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Binary mixtures with a negative separation ratio are known to exhibit time-independent spatially localized
convection when heated from below. Numerical continuation of such states in a closed two-dimensional
container with experimental boundary conditions and parameter values reveals the presence of a pinning region
in Rayleigh number with multiple stable localized states but no bistability between the conduction state and an
independent container-filling state. An explanation for this unusual behavior is offered.
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Many physical systems exhibit spatially localized struc-
tures or dissipative solitons. Examples arise in nonlinear op-
tics �1�, buckling of slender structures �2�, and reaction-
diffusion systems �3�. Spatially localized oscillations or
oscillons are time-dependent structures of this type �4�. Simi-
lar structures are found in fluid flows, as indicated by the
recent discovery of convectons in binary fluid convection
�5–7� and related systems �8–10�. A binary mixture with
negative separation ratio heated from below develops a sta-
bilizing concentration gradient via the �anomalous� Soret ef-
fect resulting in the presence of subcritical steady convection
�Fig. 1�. This subcritical regime favors the presence of con-
vectons. These come in two types, even and odd under re-
flection in a vertical plane through their center, and are lo-
cated in the so-called pinning region �11�. In this interval of
Rayleigh numbers multiple stable convectons, of different
lengths and either parity, are present. In horizontally un-
bounded domains these localized structures appear simulta-
neously with the �subcritical� primary branch of spatially pe-
riodic steady convection. The resulting convectons are
spatially extended at small amplitude but become strongly
localized when followed numerically to larger amplitude by
decreasing the Rayleigh number. Once their amplitude and
length is comparable to the amplitude and wavelength of
steady spatially periodic convection both convecton branches
enter the pinning region and begin to snake back and forth
across it �Fig. 1� as the convectons grow in length by nucle-
ating additional convection rolls at both ends. This process
continues until the length of the convecton becomes compa-
rable to the available spatial domain when the convecton
branches turn over toward the saddle node of the periodic
branch and leave the pinning region �8,10,12�.

The conventional explanation of this behavior uses the
presence of bistability between the conduction and spatially
periodic convecting states together with spatial reversibility
and relies on the similarity between the observed behavior
�Fig. 1� and the corresponding behavior of the Swift-
Hohenberg equation �SHE� on the real line �13,14�. The SHE
is variational and so permits a comparison between the en-
ergy of the trivial �conduction� state and the energy of the
spatially periodic state. When these energies are equal a front
from the former to the latter �and vice versa� will be station-
ary. Thus at this parameter value, R=RM, say, multiple local-

ized structures embedded in a background filled with the
trivial state are possible. When R�RM the energy of the
trivial state is lower than that of the structured state but the
anticipated front motion is thwarted by the pinning of the
fronts to the structure between them �11�. Instead the local-
ized state is compressed but remains stationary. In contrast,
when R�RM the state is dilated but remains stationary until
the energy difference between the two states is made so large
that the fronts unpin, allowing the structured state to invade
the whole domain �13�. Qualitatively similar behavior char-
acterizes nonvariational systems as well �1,3,6,8�. Indeed,
stable convectons are found even when the conduction state
is unstable to growing oscillations provided that this instabil-
ity is convective and not absolute �6�.

In this Rapid Communication we describe the changes in
snaking behavior due to the presence of lateral boundaries.
We show that in a closed container snaking can occur even in
the absence of bistability between a trivial and an indepen-
dent structured state and use our understanding of this be-
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FIG. 1. The branches of stationary spatially periodic �P7� and
stationary spatially localized states of even �Leven, dashed line� and
odd �Lodd, solid line� parity in a �=14 periodic domain showing the
normalized convective Nusselt number Nu−1��−1�−�/2

�/2 �z��x ,z
=1�dx as a function of the Rayleigh number R. The pinning region
of the odd convectons is narrower than that of the even convectons.
Both convecton branches terminate together on P7. Only time-
independent states are shown.
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havior to explain why in spatially periodic domains the pin-
ning regions for even and odd convectons do not coincide, in
contrast to the corresponding situation in the SHE �14�.

Binary fluid convection is described by the following
equations �6�:

ut + �u · ��u = − �P + �R��1 + S�� − S��ẑ + ��2u ,

�t + �u · ��� = w + �2� ,

�t + �u · ��� = ��2� + �2� ,

together with the incompressibility condition � ·u=0. Here
u��u ,w� is the velocity field in �x ,z� coordinates, P is the
pressure, and � denotes the departure of the temperature
from its conduction profile, in units of the imposed tempera-
ture difference 	T. The variable � is defined such that its
gradient represents the dimensionless mass flux. Thus �
��−
, where C�1−z+
 is the concentration of the
heavier component in units of the concentration difference
that develops across the layer via the Soret effect in response
to the imposed 	T. The system is specified by four dimen-
sionless parameters: the Rayleigh number R that provides a
dimensionless measure of 	T, the separation ratio S that
measures the concentration contribution to the buoyancy
force due to the Soret effect, and the Prandtl and Lewis num-
bers �, �, in addition to the aspect ratio �. The physically
appropriate boundary conditions are u=�=�z=0 on z=0,1,
with either periodic boundary conditions �PBCs� in the hori-

zontal with period �, or the closed container boundary con-
ditions �CCBCs� u=�=�x=0 on x= �� /2. Throughout we
use the �experimental� parameter values �=7, �=0.01, and
S=−0.1.

Figure 1 shows the result of numerical branch following
in a periodic domain of length �=14. The branches of even
and odd convectons �labeled Leven and Lodd, respectively� are
shown in dashed and solid lines, respectively. Both branches
terminate together on the branch P7 of stationary periodic
states with n=7 pairs of rolls, just below the saddle node on
the latter, but the pinning region for the odd convectons is
noticeably narrower than the corresponding region for even
convectons. In contrast, for �=13 the odd branch continues
to terminate on P7 �Fig. 2�a��, while the even branch termi-
nates on P6 �Fig. 2�b��. This possibility, predicted recently in
the context of the SHE �12,15�, has also been seen in natural
doubly diffusive convection �12�. Since the termination
points of Leven and Lodd are always points of weak spatial
resonance �12� a second solution branch necessarily termi-
nates at the same locations. These branches correspond to
opposite-parity mixed modes �Fig. 3�a�� and extend mono-
tonically to large amplitudes without undergoing snaking
�12�. Despite terminating on a different branch the pinning
region for odd convectons remains substantially narrower
than that for even convectons.

Figure 4 shows the corresponding results with CCBC and
�=14. The pinning regions of even and odd convectons are
now essentially identical. Moreover, since periodic states no
longer exist both convecton branches emerge from the pin-
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FIG. 2. The branches of spatially periodic �P7, black line� and spatially localized states of even �Leven� and odd �Lodd� parity in a �
=13 periodic domain showing the convective Nusselt number Nu−1 as a function of the Rayleigh number R. �a� The odd convectons �Lodd�
terminate on P7 together with a monotonic branch of even mixed modes �Meven�. �b� The even convectons �Leven� terminate on P6 together
with a monotonic branch of odd mixed modes �Modd�.
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FIG. 3. �Color online� �a� The mixed mode Meven in a �=14 domain with PBC, and �b� the corresponding state with CCBC, both at
R=1982. The latter takes the place of the spatially periodic state Pn. In each figure the top panel shows contours of constant temperature
perturbation �, while the bottom panel shows contours of constant concentration C.
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ning region toward large R and gradually turn into �stable�
states resembling the mixed modes present with PBC �Fig.
3�b�� albeit with an extra pair of weaker rolls that are respon-
sible for the difference in the homogenized concentration
within these states. Thus in this case no separate branch of
domain-filling states is present and the bistability between
the conduction state and a structured state in Fig. 1 is absent.
We conjecture that this type of behavior is always present in
systems with non-Neumann boundary conditions.

In Fig. 5 we superpose the branches of even convectons
computed with periodic �Leven

PBC, dashed line� and closed con-
tainer boundary conditions �Leven

CC , solid line�. Within the pin-
ning region the two branches coincide precisely and only
begin to differ once they emerge from this region. In con-
trast, the odd convecton branches differ substantially
throughout.

To understand the reason for this behavior we show in
Fig. 6 the profiles of the odd convectons in the two cases.
Figure 6�a� shows that an odd-parity convecton with PBC is
distinctly asymmetrical, entraining the lighter component
from the top on the left and heavier component from the
bottom on the right. Such a convecton therefore acts as a
pump, pumping concentration from right to left, a fact that is
responsible for the slanted isoconcentration contours in the
void region outside �6�. In contrast, with CCBC �Fig. 6�b��
the concentration within the convecton is homogeneous, but
the concentration contours on the right are substantially de-
pressed in comparison with those on the left. Evidently the
state shown in Fig. 6�b� is embedded in an inhomogeneous
background state defined by the requirement that in steady
state no net concentration �and heat� is transported horizon-
tally.
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FIG. 5. Superposition of even convecton branches computed in
a �=14 domain with PBC �Leven

PBC� and CCBC �Leven
CC �. The P7 branch

is also shown. Within the pinning region the two branches are
identical.
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FIG. 4. The corresponding results with CCBC and �=14. The
convecton branches emerge from the pinning region toward the
right and there is no branch analogous to P7: at large amplitude the
convecton branches resemble the mixed mode states shown in Fig.
2. The width of the pinning region for the even and odd convectons
is now the same.

θ

R=1954

C

1900 1950 2000 2050
0

0.05

0.1

Rayleigh number

N
u−

1

(b)

θ

R=1919

C

1800 1850 1900 1950 2000 2050
0

0.02

0.04

0.06

0.08

0.1

Rayleigh number

N
u−

1

(a)

FIG. 6. �Color online� Odd convecton profiles in a �=14 domain with �a� PBC �R=1919 and Nu−1=0.070�, and �b� CCBC �R=1954
and Nu−1=0.086�. In each figure the top panel shows contours of constant temperature perturbation �, the middle panel shows contours of
constant concentration C, while the bottom panel shows the location of the state in the pinning region �solid dots�. The state in �a� is
markedly asymmetric, in contrast to the state in �b�.
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Both solutions are invariant under the operation �x ,z�
→ �2x0−x ,1−z�, �u ,� ,
�→−�u ,� ,
�, i.e., a reflection in a
vertical plane through a suitably chosen origin x=x0 fol-
lowed by a reflection in the layer midplane z=1 /2. Thus in
steady state all �vertically averaged� horizontal fluxes neces-
sarily vanish. As shown in Fig. 7�a� the background concen-
tration gradient Cx�x ,z=1 /2� decreases with the spatial pe-
riod � as �	C� / ��−��, where � is the convecton length and
	C denotes the midplane concentration difference between
the left and right fronts bounding the convecton. Thus the
mean concentration gradient within the convecton �Fig. 6�a��
is given by �	C� /�. Figure 7�b� reveals that for moderate
values of � the quantity �	C� increases with � although it
must saturate for larger �.

In contrast, in a closed container, constant, albeit differ-
ent, concentrations are found on either side of the convecton,
which is now located in the center of the domain. Solutions
of this type are found on a periodic domain of period 2�

whenever two �equidistant� odd-parity states face each other,
forming an even-parity state on the larger domain. In con-
trast, solutions of the first type can also be found in domains
of period 2� but only if the convectons face in the same
direction, forming an odd-parity two-pulse state. Thus the
closed container odd convectons may be thought of as a part
of an even-parity two-pulse state on a larger domain, ex-
plaining why states of this type, sufficiently far apart, have
the same pinning region as individual even-parity convectons
on a periodic domain with period �. On the other hand the
odd-parity states in such a domain cannot be continued into a
solution of the closed container problem and so remain dis-
tinct with distinct finite � behavior.

The dramatic change from the bifurcation diagram in Fig.
1 to that in Fig. 4 is a consequence of changing the boundary
conditions from PBC to CCBC and is reproduced by the
SHE with non-Neumann boundary conditions �16�. In both
systems the behavior observed in Fig. 4 arises as a conse-
quence of the destruction of the spatially periodic state by
the boundary conditions appropriate for closed containers. In
both cases the remaining mixed modes take over the role of
the large amplitude periodic state, and the snaking branches
gradually turn into the mixed modes with increasing ampli-
tude. This behavior, referred to here as snaking without bi-
stability, is robust with respect to changes in �.
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FIG. 7. �a� Background concentration gradient and �b� associ-
ated concentration jump 	C at midheight across the convectons,
both as functions of the domain period �.

MERCADER et al. PHYSICAL REVIEW E 80, 025201�R� �2009�

RAPID COMMUNICATIONS

025201-4


