné/
is solved with absolute errat /2 using Algorithm A. Informally,V is obtained by characterizing
the behavior ofX from S’ = S — {r} until either hit of state- or, if existing, hit of the absorbing
statef, and fromr until either next hit of state or, if existing, hit of the absorbing stafe while
keeping track of the amount of time spentlig.

We now start describindf as a blackbox and how can it be built frakhat the detail required
by the developments to follow in Section 3. L&t = {)?n,n =0,1,2,...} be the randomized
discrete-time Markov chain (DTMC) ok with randomization raté\;; = (1 + 6) max;cpy A; > 0
in the states i/ and randomization ratép = (1 + 0) max;cp A; > 0 in the states irD, wheref
is a small quantity> 0, sayd = 10~%. The DTMCX has same state space and initial probability
distribution asX and transition matri = (P ;) jeo, WhereP; ; = \;j/Ay, i € U, j # i,
Pi=1-XN/Ay,ie€ U, Pj=Nj/Ap,i€ D,j#iandP,; =1—X\/Ap,i € D. Let
X' denote a version ok with initial stater, and, given a DTMC, let Y, .m,c, mi,ma > 0,
denote the predicate which is true wh&p satisfies conditiore for all n, m; < n < mso (by
conventionY,,,, .m,c is true formse < my) and let#(Y,,,.m,c) denote the number of indices
m1 < n < msy for whichY,, satisfies conditiore. Let the row vectorsr(n, k) = (m;(n,k))ies,
n>00<k<n+1, wherer(n, k) = P[X, =i A )A({:n #r A #(Xém € U) = k|, and
let the row vectorsrt’(n, k) = (mi(n,k))ics, n > 0,0 < k < n+ 1, wherer}(n, k) = P[X, =
T A )A(O;n #1r A #()A(o:n € U) = k]. Inwords,;(n, k) is the probability that in the first
steps)A( "will not have entered stateand has visited up states, and at stepis in statei, : € S,
andr/(n, k) is the probability that in the first steps)A( has not visited state and has visited: up
states, and at stepis in statei, i € S’. Leta(n,k) = > ,cgmi(n, k), am (k) = Zfli’,f_’f a(n, k),
a'(n, k) = > cqe m(n, k), anday, (k) = Z’;J;Zl:f a’'(n, k). The truncated transformed CTMG-
is defined by up to three truncation parametéfs,.,, andC. The truncation parametér is given



by
© m
C:min{c>1 : Z wejuq‘“‘“<€1}, (1)
m!
m=c+1

whereA = max{Ay,Ap}, t¢,..x IS the largest value afy = ¢(1 — p) at whichIAVCD(t, p) has to
be computed, andy = ¢/4if U} # 0 ande; = ¢/2 if U = (. For the casé/} # () andag > 0,
the truncation parametefs and L are given by

- (Autmax)™
K:min{kZQ : agac(k) Z(m—k—l—Q)% e~ Autmax < 8} 2)
m=k
. > (AUtm X) - max
L:mm{k22 : a'c(k:)ZT'a Ayt <8 3)
m=k
and, for the cas&; # () andag = 0, the truncation parametés is given by
i . - (AUtmax)m —Aptmax €
K:mln{k22.aSac(kz)z:k(m—k—l—Q)Te vlmex < 28 (4)
m=

wheret .. is the largest value afat whichlAVCD(¢, p) has to be computed. Thex? denoting the
restriction of the row vectaox to the subset of indiceB and0 denoting a row vector of appropriate
dimension with all components nulf,, « andb being absorbing states, and denoting an union
to be performed when conditionis satisfied,V has, for the cases > 0, state space (note that
conditions C2, C6 and C7 impl/s # § andDg # 0)

Qr = {sty: (n,k) € Dr A w(n,k)’s £ 0} { . (n,k) € Dy A (n,k)DS;zéO}
Uuvzzo {s;;fk . (k) € Dl A 7' (n, k)VS o}
Upyzo {5+ (n.k) € Dy A 7/ (n k)P # 0}
Uea=sun {03 {a} Jugm {0}

and, for the casegr = 0, state space

Qp = {s& ¢ (n,k) € Dr A 7(n, k)’ # 0} {sgk . (n,k) € Dp A w(n, k)Ps # o}
Ua=suin {3 {at J vy 20 {0},
where, forU # 0,
Dr={(nk) : 0<k<K A max{0,k—1} <n<k+C—1}

and
Dy ={(n,k) : 0<k<L A max{0,k -1} <n<k+C—1};

for Ug = 0 andr € Us,
Dr ={(n,1) : 0<n<C};

for Ug = 0 andr € Dg,
Dy ={(n,0) : 0<n<C—1};
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Figure 2: DomainDr for the casd/ # () (the domain includes the points in the frontier).

and, forUg = 0,
Df={(n,0) : 0<n<C-—1}.

Figure 2 depicts the domaibr for the caseU # (. The domainD/, for the casely # 0 is
identical with K" replaced byL. The initial probability distribution o1 is P[Vr = s; | = ay,
PlVr = sg4] = ayy, P[Vr = sglo] = ap,, P[Vr = f] = ay, andP[Vy = i] = 0,7 ¢
{0,504, 560, [}, wheres;,  denotes state;, if » € Us and statesg, if » € Dg. Note that,
according to the definition af(n, k), for r € Us, the only statesj , or s(‘ik present i)y is state
s¢1, and, forr € Dg, the only statesf;,. or s, present inr is statesg . It is that single state
which is denoted by, ..

With P; g, B C Q2 denoting)_ . 5 P ;, the transition rates ifvy are as follows. Let
Wit = Yievg T k) Pyus ) Yicys mi(ns k), wid = ey (0 k)P pr ) Yieng mi(ns k),
wﬁf‘k = ZieDS mi(n, k)Pz',Ug/ ZieDS mi(n, k), w,‘i‘fk = ZiGDS mi(n, k)Pi,D’S/ ZiGDS mi(n, k),
Uy = ZieUs mi(n, k) Fir/ ZieUs mi(n, k), q:f,k = ZieDs mi(n, k) P/ ZiGDS mi(n, k),
vf{,k = ZieUs mi(n, k)P f/ ZieUs mi(n, k), Ui,k = ZiEDS mi(n, k)P ¢/ ZiEDS mi(n, k),
with = Yievr, M0 B)Pius ) Yieuy i, k), with = ey mi(n, k)P pr/ Yieps n, k),
wgi,llé = ZieD’S mi(n, k)Pz',Ug/ Zz‘eD’S mi(n, k), w;flfllc = ZieD’S mi(n, k)Pi,D’S/ Zz‘eD'S mi(n, k),
q%uk = ZieU’S mi(n, k) P/ ZieUg mi(n, k), q;fl,k = Zz‘eD'S mi(n, k) P/ Zz‘eD’S mi(n, k),
v = 2ievy, T K) P g/ 3 oy mi(n, k), e = 2ieny Ti(ns k) Pip/ 3 iepy mi(n, k). Then,

o if Ug # 0, each state, ;, 0 < k < K, has a transition ratey,; Ay to states, ,, ;. ., a
transition ratewd Ay to states? |  if n < k4 C — 2 and to state: otherwise, a transition

rateg,, , Ay to states,  if s; . # sy, and, if€2 = SU{f}, atransition rate;, , Ay to statef.
o If Uy # 0, each state;; ;- has a transition rat& to stateb.

o If Ug = 0, each state!! , has a transition rate Ay to states? | ; if n <k+C —2and
to states otherwise, a transition ratg! , Ay to states; . if s}, , # s; , and, if@ = SU{f}, a
transition ratev;, . Ay to statef.

o If Uy # 0, each state ,, 0 < k < K, has a transition rate,Ap to states’,, ., @
transition ratew! Ap to states; | , if n < k + C — 2 and to state otherwise, a transition
rateq? , Ap to states;, if s, # s, and, ifQ = S U {f}, a transition rate! , Ap, to state

1.

o If Uy # 0, each statefl, x has atransition raté& p to stateb.



o If Ui =0, each state? , has a transition rate?’, A, to states? | , if n < k+ C —2and
to statea otherwise, a transition ra@éfhkAD to states, _ if s‘f%k # 5., and, ifQ = S U {f},
a transition rate)ff,kA p to statef.

o If Uy # 0, each state;,, 0 < k < L has a transition ratey,’; Ay to states]’,; , ., a
transition rateujszAU to states’? 1k If n < k+ C —2and to state: otherwise, a transition
rateq*, Ay to states; , and, ifQ = SU {f}, atransition rate’", Ay to statef.

o If Uy # 0, each stategf ;, has a transition raté; to stateb.

o If Uy # 0, each statesnk, 0 < k < L has a transition rate/d“AD to states)’, | ;. @
transition ratey’ddAD to states’® Lk if n < k+ C — 2 and to state: otherwise, a transition
rateqn,kAD to states;, ., and, ifQQ = SU {f}, a transition rate;;kaD to statef.

o If Ug # 0, each state;;{ ;, has a transition raté p to stateb.

e If Uy = 0, each state/?; has a transition rate// A p to states? | , if n <k+C—2andto
statea otherwise, a transition rat;érf Ap to stateso,_, and, if2 = S U {f}, a transition rate
vl Ap to statef.

The states which have to be considered upirare the states” ,, the states’", and statef
if @ =SU{f}andfisan up state itX.

To illustrate the “structure” of/y, Figure 3 gives an sketch of the state diagrami/pffor
the caseQ = SU{f}, r € Us, U5 # 0, Dy # 0, agy, > 0, andaD/S > 0, with truncation
parameterds = 3, L = 3, andC = 3. In that case, since € Us, s,. = s, and statesg,o IS not
present. We include in the state space all possible caredstiates;, ,, s%k, Stk s;f{k subject to the
considered particular case, taking into account the fodafhition of Q. States;gk, (n,k) € Dp
and states;il,k, (n,k) € Dr which are always (for the considered particular case) deir are
indicated by dotted circles. Similarly, stat€$,, (n, k) € D}, and states/?,, (n, k) € Dj, which
are always outsid@ are indicated with dotted circles. The initial probabildistribution of V- is
PV (0) = sfy] = i, PIVr(0) = s3] = g, PIVr(0) = sl = g, PVe(0) = ] = a,
PlVr(0) =4 = 0,1 & {541,504 500, f}. For the sake of readability, we do not plot the arrows
corresponding to the transition rates to statesds ;. There is a transition rate with valygg , Ay
from every states;; ,, n > 0, k < K = 3 to statesg ;, a transition rate with valugfik,AD from
every states? Lk k< K=23to statesg 1, a transition rate with vaIue’" Ay from every statagfk,

k < L = 3 to statesj;, and a transition rate with valu,éjikAD from every statesn mk<L=3to0
statesg ;. Finally, there is a transition rate with valug , Ay from every state; ,, k < K = 3to
statef, a transition rate with valued Ap from every statesmk,, k < K = 3 to statef, a transition
rate with valuev;*, Ay from every state;n w k < L = 3to statef, and a transition rate with value
vd Ap from every state’?, k < L = 3 to statef.

The construction ol requires the computation af(n, k), (n,k) € Dr and, ifag: > 0,
7'(n, k), (n,k) € D.. Pp ¢ denoting the subblock dP collecting the elements with index pairs



d
AD waYQAU e

dd
w3,1AD

rdd rdd
w0,0 AD “’1,0 AD

Figure 3: Sketch of the state diagram16f for the case? = SU {f}, r € Us, U # 0, Dy # 0,
oy, >0, andaD/S > 0, with truncation parametel® = 3, L = 3, andC = 3.
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in B x C, the required row vectors(n, k) can be obtained, for increasirigand for eachk for
increasingn, using the recurrences

m(n, k)5 =w(n—1Lk—=1)Pgy, n>1,1<k<n+1, (5)
(n,k)Ps =xw(n—1,k) Psp,, n>1,0<k<n (6)
and
m(nk)=0, n>1,0<k<n+1, @)
7Tr(070) = 1reDs 5 (8)
m(0,1) = Lyeus , ©)
7(0,k)Ys =0, 0<k<1, (10)
ﬂ(n,O)Ué =0, n>1, (11)
7(0,k)Ps =0, 0<k<1. (12)
rn,n+1)Ps =0, n>1. (13)

Similarly, a denoting the row vectaf; );cq, the required row vectors'(n, k) can be obtained, for
increasingk and for eactk for increasingn, using the recurrences

(k)% =a'(n -1,k - 1) Py, n>1,1<k<n+1, (14)
' (n,k)Ps =x'(n = 1,k) Py p,, n>1,0<k<n (15)
and
7'(0,0)s =0, (16)
7'(0,1)Vs = aYs | (17)
7'(n,0)Vs =0, n>1, (18)
7'(0,0)Ps = aPs | (19)
7'(0,1)"s =0, (20)
(n,n+1)Ps =0, n>1. (21)

For the casé/g # () and not too small models, the model transformation phasaragproxi-
mate flop counC K (27" + M |$2|) + 14, ~0C L(2T + M|S2[), whereT is the number of transitions of
X, M=11if Q= SU{f}andM =9if Q = S. A salient feature is that, in that case, the trunca-
tion parameterdd and L are smooth functions @f More specifically,K is O(log(Ayt/e)) and, for
agr > 0, Lis O(log(Apt/e)). For classC; models with|Ug| > 2 and the selection = o we have
the following additional result [3], wher&n) ~ d(n) for n — oo denotedim,, .~ c(n)/d(n) = 1.

Theorem 1. For classC; models withUg| > 2 and the selectiom = o, ac(n) < (C + 1)h(n)
andag,(n) < ag(C + 1) (n), where, forn — oo, h(n) ~ B(}~))p" and'(n) ~ B'(},_}) o™,
with B >0, B" > 0, p,p' integers> 1, p, p’ ~ 1 — 1/R', and R’ = max;cyz Ai/ miniepg— (o} Ai-

11



According to Theorem 1, for clags; models with|Ug| > 2 and the selectiom = o, the values

of the truncation parametef§ and L should be mainly determined by the parametérthe closer

R’ to 1, the smaller the truncation parameté&fsand . should be. In fact [3], as a rule of thumb,
for R’ > 1, K and L can be roughly bounded from above ¥yR’. Often,max;cq \; tqax Will

be moderate and the truncation paramétewill be moderate. In that case, both the computational
cost in terms of CPU time of the model transformation phasative to the size ofX and the
size of Vp will be moderate ifR’ has a moderate value, and, Xf is large, the method will have

a moderate computational cost in terms of CPU time relatvihe¢ size ofX, much smaller than
the computational cost of Algorithm A whemax;cq A;t is large. For the casg/s| = 1, the
selectionr = o yields Ug = (), and both the computational cost in terms of CPU time of the
model transformation phase relative to the sizeXofind the size ol will be always small if
max;en A tq,.x 1S Moderate, and, for larg€, the method will also have a small computational cost
in terms of CPU time relative to size of, much smaller than the computational cost of Algorithm
A.

3 TheBounding Regenerative Transfor mation Method

We will start by identifying the CTMC models covered by boumgdregenerative transformation
and the model clas€’, at which the method is targeted. Then, we will motivate arlifyi the
method and will describe it in the general case. A separdisesiion will be dedicated to justify
and describe a more efficient implementation of the methadiwik a available for the cades = 1
when both bounds have to be computed and an additional camdtsatisfied.

3.1 Motivation and general case

The bounding regenerative transformation method coversdme class of CTMC models and se-
lections for the regenerative statas the regenerative transformation method (conditionsg0Z0)-
with the additional condition:

C12. U} # 0,

The additional condition is imposed becauseligr = () there is no up state whose transition rates
have to be scaled and the bounding regenerative transformaiethod would be reduced to the
regenerative transformation method.

The method is targeted at a model cl@§swith a “natural” selection for the regenerative state
r. Model clas<C] is a subclass of model clagg defined by conditions C1-C7 and the conditions

C13. |Us| > 2.

12



C14. ApartitionUy U U U --- U Uy, for Ug exists satisfying the properties:

P1. Uy = {o} (i.e.|Up| = 1).

P2. If X has a single recurrent class of statés S, 0 € F.

P3. Ao uu-uty,, > 0.

P4. Ifapy, >0 andOéUlu...UUNc =0, )\z‘,Ulu--UUNc > 0 for somei € Dg with o; > 0.

P5. maxo<x<n, Max;ey, )‘i,Ur{i}UUkHU---wNCUDs is significantly smaller than
min0<k§Nc minieyk )\i,UoU~~~UUk_1 >0ifQ=S
or min0<k§NC II]iIlZ'eU,C )‘i,UOU---UUk_IU{f} >0ifQ=8SU {f}

P6. \, < MiNiey; ULl Ai-

The natural selection for the regenerative state for difissnodels isr = o. Since clas¥] is a
subclass of clas€’; and, for any model in clags’, [Us| > 2 andmax;cpg Ai = MaX;epg—{o} Ai
because of property P6 of the partition t@g, we have, from Theorem 1:

Theorem 2. For classC} models and the selection= o, ac(n) < (C + 1)h(n) andap(n) <
ag(C + 1)h/(n), where, forn — oo, h(n) ~ B(;}j)p" andh/(n) ~ B/(;,j)p’", with B > 0,
B' >0, p,pintegers> 1, p,p' =~ 1 — 1/R", and R" = max;cyy (o) Ai/ Minieyg— (o} Ai-

The bounding regenerative transformation method is meetily Theorem 2 and is based on
the following result. See, for instance, [9] for the defimits of conservative and uniformizable
CTMCs with denumerable state space. They are CTMCs withrderable state space in which
the output rate from any staids equal to the sum of the transition rates fromnd in which the
output rates are uniformly bounded from above. Any finite GIMith infinitesimal generator is
both conservative and uniformizable. Although we will onlye the result for finite CTMCs with
infinitesimal generator, that restriction does not lead $ovgler proof.

Theorem 3. Let W be a conservative, uniformizable CTMC with denumerablte stpace?, sub-
set of “up” statesU and transition rates; ;, ¢,j € €, j # i and letW’ be another conservative,
uniformizable CTMC with same state space, same initial @dly distribution, same subset of
“up” states, same transition rates from non-“up” states &5 and transition rates from “up” states
)\;J = BiNij,i €U, jeQj#1i0<pf <1 LetIAVCD(t,p) be the complementary
interval availability distribution ofi¥/, i.e. IAVCD(¢,p) = P[(fot Ly mevdr)/t > pl,t > 0,

0 < p < 1. LetTIAVCD'(t,p) be the complementary interval availability distributioh &,
i.e. IAVCD'(t,p) = P[(Jy Lwrnevdr)/t > pl,t > 0,0 < p < 1. ThenIAVCD'(t,p) >
IAVCD(t, p).

Proof. See the Appendix. O

Essentially, the reason why Theorem 3 holds is that scalargsition rates from up states keeping
their relative values will not modify the embedded DTNI®f 1. Since (see, for instance, [9]) both
W andW’ can be interpreted in terms Bf by associating with the states visited Hyindependent
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Figure 4: Comparison of corresponding realizationgloandV’.
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exponential holding times with parameter equal to the dutpie from the visited state, the output
rates from down states are equallin and W'’ and the output rates from up states are smaller in
W' than inW, each realization off” will have a corresponding realization Bf’ differing from the
former only in that the holding times in the up states will lsm+smaller and, as Figure 4 illustrates,
this will cause the up time in the time intervill ¢] of the realization o#¥”’ to be non-smaller than
the up time in the same interval of the corresponding ret@izaf 1. Being the up time of1”’ in

the time intervall0, ¢] for a realization ofi¥”’ non-smaller than the up time &F in the same time
interval for the corresponding realization @f, the probability that the interval availability 6§’

in the time intervall0, t] is greater thamp will be non-smaller than the probability that the interval
availability of W in the same time interval is greater than

According to Theorem 3, scaling up the transition rates fremme up states will result
in a CTMC model whosd AVCD(t,p) measure, JAVCD™(¢, p), will bound from below the
IAVCD(t,p) measure of the original model. Conversely, scaling downttiwesition rates from
some up states will result in a CTMC model whds&/CD(t,p) measureJAVCD"" (¢, p), will
bound from above th@AVCD(¢, p) measure of the original model. The bounding regenerative
transformation method performs such scalings in the staté§, = Us — {r} of X, wherer is
the selected regenerative state, and solves the scaledsnimydeegenerative transformation with
regenerative state The scaling is performed so that for cldS's models with the selection = o
the scaled models still belong to model cl&§sand have arR” parameter equal to a given control
parameterD. Then, according to Theorem 2, the computational efficiesfajne method should
increase a$)¢ decreases. Also, in the frequent case in whictx;cq \; tq,,,, IS Moderate, since
the scalings do not increaseax;cq A;, the truncation parametéf associated with the solution of
the bounding models by regenerative transformation wilnoelerate, and, since withs = 1 the
truncation parametetr’s and L associated with the solution of the bounding models shoailshinall,
for large clasC| models and with the selectioms= o and Do = 1, the method will often obtain
bounds at a small computational cost relative to the model si

Let Apin = minieU/S A and Apax = max;e(, A;. Note that, for the CTMC models and
selections for the regenerative stateovered by bounding regenerative transformati§rgannot
include any absorbing state: by condition C4 it can includmast one and by condition C8 that
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one should be, in contradiction withAnU/S > 0 (conditions C9 and C12). Thebig C S does not
include any absorbing state ang.x > Amin > 0. The control parameted is required to satisfy
1 < Do < Amax/Amin- The scaling up yielding the lower bounding mod&!'®, is defined by
AP = Xi i (AP /Ai), XiP = max{\;, Amax/Dc}, i € Ug, j # i, whereXi” and A}, are, respectively,
the output rates and transition ratesXf. The scaling down yielding the upper bounding model,
X, is defined byAy® = A j(AfP /), AP = min{\;, DoAmin}, @ € U§, j # i, whereAl and
A;{? are, respectively, the output rates and transition rate§'$f Note that, since larger values of
D¢ potentially yield smaller values for the output rates frasmg up states ifX'® and potentially
yield larger values for the output rates from some up state$%°, according to Theorem 3, the
larger the control parameté the tighter the obtained bounds will be. Thus, for cl@$smodels
with the selectionr = o, the control parameteb allows to trade off computational cost with
bounds tightness. In the casg.x = Amin NO Selection foD~ would be possible, but, in that case,
for classC} models and the selection= o the parameteRR” will be equal to 1 and, by Theorem 2,
the truncation parametefs and L should be small. Then, whenax;cq A; t¢,,., iS moderate, the
truncation parametef’ will be moderate and the regenerative transformation netimuld have

small computational cost in terms of CPU time relative tostze of X whenX is large.

Since regenerative transformation is numerically stabtktas good error control [3], bound-
ing regenerative transformation will compute the boundbk wiimerical stability and well-controlled
error.

3.2 Particular implementation

The particular case in which both the lower bound and the uppend forTAVCD(¢, p) have to
be computed, Do = 1 and, ifr € Ug, A < min;er, Ai allows a computationally more effi-
cient implementation of the bounding regenerative tramsédion method than the one described
in the previous section. That more efficient implementat®ohased on the fact that the truncated
transformed CTMC model corresponding to the solutioik8P by regenerative transformation can
be constructed without analyzing the randomized DTMCX6P if some quantities related to the
construction of the truncated transformed CTMC model fghiling the application of regenerative
transformation to the solution oX'® are saved. We will denote with the supersctp("?) the
quantities corresponding to the first phase of regeneraitivisformation applied t&™® (X'P).

The justification of the particular implementation is quélaborated. However, for th€)
model class at which the bounding regenerative transfaomatethod is targeted, the caBe = 1
is the most interesting one, since it is in that case that te#noad will often have a relatively small
computational cost. Also, with the natural selectics o, the additional condition\,. < minie% A
will be satisfied because of property P6 of the partitionfgr, and, often, both bounds will be of
interest to “bracket” the exact solution of the model.

Let (for the CTMC models and selections focovered by bounding regenerative transforma-
tion,Us # 0, Dg # 0,U; # 0,andDy = {(n, k) : 0 < k < K Amax{0,k—1} <n < k+C—1},
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Di={(n,k) : 0<k<L Amax{0,k—1} <n<k+C—1})
ETyu:{("%k) : (n,k)eDp N k<K A W(njk)US#()}’

Erg={(nk) : (n,k) € Dr A k<K A m(n, k)P #0},

and, assumings: > 0, let

B, ={(nk) : (n,k) € D A k<L A 7'(n,k)'s 0}
and, if Dy # 0, let

Epg={(nk) : (n,k) € Dy A k<L Ax'(nk)Ps #0}.

Note thatEr, (E7,4) collects the pairgn, k) corresponding to the stateg (ng,k) in Q7 with
k < K and B, (E7 ) collects the pairgn, k) corresponding to states’, (s;ﬁk) in Q7 with
k < L. Then, the quantities corresponding to the first phase @megtive transformation applied
to X'® which have to be saved arg?; A'S; a!®(n, k), (n,k) € DI, k > 2; if ag > 0, a"™(n, k),
(n,k) € D%b, k>2; w%%b, w%f%b, qiﬂg, (n,k) € Eg?’u; if Q=SuU{f}, ’U;ﬁg, (n,k) € E%u; wz%b,

ddlb dlb b . ; _ dlb b . ruulb /udlb rulb
Wy s Qi (n,k) € ET,d’ if Q=SU{f}, Ll (n,k) € ET,d! if agr > 0, wrff}é , wn"’k , qnlfk,,

(n, k) € E%'f’u; if ag: > 0andQ = SuU{f}, vg‘,}cb, (n, k) € E%f’u; if g > 0andDy # 0, w;f};lb,
wdb, g, (n, k) € Bty and, ifas: > 0, Dy # 0 andQ = SU{f}, v, (n, k) € B

Construction of the truncated transformed CTMC modek&P from those quantities is pos-
sible because: 1P < C; K" < K™ for ag > 0, L' < L'*; 79 (n, k)Ys £ 0 if and
only if #'®(n, k)Ys # 0 andn"®(n,k)Ps #£ 0 if and only if #'®(n, k)Ps # 0; for ag > 0,
7P (n, k)Us # 0 if and only if 7' (n, k)Us # 0; and, forag: > 0 and DY # 0, 7" (n, k)Ps # 0
if and only if #'°(n, k)Ps # 0, implying (see Figure 2 and the definition 6% in Section 2)
D¥> < DR, if agr > 0, DI#P  DIP, andQ4> < QP; and 2) there exist simple relationships be-
tweenAy?, AR, aP(n, k), " (n, k), wii®, wih®, g, v, wih, wifh®, gitp, v, e,
Wi, g, b, widb ddnb b @b and the corresponding quantities f&t”. Using
those relationships, it is possible to determine (1)€{4), K" and, ifag: > 0, L', and to build
the truncated transformed model corresponding to theisalof XP by regenerative transforma-
tion. In the remaining of this section we will prove 1) andlwibtain the mentioned relationships.
The relationships are established in terms of the paranfeter A\ ax/Amin, With, we remember,
Amin = Miniey Ai @A Aoy = maxepr Ao Note thatR > 1, since Do < Amax/Amin @nd
D¢ = 1 for the particular implementation to apply.

We start by relating\y;, Ap, A = max{Ay, Ap} and the transition probabilities of the ran-
domized DTMCs ofX'® and X b:

Theorem 4. AssumeDc = 1 and, ifr € Ug, Ay < Apin. Then,A¥P = AR/R, AW = AlD,

A < AP ifr € Us, P = RPS, j #1,ifr € Ds, B> = P\, j #r,andP'? = P%, i € S,

Proof. Since bounding regenerative transformation only modifiedtansition rates from states in
Uy A2 = AP = A\, A0 = AP = X, j # rand, fori € Dg, AP = AP = X, At = AP = Xy 5,
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j #i.BeingDe = 1, fori € U, AP = Apin andA® = Ay, implying, fori € UL, A2 = AP/R
and/\ub = AP, /R, §# i Using \"b = AP = A, AYP = Ain, i € US, AP = Aoy, @ € U%, and
Ar < )\mm if r € Ug,
AP = (1 +6) max A\ = (1 4 0) max {1T€US/\}3b, max /\?b}
i€l

i€Ug S

)\max
= (1 + 0) max{]-rEUs/\ry Amin} = (1 + 0)/\min - (1 + 9) R
1 1 1b 1b
= E(l +0)max {1,cysAr, Amax} = E(l +0)max S 1cy A, max i
€U

S

_1 1b_Al[5)
= gL O maxAr =

Using \® = AP i € Dg, AW = (1 + 0) max;epg A = (1 + 6) max;epg AI® = A5, The result
A" < AP follows immediately fromA"™ = max{A%P, A%}, AP = max{AP, AL}, AW < AP,
and A = A If r € Ug, for j # r, using\i = AP andAf> = AP/R, we getP) =
ANBJAEP = RNY /AR = RPY. If r € Dg, for j # r, usmg)\‘“O = AP andAY = AlS, we get
P = XD /AY = NP /A = P%. Fori € Ug andj # 4, using A Alb /R andA¥> = AL/R,

we getp'? = /\“b/Aub =AY /Alb P>, which implies, smcezjGQ = Yo B =1,
PP = PZ”;’, i € Ul. Finally, fori € DY andj # i, using \l® = AP, andAub = Alb, we get
P = Xib /AR = X /AB = P}%, which, as before, |mplle§z‘jb PZ“;, i€ Dj. O

Using Theorem 4, it is possible to prove the following reswhich relates the vectors(n, k)
andn’(n, k).

Proposition 1. AssumeD¢ = 1 and, ifr € Ug, A\, < Amin. Then, ifr € Us, 7°(0, k) = w'*(0, k),
0<k<l1 andﬂub(n,k) = Rﬂlb(n, k)yn>1,0<k<n+1;ifr € Dg, ﬂub(n,k) = wlb(n,k),
n>0,0<k<n+1;and, forag > 0,7 (n, k) =7"™(n,k),n >0,0 < k<n+1.

Proof. See the Appendix. O

Note that Proposition 1 implies, as required, thét(n, k)Us # 0 if and only if 7' (n, k)Us £ 0,
7" (n, k)Ps £ 0 if and only if 7' (n, k)Ps # 0, for ag > 0, 7P (n, k)Us # 0 if and only if
7' (n, k)Us # 0, and, forag: > 0 and DYy # 0, 7" (n, k)Ps # 0 if and only it (n, k)Ps # 0.
The following result, relating the quantitiegn, k) andd’(n, k) is an immediate consequence of
Proposition 1, taking into accountn, k) = > .. g mi(n, k) anda’(n, k) = >, .o i (n, k).

Theorem 5. AssumeD¢c = 1 and, ifr € Ug, A\, < Amin. Then, ifr € Usg, a"?(0, k) = a'®(0, k),
0<k<1 anda“b(n,k) = Ralb(n, k)y,n>1,0<k<n+1;if r € Dg, aub(n, k) = alb(n,k),
n>0,0<k<n+1;and, forag >0,a""(n, k) =a™(n,k),n>0,0<k<n-+1.

The following lemma is needed to prove the sought resulteariag the truncation parameters
C, K andL. A similar lemma was used in [1].

Lemmal. Forz >0,k >2andR > 1,

—Z m—k+2)e e

o
>Zm k+2)e
=k
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Proof. See the Appendix. O

Using Theorems 4 and 5 and Lemma 1, it is possible to provedtanving theorem, which
relatesC® with C'®, K"P with K and, forag > 0, L" with L'®.

Theorem 6. AssumeDo = 1 and, ifr € Ug, A\, < Apin. Then,C"? < ¢ gub < Kb and, for
ag >0, L% < LP,

Proof. ThatC"P < C' follows from (1), the fact thab ;e max(A tq,,,,)™/ml, ¢ > 1
is increasing withA (because it is the probability that the number of arrivals ¢foisson process
with rate 1 in the time interval0, A tq,,..] will be greater tharr) and (Theorem 4\ < AP,
Assumer € Us. Using, then, Theorem 5, fok > 2, a®, (k) = SFHC" Lo (n k) =
RYFHEC T o (n, k) < RYFECT T 0P (n, k) = R, (), which, combined with (Theorem 4)
AP = AP/R and Lemma 1 withe = AP« gives

o
Albt < m
asagm (k) Z (m—Fk+2) (A )™ UWI;? ) e~ A tmax
m=k ’

ath, (k) & RAP tmax)™ .
ag A v (k) Z(m_k+2) ( U max) e—RAUbtmax

- R m!
m=k
o)
AUbt N m u
> aSa%tl)lb(k) (m — k + 2) M eiAUbtmax , k Z 27
m:
m=k

and, then, it follows from (2) and (4) that, for € Ug, K" < K. Assume nowr € Dg.

Using, then, Theorem 5, fde > 2, a2, (k) = SFEC" T aub(n k) = SRHC" "L alb(n, k) <

Zﬁ*fl “ta®(n, k) = al%y, (k), which, combined with\}® = A/ R and usingR > 1 gives

Clb
[o.¢]
Albt m
aSaclb Z m k+2 7( UT::?X) efAl[?tm"‘x
m=k ’
S
RAWPtax)™ u
> agaghy(k) Y (m—k+2) ¢ Umlma—x) ¢~ RAP tmax

o0 o
= agat (i) S S A )™ pagpr, +Z (RAY tm .

> s ( Ubt ) A t ub
> asatu(m 30 3 A t)” oy tmz )" -5 s
m!

ub
AU tma‘x) e*A‘[l]btmax
9

and, then, it similarly follows from (2) and (4) that, for € Dg, K" < K. Fi-
nally, for x> 0, using Theorem 5, fole > 2, a/b (k) = SO -Lgmbin k) =

Cub

SR g (i ) < STRHCT L (k) = @28, (k) and, then, it follows from (3), the fact that
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S e Autmax (At 0™ /ml is increasing withAy and AW < Al (because, by Theorem 4,
AW = AP/R,andR > 1) that L™ < LIP. O

Finally, the following theorem relates the quantitied®,, wi?, ¢*,, v* ., wd, wid  q¢¢

n

vl i, wit gt ot wit wid gty ol lts proof uses Theorem 4 and Proposition 1.

n,k?

Theorem 7. AssumeD¢ = 1 and, ifr € Us, Ar < Apin. Then, ifr € Ug, wi™ = Rugy{®,
wgﬁUb = szﬁlb and, ifQ = SuU{f}, vé‘ﬂb = Rvg}lo; if € Dg, wﬁ%“b = wg%lb, wg%ub = wgfgb
and, ifQ = SU{f}, vf)l"“(l)b = vg}g; for (n,k) € E%bu —{(0,1)}, wgfk“b = wﬁfﬁb, w;jfl,;‘b = w;ffl,ib,
g = gy, and, ifQ = S U {f}, vi? = vilp; and for (n, k) € EY° — {(0,0)}, wie® = wiP,
wg‘flgb = wﬁ"i]ib, qﬁf‘lg = qglﬁ, and, ifQ = SU{f}, vf&‘]g = vglﬁ Finally, if ag: > 0, for
(1, k) € B wlif™ = wli, wfifob = wfifl, g = b, and, it = SU{F}, efig = o/
and, for (n, k) € E’T“B, w;ff%“b = wiﬁ%lb, w;%“b = w;flj?b, q;ﬁib = q;fflllo, and, ifQ = SU{f},

/dub __ , /dlb
vn,k’ - vn,k’ '

Proof. An immediate consequence of the equationsadfgft;, wis, wit, wid, g4, ¢ ., vi .,
ol Wi, W Wi g ¢y oy, andol? given in Section 2, Theorem 4, and Propo-
sition 1, noting that: 1) ifr € Ug, according to (9), (10) and (12), the only non-null compo-
nent of7*(0,1)Ys is 7*(0, 1) and the only non-null component ot (0, 1)Vs is 7>(0, 1); 2) if
r € Dg, according to (8), (10) and (12), the only non-null compdrafnr>(0,0)"s is 72 (0,0)
and the only non-null component af®(0,0)”s is «*(0,0); 3) according to (7), fom > 1,
m(n, k) = mP(n, k) = 0; and 4) all(n, k) pairs in E}?, — {(0,1)} and E, — {(0,1)} ver-
ify n > 1 and all(n, k) pairs inE,; — {(0,0)} and E}", — {(0,0)} verify n > 1. O

4 Numerical Analysis

In this section we show, using a representative large madgiat class, that, for large clag¥
models whemax;cq A; tq,,.x IS Moderate, bounding regenerative transformation wetstiection
D¢ = 1 will compute bounds for theAVCD(t, p) measure at a small computational cost in terms
of CPU time relative to the size oX, much smaller than the computational costs at which both
regenerative transformation and Algorithm A are able to pot@ the measure whenax;cq At is
large. We also discuss under which conditions the obtaimeshdis with the selectio®- = 1 are
tight and illustrate the trade-off in those models betweeunis tightness and computational cost
controlled by the parametép..

The example is a CTMC model of a fault-tolerant storage systexde up of ten 5-level RAID
subsystems, each one comprising eight disks, two redurdisktcontrollers and two redundant
power supplies (see Figure 5). The power supplies work id szindby redundancy. The system is
up if all RAID subsystems are up. A RAID subsystem is up ifdgng coverage faults, at least one
controller is unfailed, at least one power supply is unthilend at least seven disks have updated
data (when a failed disk is repaired in an up subsystem, anstrewtion process fills the repaired
disk with data consistent with the data stored in the remgiseven disks). Disks in up subsystems
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Figure 5: Architecture of the RAID subsystem.

fail with rate4 x 10~ h~! if no disk is under reconstruction and with rétec 10~¢ h~! if one disk

is under reconstruction, controllers in up subsystemswidh rate2 x 10~° h—! if the subsystem
has two unfailed controllers and with ratex 105 h~1 if the subsystem has one unfailed controller,
the active power supply of an up subsystem fails with 2ate10~> h~!, the coverage to controller
failures is0.95, and the coverage to power supply failure®i88. Disks are reconstructed with
rate0.125 h—!. Components of down subsystems do not fail. It is assumedvaiability of an
unlimited number of repairmen to repair failed componemigd RAID subsystems. However, there
is only a repairman to recover down RAID subsystems. Theiregi@ of failed components in up
RAID subsystems i6.05 h—! and down subsystems are brought to a fully operational stike
no component failed and all disks with consistent data wate ®.10 h—!. In case several RAID
subsystems are down, the repairman selects at random the badrought up. Advantage is taken
of the fact that all RAID subsystems have identical behatdameduce the size of the state space of
the model. A more detailed description of the model can baddu [2]. The model is quite large:
646,646 states and 15,578,290 transitions. The model habswbing state and, then, illustrates
the case€? = S. A partition for the subset of up statdgg, showing that the model is in clags
isUs = UgUUL U---UUy, U, = {s € Us : Nc(s) +2Np(s) + Np(s) + Nr(s) = k},
where N¢(s) is the number of up RAID subsystems with one failed contrahestates, Np(s)

is the number of up RAID subsystems with one failed disk inesta Np(s) is the number of up
RAID subsystems with one failed power supply in statand Ny(s) is the number of up RAID
subsystems with one disk under reconstruction in stat®e will start by assuming that the system
is initially in the state in which all RAID subsystems are liveir fully operational state. That state
is the single state belonging to the subséfy and is taken as regenerative state in both bounding
regenerative transformation and regenerative transfioma The steady-state availability of the
system is 0.99975425, making them reasonable the choig89®and 0.9999 which we will take
for p. All methods are run with a single targét, p) pair and an allowed errar = 10-8. The
bounding regenerative transformation method is requestetmpute both the lower bound and
the upper bound. CPU times are measured/estimated in/farlestation with a Sun-Blade 1000
processor and 4 GB of memory (significantly larger than thenorg consumption for all methods).
To estimate the CPU times for Algorithm A and largere used the approximate flop count of that
method given in Section 2.
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Figure 6: CPU times of bounding regenerative transformaf®RT) with D~ = 1, regenerative
transformation (RT) and Algorithm A (A) fagp = 0.9995 (left) ang = 0.9999 (right).

We start by considering the selectidh- = 1 for bounding regenerative transformation. For
the considered example amd= o, A, is smaller tham\,;, = minie% i, and, thus, bounding
regenerative transformation will use the particular, meffeeient implementation discussed in Sec-
tion 3.2. Table 1 gives the bounds obtained by bounding mgé¢ime transformation (BRT), the
values of the truncation parameter® and K'* defining the truncated transformed CTMC model
built when, in BRT, the lower bounding mod&!'" is solved by regenerative transformation (as dis-
cussed, the truncation parametéré® and K'P defining the truncated transformed CTMC model
built when the upper bounding modal"? is solved are non-greater than, respectivélp and
K'™), the values of the truncation parametétsand K defining the truncated transformed CTMC
model built by regenerative transformation (RT), and tHees of the truncation parameter$ and
N for Algorithm A (A), for p = 0.9995 andp = 0.9999 and increasing values of Figure 6
gives the CPU times consumed by the methods (for lathe CPU times of Algorithm A are enor-
mous and they were estimated using approximate flop coutisspredicted theoreticallyis'® has
small values. Sincenax;cq A\;t(1 — p) has moderate values (fpr= 0.9995 and: = 20,000h,
max;eq \it(1 — p) =~ 22.5)C'" has also moderate values. All this makes the CPU times caegsum
by BRT relatively small: for the largestconsidered, 5,494 s (about 92 minutes)fee 0.9995 and
1,883 s (about 31 minutes) fpr= 0.9999. Since& is identical toC'® (this will always be the case),
the CPU times for RT compared with those of BRT scale apprateéfy as the truncation parameter
K scales withK'® and are, therefore, significantly larger for langefor the largest considered,
399,853 s (about 111 hours) fpr= 0.9995 and 103,290 s (about 29 hours)goe 0.9999. The
values of K satisfy the rough upper bours) 2’ mentioned at the end of Section 2, since for the
exampleR’ ~ 2.25/0.05 = 45 and30R’ ~ 1,350. Finally, being the model large, the truncation
parameterV significantly larger thad<'™® and K for larget, and the truncation parametéf very
similar to C'™ andC (this will almost always be the case) the CPU times of AldmmitA are sig-
nificantly larger than the CPU times of both BRT and RT: for fdrgestt considered, the estimated
CPU time for Algorithm A is1.158 x 107 s (about 134 days) fgp = 0.9995 andt.482 x 10% s
(about 52 days) fop = 0.9999, and thus for large valuestand a conventional hardware platform,
the example can be considered out of reach of Algorithm A.

Figure 7 gives the breakdown of the CPU times consumed by BRiis three main com-
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Table 1. Results for bounding regenerative transformgf8iiT) with Do = 1, regenerative trans-
formation (RT) and Algorithm A (A).

BRT RT A

t (h) p IAVCD™(t,p) IAVCD"(¢,p) Cc™ K ¢ K ¢ N

1 0.9995 0.99997543  0.99997600 2 8 2 13 2 15
10 0.9995 0.99975017  0.99975927 3 13 3 47 3 55
100 0.9995 0.99751052  0.99757828 6 15 6 278 5 36
1,000 0.9995 0.97644748  0.97700453 12 16 12 884 11 2)528
10,000 0.9995 0.85732856  0.86048627 36 18 36 1,009 35 23,375
20,000 0.9995 0.81889809  0.82303294 55 18 55 1,041 55 46,241
1 0.9999  0.99997542  0.99997599 2 8 2 13 2 15
10 0.9999  0.99974996  0.99975907 2 13 2 47 2 55
100 0.9999  0.99749956  0.99755676 4 15 4 278 4 316
1,000 0.9999  0.97548885  0.97606827 7 16 7 884 6 2528
10,000 0.9999  0.79696265  0.80124391 16 18 16 1,009 15 23,375
20,000 0.9999 0.66211670  0.66861207 22 18 22 1,041 21 46,241

ponents: generation of the truncated transformed CTMC hafd&'®: trans (Ib), solution of the
truncated transformed model &f'® by Algorithm A: sol (Ib), and solution of the truncated trans
formed model ofX P by Algorithm A: sol (ub). The particular implementation oRE applies and
the construction of the truncated transformed CTMC mod&l 8f from the quantities saved during
the construction of the truncated transformed CTMC model Bfconsumes negligible CPU times
and those CPU times are not shown. For the considered vdluesiost of the CPU time consumed
by the method is due to the generation of the truncated wemsid CTMC model ofX'®, but the
CPU times due to the solution by Algorithm A of the truncatethsformed CTMC models increase
with ¢ faster than the CPU time consumed in the generation of tmedtad transformed CTMC
model of X'P and, for large enough would dominate the computational cost of the method. As the
figure clearly illustrates, the importance of those compisalso increases with— p.

The bounds obtained by BRT witho = 1 are quite tight. Intuitively, for large, this is
because alk, X'® and X"P spent most of the time it in stateo and the three models only differ
in the holding times in the statesifx — {o}. This will be the case for any cla§s model with the
selectionr = o provided that the partition fd's satisfies the additional properties

P7. Foreachh € Uy, 0 < k < N¢, )\z‘,Uk—{z‘}uUk+1U~~uUNcUDs if =S5

or )\iyUk*{i}UUkJrlU"'UUNCUDSU{f} if @ = S U {f} is significantly smaller than
)‘i,UoU"'UUk_r

P8. )\0 <K minieUlu...UUNc )\Z
The reason is that P7 implies that, from any state= Us — {0}, the embedded DTMC
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Figure 7: Breakdown of CPU times of BRT withs = 1 for p = 0.9995 (left) and» = 0.9999
(right).

Table 2: Bounds obtained by BRT witho = 1 for an initial probability distribution non concen-
trated in state.

p = 0.9995 p = 0.9999
t(h) IAVCD'™(t,p) IAVCD"P(t,p) IAVCD™(¢,p) IAVCD"P(t,p)
1 0.99905631 0.99994872 0.99905616 0.99994870
10 0.99870751 0.99954032 0.99870689 0.99953997
100 0.99647487 0.99703209 0.99645977 0.997019p3
1,000  0.97547825 0.97648897 0.97448111 0.975532119
10,000  0.85677215 0.86018960 0.79620927 0.800841726
20,000  0.81853341 0.82283871 0.66154598 0.66830577

will go towards stateo with almost one probability and P8 implies that each holding
time in a statei € Us — {o} will be much smaller than each holding time in state
o. Properties P7 and P8 are satisfied moderately by the exarsplee for the partition
for Us previously discussednaxg<so maxier, Aiv,—{iluv, u-ups = 1.08 x 1072 h71,
Ming< <40 Miier, Aivou-ut,_; = 0.05h71, A, = 9.2x 1071 h~!, andming« <40 minjep, A; ~
0.05 h~1. ClassC} models with the additional properties P7 and P8 for the tpamtfor Us include
both exact and bounding failure/repair models of coherault-tolerant systems with exponential
failure and repair time distributions and repair in evetetwith failed components with failure
rates much smaller than repair rates. The fact that the lsoaredalso tight for smatlseems to have
to do with the fact that all the initial probability of the CT®#model inUg is concentrated in state
Table 2 gives the bounds obtained by BRT wid = 1 when the initial state of the CTMC model
is the state in which one RAID subsystem has one unfailedraiert no other component failed

and no disk under reconstruction and the remaining RAIDystbms are in their fully operational
state. In that case, the bounds are not so tight for smalesadir.

Finally, we analyze the trade-off in BRT between bounds eamyuand computational cost in
terms of CPU time controlled by the paramef&s. Table 3 gives the bounds obtained by BRT and
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Table 3: Trade-off in BRT between bounds tightness and cdatipnal cost fort = 10,000 h and
p = 0.9995 and initial state, state

Dc  IAVCD™(¢,p) IAVCD"P(t,p) C™ K ¢ KU CPUtime (s)
1 0.85732856 0.86048627 36 18 35 18 3,002
2 0.85740339 0.86005160 36 48 35 37 13,429
10  0.85799895 0.85996905 36 277 35 221 80,027
20  0.85869229 0.85996905 36 520 35 452 158,420

the respective CPU times for= 10,000 h,p = 0.9995 and increasing values bf,, assuming
that the initial state is stai@ We also giveC'?, K, C'"*, and K"P. We can note that the bounds
become moderately tighter &% increases but, as a result of a significant increadé'bfand K°,
the computational cost of the method increases sharplys,the optionD~ = 1 seems to be the
most attractive one for clag€s) models with the partition fot/s satisfying properties P7 and P8.

5 Conclusions

Based on a previously developed method for the computatigheointerval availability distribu-
tion of systems modeled by CTMCs, the regenerative tramsftion method, we have developed
a method called bounding regenerative transformationhieicomputation of bounds for that mea-
sure. The method requires the selection of a regeneratite, $ numerically stable and computes
the bounds with well-controlled error. For models belowgiio a certain class, clas$, and a par-
ticular, “natural” selection for the regenerative stalte inethod allows to trade off bounds tightness
with computational cost through a control paraméder. For large clas§’| models, the less expen-
sive version will often provide bounds at a small computaiacost in terms of CPU time relative
to the model size. When the model satisfies additional cimmdit the bounds obtained by the less
expensive version of the method seem to be tight for any tirtexval or not small time intervals,
depending on whether the initial probability distributiohthe model in up states different, if exist-
ing, from the absorbing state is concentrated in the nasaiattion for the regenerative state or not.
ClassC} models with those additional conditions include both exaa bounding failure/repair
models of coherent fault-tolerant systems with exponkfailire and repair time distributions and
repair in every state with failed components with failureesamuch smaller than repair rates.

Appendix

Proof of Theorem 3. As theoretical background for measure theory and Lebesgagration we
use [6]. The characterization of the probability space dgitgy a discrete time Markov chain with
denumerable state space is discussed in [4]. The uniquefhsash probability space follows from
Kolmogorov's extension theorem (see, for instance, [Shatfltheorem also implies the existence
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and uniqueness of a denumerable product of probabilityespdeetIl = {II,;n = 0,1,2,...} be
the embedded discrete-time Markov chairlf(see, for instance, [9]LI has same state space and
initial probability distribution ad?” and transition probabilities; ; = P[Il, 1 = j | II, = i] =
Xij/ iy J # 4, iy = Plllpq = i |11, = i] = 0 for the states with \; = Zjeg_{i} Aij >0
andvy; ; = Plll,4q = j |1, =i =0, j # 14, ¥; = P[ll,41 = ¢ |1, = i] = 1 for the states

i with \; = 0. The embedded DTMC dfi”’ has same state space, initial probability distribution
and transition probabilities d$ and, therefore, is probabilistically identicalib Both W and W’
can be interpreted in terms of. II gives the sequence of states visitediby(1¥’) and each state
visit has a duration given by an independent holding timeate with exponential distribution with
parameter equal to the output rate from the visited state.

We start by constructing a common probability spé&€eA, @) in terms of which bothiv’
and W’ can be defined. This is done by combining the probability spawerlyingIl with the
probability space underlying a set of exponentially digttéd independent random variables which
will account (with scaling in the case &) for the holding times. To simplify the proof, we will
associate with absorbing states exponentially distribiitelding times with non-null parameter.
Let (&m, A, Qi) be the probability space underlyidd: & is the set of infinite sequences=
(s§,sT,...), sT € Q, An is theo-algebra generated by the collection of subggfs " = {7 =
(85,87,...) : 5 =0 A 8T =381 A -+ A sT = s,}, (50,...,8,) € Q" n =0,1,...
andQu[E ") = Py = S0 ¥sg,s1°** Ysn_1,5n- LEtHp s, n=0,1,..., s € Q be independent
exponential random variables with parametgrwhereA; = A, if Ay > 0andA; = A* > 0if \; =
0. For each random variabld,, 5, n = 0,1,..., s € ©, let ([0, c0), Bjg ), tn,s) b€ the underlying
probability spaceB), . is the Borelor-algebra or0, oc) anduy, s is the Borel probability measure
defined by the distribution function of the random variablg. Let (£x, Ay, 1) be the product of
the probability space§0, ), Bjp,«); tn,s), » = 0,1,..., s € €. The probability spacé’, A, Q)
is the product of the probability spac&St, A, Q) and (Ex, Am, i1). With respect tc€y, given
aw € &g, hy s(w) will denote the coordinate af equal to the realization of the random variable
H,,... With respect tef, given aw € £, m(w) = (s, s, ...) will denote they; coordinate of
w andh,, ;(w) will denote the coordinate of equal to the realization of the random varialig .

The CTMCW can be defined in terms 6f, A, ) as follows. Eaclv € £ gives a realization,
W(w,t), of W

W(w,t) = Sg(w) , 0<t< h07sg(w)(w),

W(w,t) = 37{(“)) , o h rw(w) <t < ho’sg(w)(w) +h

0,67 r() (W)

1,59
m

W(w,t) =5, D h @) SE<Y b (W),
0 n=0

Let L(w), w € &€ be the random variable defined B&v) = min{l > 0 : Z;:o h (W) >th
It is well known (see, for instance, Kijima 1997) that, beiflg, H1, ... independent exponential
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random variables with parametexg, A1, . .. such that\; > 0 andsup;>o A; < oo, limy, . Ho +

Hy + -+ H, = oo with probability 1, implying thainin{n >0 : Hy+ Hy +---+ H, > t}is
defined with probability 1. Then,

!
Q{w e €& : L(w)is defined] = Q Hw €& : min {l >0 : Z ) (w) > t} is defined}]

n=0

!
= / i [{w/ € &y : min {l >0 : Zhwg(w/) > t} is defined}] dQmn(m)
én n=0

- /ngQH(w)zl.

Let A be the subset of
L(w)—-1
A=Quweé : Lw) isdefinedA > 1w h (W)
n=0 o

L(w)—1
+ lsz((w))eU t— Z hn’sz(w)(w) > pt
¢ n=0

Since A collects, except for a subset with probability 0, all reaians of\W for which the “up”
time in the time interval0, ¢] is > pt,

TAVCD(t, p) = Q[A].

Since, givens > 0 and beingH an exponential random variable with parameter 0, H/(3

is an exponential random variable with parametar the CTMCW' can be defined in terms of
(€, A,Q) as follows. Eaclw € € gives a realizationiV’(w, t), of W’

W, o () o<t X ho’sg’(w) (w) 1 L
(w,t) =50 ", SU< sg@)eUW + st gy 0753@»)(“’) )
0
hy ) (W)
/ o 7r(w) 0750
Wiw,t) = s1 7, 1sg(w)€U ﬁsw(w) + 1sg(w)€Uh0,Sg(w) (w)
0
hO,sg(w) (w)
<t< lsg(w)eUW + lsg(W)QUhO,Sg(W) (w)
0
hy gree) (w)
Tl g o Tl o)

1

eU s
s By n

! w(w) sy hmsz(w) (w)
Wiw,t) = s5 Z lrwep—g T lr@gyh, @
m hy, g (@)
<t< Z 1S7r(w) e 1S7r(w)€Uhn’S;rl(w) .
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Let L'(w), w € & be the random variable defined as

L'(w)=min{l >0 : 2! (1 @ eyl 7@ @)/ B + 1m0yl (W) >t} It can be
proved thatl’ is defined with probability 1 as it was proved trIa'was defined with probability 1.
Let A’ be the subset of

L'(w)—-1 h W(W)( )
A={weé : L(w)isdefinedh ) 1SW(W)€U"E}7
n=0 " ST (@)

Lw h, gx@ (W)
Sn

C n=0

+ 1sz(w)¢Uhn,sZ<“’) (w))) > pt} .

Since A’ collects, except for a subset with probability 0, all reafians of W’ for which the “up”
time in the time interval0, ¢] is > pt,
IAVCD'(t,p) = Q[A'].

To prove the theorem it suffices to show thiat- A’. In that proof, we will use the shorthamﬂ(“’)
for hn §T(@) (w)

First note that, being < 3 < 1,i € U, ZL:O(lsﬂwEUhZ(W)/ﬁswm n 1s"<“’>¢UhZ(W)) >
S b implying that L' (w) is defined whenl(w) is and that, in that casé//(w) < L(w).
AssumingL(w) and L' (w) defined, let

L(w)—1 L(w)—1
BW) = 3 Lpogh® +1z0 Z hr
n=0
and let
w hﬂ(w) L'(w) hZ(W)
1 7r(w + 1 5™ (w) t— 1 7(w) - + 5" w) h/ﬂ-(w)
1;) GUﬂ L (w )GU nZ:O Sp €U ﬂsz(w) gU

It suffices to showB’(w) > B(w). Since

with
L(w)—1 L(w)—-1
m(w) _ m(w)
> 1) g hin + 182((3 w |t > by (22)
n=0 n=0
and
B'(w) =t —C'(w)
with
L' (w) “
/ _
C (W) - 1 W)QU n “
n=0
L'(w)-1 hw(w) ©)
n=0



it suffices to show that, assumidgw) andL'(w) defined and/ (w) < L(w), C'(w) < C(w). Two
cases will be considered: &f(w) = L(w), and b)L/(w) < L(w).

In case a), using (22) and (23),

L(w)— L(w)-1 hw(w)
C'w) = Z 1 w(w)gU )41 w(w) Z ( w(m)eUﬁ + 132(W)¢thrz(w)>
n=0 sz “

)—1 L(w)—1
Z Ll + 1z B | = Cw).
n=

IA

L(W)

In case b), assumingzg‘(‘g) ZU,

Zﬁlg) (1 w(w)eUhZ(w)/ﬁ () + 1 w(w)gUhZ(w)) > t implies

Zﬁlg)_l( w(w)eUhn( )/ﬁ n(w) +1 w(w)whz(w)) + hzgf)) > t and

(t - zﬂg)—l (1sz(u,)€U /ﬂ r@) + L) g hn (“’))) < h”(‘z’)) Using, then, (22) and (23),

L(w)—
7r(w m(w
C,(W) S Z 1 ww)gU n )+ 1 zg(z; )€U L’(w) < Z 1 7r(w €Uh/n( )
L(w)—l _
S SRR RSN (R S S) )
= « n=0

It remains to check thak,,, L/, € A,n = 0,1,..., whereL,, = {w € £ : L(w) = n} and
={weé& : L'(w)=n}andthatd, A’ € A.

We start by checking that,, € A, n =0,1,.... LetF, ={we & : > _ oh w(w)( ) >

th,n = 0,1,.... SinceLy = Fy and, forn > 1, L, = F, N FS_,, it suffices to ‘check that
F, € Ain =0,1,.... Let Fsoron = {w € &g : > (hms,(w) > t}. SinceF, =

Uso,..osmyeqnr1 &5 x Fso--sn QL is denumerable and*" € A, it suffices to check
that Fso-sn € Ay, (sg,...,8,) € Q"L n = 0,1,.... This follows if H,, = {(ho,...,hy) €
[0,00)" T 2 30 o hn >t} € @i Bjo,oo) = Bjo,coyn+1, m = 0,1,..., which can be proved
by induction onn as follows. The case = 0 is trivial since Hy = (t,00) € Bjg ). Assume the
result holds fom = i > 0. We haveH;,; = G;4+1 UU +0J], whereG,+1 = {(ho,...,hit+1) €
0,00)%2 - hg >0 A -+ A hiyy >0 A S by >ty andg; = {(ho, ..., hit1) € [0,00)2 :
hj =0 A ij{lo mtj m >t} BUtGiy1 € Bjg o)ive, SiNCeG 1 is an open subset ¢, 00)it+2
andJ; € By )itz = Bjo,co) ® Bjgooyi+1, SiNCe{0} € Bjg ooy and, by the induction hypothesis,
H; € By ooyi+1- ThatL] € A,n=0,1,... can be checked similarly, the only difference being that
H,, has to be replaced b§, = {(ho,...,hy) € [0,00)" T + 3" hp/am >t} 0 < ap < 1,
which can be easily shown to belong ..)n+1.

Let us check now thatl € A. Let

n—1 n—1
A, = {w et : Z ls”m(“’)EUhm,s"m(“’)(w) + 182(W)GU (t — Z hm,s”m(“’)(w)> > pt} .

m=0
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SinceA = U (L, N Ay,), it suffices to check that,, € A, n =0,1,.... Let

n—1 —
50 {w €&y Z 1sm€Uhm,5m(w) + 1s,ev <t - Z hm,Sm(W)> > pt} .
m=0 0

Since A, = Uy, syeqn1 &7 7" x ASorsn Ol is denumerable andy " € Ap, it
suffices to check thatl*o-5» € Ay, (sq,...,8,) € Q" n = 0,1,.... We will consider two
cases: ay, € U and b)s,, ¢ U. In case a) A% = {w € &y : ZT,; 10 1, cvhms, (W) <
(1 — p)t} and the result follows itK,, = {(ho,...,h,) € [0,00)""t + 3" hn, < t} €
Ko Bio,soy = Bjg,cc)n+1, n = 0,1,..., which can be proved by induction onas follows.
The casen = 0 is trivial, since Ko = [0,t) € Bjg ). Assume the result holds for = i >
0. We haveK,;,; = M;;; U UZ“N where M; ;1 = {(ho,...,hiz1) € [0,00)72 : hy >

0 A - A hg1 >0 A ZZ“ hm < t}andN; = {(ho,...,hiz1) € [0,00)*2 : h; =

0 A Z:::lam;éj him < t}. But Miy1 € Bjg ooyi+2, SiNCEM; 41 is an open subset d6, co)'+?
andN; € By )itz = Bjg,oo) @ Bjg ooyi+1, SiNCE{0} € By ) and, by the induction hypothesis,
K € Bjgoo)it1. Incase b) A% = {w € € EZ;IO 1, cvhm,s,, (w) > pt} and the result
follows if H, = {(ho,...,hn) € [0,00)"*t 3" _(hm >t} € @m—gBjo,oo), 7 = 0,1,...,
which was proved previously. That' € A can be checked similarly, the only difference being that,
in case b),H,, has to be replaced b#!, = {(ho,...,hy) € [0,00)" T + 3" hpm/am > t},

0 < oy, < 1, which belongs tdg oo yn+1- O

Proof of Proposition 1. The resultr®®(0, k) = #«'*(0, k), 0 < k < 1 follows immediately from
(8), (9), (10), and (12).

Let stater be numbered first in all vectors indexed by a subset inclustiatgr. The proof that,
forr € Ug, #"P(n, k) = Rw'®(n, k), n > 1,0 < k < n + 1is by induction om. Consider first the
base case = 1. From (11), we have

7 (1,0)% =x(1,0)Y = 0. (24)

Using (5), (8), (10), (12) and (Theorem BY> = RP)>, j # r,

(1, 1% = 7™(0,0) PLy, = (Lreps0---0) Py = Lien Pih o
= 1T€DSRP{ }U/ - R(]'TEDSO . O) PSU’
= Ra"(0,0) Py, = Ra™(1,1)%. (25)

Using (5), (9), (10), (12) an@®'> = RP", j # r,

w(1,2)% = w0 (0,1) PEy, = (Levs0---0) PEy = Lev PP o
= 1reUsR P{ }U/ = R(lreUSO 0) PS U’
= Ra"(0,1) Py, = Rx'®(1,2)Vs . (26)
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Using (6), (8), (10), (12) an&? = RPYS, j # 1,

(1,005 = 7"(0,0) Py, = (Lrens0-+-0) Pey, = Lrens P
= 1r€DsR P{T} DY :R(lrEDsO ’ O) PSD{g
= Ra"(0,0)PYp, = Ra'"(1,0)%5 . (27)

Using (6), (9), (10), (12) and®? = RP, j # r,

(1, )P = a'(0,1) PY b, = (Lrevs0-+-0) PEp, = Lrevs P o
= 1r€USR P{T} DY, =R (L«eUSO 0) PS Dl
= Ra"(0,1) Pgp, = Ra(1, 1)Ps (28)
From (13),
7" (1,2)Ps = x'*(1,2)Ps = 0. (29)
From (7),
(1, k) =7P(1,k) =0, 0<k<2. (30)

Collecting (24)—(30), we have
7 (1,k) = Ra®(1,k), 0<k<2,

completing the base case. Assum®&(m, k) = Ra'®(m,k), m > 1,0 < k < m + 1 and let us
prover™ (m + 1,k) = Ra'®®(m + 1,k), 0 < k < m + 2. From (7),

P(m+1,k)=aP(m+1,k)=0, 0<k<m+2. (31)

From (11),
7 (m + 1,00V =7®(m +1,0)%s = 0. (32)

Using (5), (7), (Theorem AE U = PS, Ul and the induction hypothesis,

o (m+ 1L,k = 7P (m,k - 1) Py, =7 (m k- ) P,
= Ra®(m,k—1)° Plsb,ﬂ/ R (m,k — 1) Py,
= Rm+1k)Y%, 1<k<m+2. (33)

Using (6), (7), (Theorem 415’5, D, = Plsb, D and the induction hypothesis,

om+ 1,k = 7°(m,k) Py, =" (m, k)Y Py b
= Ra®(m,k)%PY, p, = R (m, k) P p,
= Rm+1,k)"s, 0<k<m+1. (34)
From (13),
m+1,m+2)Ps =a®(m+1,m+2)Ps =o0. (35)

Collecting (31)—(35), we have

aP(m 4+ 1,k) = RT®(m+ 1,k), 0<k<m+2,
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completing the induction step.

The proof of the resultr™®(n, k) = 7'°(n, k), n > 1,0 < k < n + 1 for the case" € Dg
follows step by step wittR = 1 the proof of the resultr™®(n, k) = Ra'®(n,k),n > 1,0 < k <
n + 1 for the caser € Ug by noting that, according to Theorem 4, the only differeneaveen the
two cases is that, far € Ug, P;j;? = RP}E., j # rand, forr € Dg, P;j;? = P}E, jAr.

For ag > 0, the resultr’™P(n, k) = 7™ (n,k), n > 0,0 < k < n + 1 follows immedi-
ately from (14)—(21), noting that"® = o' and, according to Theorem B2’ vy = Py vy, and

P%?D’S = Plsb/,p/s- O

Proof of Lemmal. Let the function

F) =2 S m ke EUT

m!
m=k

with & > 2. We have to showf,.(R) > f.(1) for z > 0 andR > 1. Taking derivatives,
o m 0o "
f;(z) = = Z(m —k+2) efzy& — % Z(m —k+2) efzy(zy)

m) m)!
m=k m=k

N
(]

m—1

3
I
S

m —1)! m!
m=k m=k—1
o0 o
)™ L )t ()™
—_ _ 2y zy 2y
= Z(m k+2) —te (k:—l)'+ Z e .
m=k m=k—1
yielding
, TN 1) L VRN £ 1) L R ()™
W& =S it 2 ¢ g L m k2
m=k—1 m=~k
which gives
yk1 > T y
/ _ — — _
A=ty 3 - S ke
m=k—1 m=
The second and third terms can be rewritten as
© m > k+m—1
Yy _ -y_ Y
ym:k:—l€ m! mzl€ (k+m_ 2)' ’
00 m 00 k+m—1
Y _ )
—k+2)e ¥V — = Ne Vo
mzk(m +2) e mZ:1(m+ )e Gy
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yielding

f/(l) = ye_yﬂ + i e_yﬂ — i(m + 1) e_y yk+m71
4 (k=1! =" (k+m-2)! <= (k+m —1)!
yk—l oo yk+m—1 oo yk+m—1
_ y k eV _ e v
ye (k—1)v+n;( e T T m;“”* A r—
k 0 m
— v Y _ Y
= e (k_l)l—i-(k Z)Ze p

This shows thaff, (1) is > 0 for y > 0. Letd = min{f,(1),z <y < xR} > 0 (the minimum
exists becausg, (1) is continuous in the domain). We hayg(1) > 6 forz <y < zR.

Let A > max,<y<zr1<-<r |f; (2)] > 0 (the maximum exists becaug§(z) and, therefore,
| f,/(2)] is continuous in the domain). Lgt= 25/A > 0. Taylor's theorem applied tg, (=) at
z =1 gives

/ Z//,(Z) 2
L+ 1) = £,(0) + £ (O + =0,
Then, forx <y <zR,1 <147 < R,andr < ¢, we have

AR~ 1) = 0+ D s e B <5 - —7“> = <5 - %@ =0,

r>0,z¢e[l,1+r].

implying f,(1+r) > fy(1)forz <y <zR,1<1+4+r < Randr <gq.

The result asserted by the lemma can be proved from the fattfgkl + ») > f,(1) for
r<y<zR,1<1+4+r < Randr < q as follows. LetN be the minimum integer > 0 with
(14+¢)" > R. We canwriteR = (1 + ¢)V "1 (1 +r)withr < ¢, 1 < 1+7 < Rand, ifN > 1,
1+ ¢ < R. Then,

1

fe(R) = fol(l+ N "1 +7) = fo(uq)fv—l(l + )

1 1

> ﬁfx(lJrq)N_l(l) = fo(lJrq)N_Q(l +q)

(1+4+4¢

1

T2 (1) > o> L(1). O
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