
Evaluating the Effectiveness of REDCAP
to Recover the Locality Missed by Today’s Linux Systems

Pilar González-Férez
Universidad de Murcia

pilar@ditec.um.es

Juan Piernas
Universidad de Murcia
piernas@ditec.um.es

Toni Cortes
U. Politècnica de Catalunya

and Barcelona Supercomp. Center
toni@ac.upc.es

Abstract

In order to know how different conditions influence the
behavior of the RAM Enhanced Disk Cache Project (RED-
CAP), we have analyzed the impact of the file system and
the REDCAP cache size. The results show that, for work-
loads which exhibit some spatial locality, the application
time can be reduced by more than 80% for file systems
that split the disk into block groups, while for those that
do not use this division the reduction can be more than
55%. REDCAP has the same performance as a traditional
system for those workloads with a random or sequential
access pattern. The experiments also show that the cache
size can determine the results, depending on the file system
and the number of processes.

1. Introduction

One of the most important aspects in the design of a
built–in cache (disk cache) of a disk drive is its size. Nowa-
days the size does not meet the system designers recom-
mendations (0.1%-1% of the disk capacity [5, 3]). Indeed,
it is still rather small compared to the disk size (a disk of
500 GB usually has 16 MB of cache, only a 0.003%). There
are two main reasons for this small size: a tradeoff between
cache size and cost; and space limitations.

One way of solving this problem is to integrate a larger
cache in the disk, but this decision has to be taken by the
manufacturers, and the current technology for hard disks
suggests that this increase is not going to happen in the
short term. Another option is to use the RAM Enhanced
Disk Cache Project (REDCAP) [2] which solves the prob-
lem by using a small part of the main memory. REDCAP
is a RAM-based disk cache which emulates the behavior
of the disk cache and tries to benefit from its read–ahead
mechanism, and takes advantage of the disk read requests
by prefetching adjacent disk blocks.

In the first analysis of the REDCAP behavior [2], the re-
sults obtained proved that REDCAP, by exploiting the prin-
ciple of locality of reference, takes advantage of the orga-
nization in block groups performed by some file systems.
They also showed that, with a small portion of the main
memory, it is able to considerably reduce the I/O time of
the disk read requests, achieving reduction of up to 80%.
Our first study had three limitations. The first one was that
only one file system, Ext3 [8], was used in our tests. The
second one was that, although different cache configura-
tions were tested, all of them had the same cache size, 8
MB. And, the third one was that there were some perfor-
mance problems in some workloads that were not entirely
solved, and the maximum improvement was not achieved.

In this work we have studied the REDCAP behavior un-
der different file systems and with two cache sizes. RED-
CAP has also been enhanced in such a way that the im-
provements achieved are now greater than that obtained by
the previous version in many workloads.

Our results show that REDCAP can greatly reduce the
I/O time of the disk read requests, for many workloads and
any file system. The best results are achieved for those file
systems which split the disk into several groups with im-
provements of up to 83%, whereas for those that do not
use this division, improvements of up to 57% are achieved.
On the other hand, REDCAP has the same performance
as a traditional system for those workloads which have a
random or sequential access pattern. The experiments also
show that the cache size can determine the results depend-
ing on the file system and the number of processes. How-
ever, both cache sizes present a similar behavior in many
cases, what suggests that the REDCAP cache size should
be dynamic and dependent on the workload.

2. The RAM Enhanced Disk Cache Project

The RAM Enhanced Disk Cache Project (REDCAP) [2]
is a new cache of disk blocks which greatly reduces the

978-1-4244-2818-2/08/$25.00 ©2008 IEEE

I/O time of the read requests. It introduces a new level in
the cache hierarchy (the REDCAP cache), just between the
page cache and the disk cache, which works as an extension
in the main memory of the disk cache. Our cache imitates
the behavior of the disk’s one by prefetching some consec-
utive blocks in such a way that it takes advantage of the
read–ahead mechanism of the disk drive. The prefetching
is performed only when a read operation takes places and a
cache miss occurs. It is not performed during write requests
or on a cache hit. REDCAP also implements an activation–
deactivation algorithm to control the performance achieved
by its cache. This algorithm compares the time that the
REDCAP cache needs to process the requests, with the es-
timated time to process them without cache, and turns the
cache on/off accordingly. The algorithm is independent of
the underlying device, because it only takes into account
the I/O time of the issued disk requests. REDCAP does
not take part in writes, it only updates its cache, and sends
write requests to disk.

3. Experimental Results

In order to perform the study, we have used our RED-
CAP Kernel (a Linux Kernel 2.6.14 with REDCAP) and the
vanilla Linux Kernel 2.6.14 without REDCAP (“the Origi-
nal Kernel”). We have run 5 benchmarks with both kernels,
and the results have been compared. A description of this
benchmarks can be found in [2]. To trace disk I/O activity,
the kernels record information about the requests, and the
REDCAP kernel also about its cache.

Our experiments are conducted on a 800 MHZ Pentium–
III system with 640 MB of main memory and two disks.
The system disk, with the Fedora Core 4 operating system,
is used to collect traces for the study. The test disk is a
WD Caviar WD1200BB, with 120 GB of capacity and 2
MB of cache. The test disk has only one partition and the
file system used depends on the tested configuration. The
Complete Fair Queuing (CFQ) scheduler has been used in
all the experiments.

In order to analyze the impact that the cache size and
the number of segments have on the performance achieved
by REDCAP, two configurations has been used. In the first
one, the REDCAP cache size has been fixed at 8 MB, which
is four times as large as the size of the disk cache, although
its memory utilization is less than 1.5% of the main mem-
ory. In the other one, the cache size is 16 MB, eight times
as large as the disk cache and less than 3% of memory uti-
lization. In both cases, the segment size has been fixed at
128 KB, which showed the best behavior in our early tests
and is the maximum request size allowed by the operating
system. Therefore, the tests have been carried out with the
configurations:64x128KB (64 segments of 128 KB) and
128x128KB. The initial state of REDCAP is active.

The file system used determines the access pattern seen
by the disk drive to a large extent. So, to evaluate how
the file system influences the REDCAP behavior, five file
systems with different features have been used: Ext2 [1],
the default file system in Linux, and four with journal:
Ext3 [8], XFS [6], JFS [4], and ReiserFS [7]. All of them
are integrated in Linux 2.6.14 by default. We have used the
default options for both formatting and mounting. It is im-
portant to note that our intention is to study the throughput
achieved by REDCAP with each file system. We do not try
to compare the results obtained by a file system with those
obtained by others.

We have performed five runs for every benchmark, sys-
tem configuration and file system. The mean results are
showed. The confidence intervals for the means, for a 95%
confidence level, are also included as error bars. The com-
puter is restarted after every run, hence all benchmarks
have been performed with a cold page cache and a cold
REDCAP cache. The figures show the improvement in ap-
plication time achieved by REDCAP with respect to the
Original Kernel. Note that if REDCAP achieves a great
improvement with a given file system, this does not neces-
sarily mean that this file system has the best behavior.

Linux Kernel Read The application time improvement
achieved by REDCAP with respect to the Original Kernel
in theLinux Kernel Readbenchmark are presented in Fig-
ures 1.a and 1.b as a function of the file systems used. For
JFS, this test could not be executed for 32 processes be-
cause the computer ran out of memory.

The REDCAP results are always better than the Origi-
nal Kernel ones, and the improvement becomes greater as
the number of processes increase in almost all the cases,
getting a reduction of up to 83%, and being the cache al-
most always active. The number of processes and the num-
ber of REDCAP segments could explain this fact. There
are always more REDCAP segments than processes, while
there are usually more processes than disk cache segments,
which are continually evicted.

Except for ReiserFS, the results obtained by both
REDCAP configurations are very similar, although the
128x128KB one achieves slightly better improvements.
One reason why the increase in the cache size does not
involve the same amount of improvement is because the
cache in the 64x128KB configuration is almost always ac-
tive and REDCAP is already taking maximum advantage of
the blocks prefetched. Another reason is that the number of
segments is greater than the number of processes.

If we compare the results obtained by REDCAP for
ReiserFS with those obtained for the other file systems, we
can see that REDCAP achieves a great performance for 1,
2, 4 and 8 processes, but its performance is relatively small
for 16 and 32 processes. The main reason for this behav-

Linux Kernel Read. Configuration: 64x128KB

0,00

20,00

40,00

60,00

80,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

Linux Kernel Read. Configuration: 128x128KB

0,00

20,00

40,00

60,00

80,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

IOR Read. Configuration: 64x128KB

-5,00

-2,50

0,00

2,50

5,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

a) b) c)
TAC. Configuration: 64x128KB

0,00

10,00

20,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

4 KB Strided Read. Configuration: 64x128KB

0,00

20,00

40,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

512 KB Strided Read. Configuration: 64x128KB

-6,00

-3,00

0,00

3,00

6,00

Ext3 Ext2 JFS ReiserFS XFS

File Systems

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

d) e) f)

Figure 1. Improvements achieved by the REDCAP Kernel as compared to the Original Kernel.

ior is the structure of ReiserFS, which produces apparent
random accesses. In a system without REDCAP, the ran-
dom requests do not benefit from the disk cache which is
not lager enough and causes the prefetched disk blocks to
be evicted before being used. However, in a REDCAP sys-
tem, for 1, 2, 4 and 8 processes our cache is big enough
and many disk blocks are read before the corresponding
segments are evicted. For 16 and 32 processes, the RED-
CAP cache is not large enough either, and many prefetched
segments are evicted before being reused. The algorithm is
also unable to decide the proper state of the cache, and it
turns the cache on and off several times. The differences
between the results achieved by the two REDCAP config-
urations confirm the segment eviction problem, and point
out that with the 64x128KB configuration the number of
segments is not large enough.

IOR Read Figure 1.c depicts, as a function of the file sys-
tems used, the application time improvement achieved by
REDCAP with respect to the Original Kernel, for theIOR
Readbenchmark and the 64x128KB REDCAP configura-
tion. The results obtained for the 128x128KB configuration
are almost identical.

With all the file systems, the behavior of REDCAP is
very similar to the Original Kernel one. Nevertheless, the
confidence intervals are pretty big. We can hence say that
statistically the REDCAP Kernel and the Original Kernel
have the same performance. This benchmark has a sequen-
tial access pattern, and the prefetching techniques used by

both the Original Kernel and the disk cache are optimized
for this kind of pattern. The contribution of our method is
rather small, so the activation–deactivation algorithm turns
the cache off, which is inactive almost all the time.

TAC The results for the application time achieved by
REDCAP, as compared to the Original Kernel results, for
theTAC test and for the 64x128KB configuration, are pre-
sented in Figure 1.d as a function of the file systems used.

The REDCAP kernel always perform better than the
Original Kernel with all the file systems (except JFS),
achieving improvements of up to 17%. The cache is almost
always active. The results obtained by the 128x128KB con-
figuration are quite similar and, therefore, a cache size of 8
MB is enough for this test.

With JFS, the behavior of REDCAP is quite similar to
that of the Original Kernel. The reason can be found in the
Allocation Groupsused by JFS to divide the disk, and in
the way the data blocks are allocated in these groups. In
our case, the allocation group size is 1 GB, which is also
the size of the files read bytac. Although all the files are
created in parallel, almost all the blocks of a file are stored
in the same allocation group as only one extent. This block
allocation benefits not only the REDCAP prefetching, but
also the disk cache prefetching (the operating system does
not detect the backward access pattern). If the cache was
always active, the average improvement would be 4.6%.
However, our algorithm is not able to detect this small ben-
efit, and the cache is off all the time. It is interesting to

note that for the other file systems, on creating the files in
parallel, the blocks are allocated in a more interleaved way.
Therefore, benefit is gained by the prefetching of REDCAP,
while the disk cache prefetching is not so beneficial.

4 KB Strided Read Figure 1.e shows the results for the
application time achieved by REDCAP with the 64x128KB
configuration as compared to the Original Kernel in the4
KB Strided Readtest as a function of the file systems used.

For this access pattern, REDCAP always performs bet-
ter than the Original Kernel, which does not detect this ac-
cess pattern. We get improvements of up to 49%, although
the result strongly depends on the file system used. The
128x128KB configuration obtains quite similar results.

Since we have enhanced our first implementation, these
results are much better than those obtained in our first anal-
ysis [2].

512 KB Strided Read The results obtained by REDCAP
in the 512 KB Strided Readbenchmark are presented, as
a function of the file systems and for the 64x128KB con-
figuration, in Figure 1.f. The results for the 128x128KB
configuration are almost identical.

REDCAP has a quantitative similar behavior in both
configurations and for all the file systems, but it does not
perform better than the Original Kernel. For 1 and 2 pro-
cesses, the problem is that the application time is rather
small, and although our cache is always inactive, the time
initially lost when it is still active cannot be recovered later.
For 4, 8, 16 and 32 processes the loss can be considered
negligible, and it is due to the time employed to simulate
the cache behavior when it is inactive. In all the cases, the
algorithm turns the cache off on the first chance and never
turns it on again. As in the above benchmark, the Origi-
nal Kernel does not detect this access pattern nor does it
implement any prefetching technique.

4. Conclusions and Future Work

In this paper we have presented several experimental re-
sults obtained by REDCAP under five different Linux file
systems (Ext2, Ext3, XFS, JFS and ReiserFS), different
workloads, and two cache sizes.

The experimental results have proved that REDCAP can
greatly reduce the I/O time of the disk read requests, for
many workloads and any file system, by converting thou-
sands of small requests into disk–optimal large sequential
requests. It also achieves similar results to those obtained
by a vanilla Linux kernel for workloads where an improve-
ment in the I/O time is hard to obtain.

The results have also shown that the improvements
achieved by REDCAP depend, to some extent, on the file
system used. The best results are achieved for those file

systems which divide the disk into several groups, such as
Ext2, Ext3, XFS and JFS, because the groups produce data
locality which is exploited by the prefetching mechanism
of REDCAP. For these file systems, even more than an 80%
reduction is achieved.

The block allocation policy of the file system also af-
fects the improvements achieved. This is the case with
JFS, which creates single–extent files even when the files
are created in parallel in the same directory. These single–
extent files are ideal for the disk controller read–ahead
and/or the Linux kernel block prefetching mechanisms in
some workloads, where the benefit provided by REDCAP
is unavoidably small.

We have also observed that ReiserFS, which does not
split the disk into groups, produces requests which are ap-
parently random for REDCAP. The large disk print caused
by these requests makes many cache segments be evicted
before being re-used, limiting the effectiveness of the RED-
CAP cache for a large number of processes. Despite these
problems, an improvement of more than 55% is achieved.

Finally, the results obtained by the two REDCAP con-
figurations are very similar. Since the number of processes
is never greater than the number of REDCAP segments in
our tests, these results suggest that the REDCAP cache size
should also be dynamic and dependent on the workload.

As future work, we plan to study the possible enhance-
ments of the activation–deactivation mechanism, and to al-
low REDCAP to reconfigure itself dynamically.

Acknowledgments

This work has been jointly supported by the Spanish
MEC and European Comission FEDER funds under grants
“Consolider Ingenio–2010 CSD2006–00046”, “TIN2006–
15516–C04–03” and “TIN2007–60625”.

References

[1] R. Card, T. Ts’o, and S. Tweedie. Design and Implementation
of the Second Extended Filesystem.In Proc. of the First
Dutch International Symposium on Linux, 1994.

[2] P. González-Férez, J. Piernas, and T. Cortés. The RAMEn-
hanced Disk Cache Project (REDCAP). InProceedings of
the 24th IEEE Conference on MSST, 2007.

[3] W. W. Hsu and A. J. Smith. The performance impact of I/O
optimizations and disk improvements. InIBM Journal of Re-
search and Development, volume 48, pages 255–289. 2004.

[4] JFS for Linux. http://jfs.sourceforge.net/, 2008.
[5] R. Karedla, J. S. Love, and B. G. Wherry. Caching strate-

gies to improve disk system performance. InComputer, vol-
ume 27, pages 38–46. IEEE Computer Society Press, 1994.

[6] Linux XFS. http://oss.sgi.com/projects/xfs/, 2008.
[7] ReiserFS. http://www.namesys.com, 2008.
[8] S. Tweedie. Journaling the Linux ext2fs Filesystem. InLin-

uxExpo’98. 1998.

