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Abstract

A sequence of “inner equations” attached to certain perturbations of the
McMillan map was considered in [MSS09], their solutions were used in that
article to measure an exponentially small separatrix splitting. We prove here
all the results relative to these equations which are necessary to complete the
proof of the main result of [MSS09]. The present work relies on ideas from resur-
gence theory: we describe the formal solutions, study the analyticity of their
Borel transforms and use Écalle’s alien derivations to measure the discrepancy
between different Borel-Laplace sums.

0 Introduction

0.1 Motivation

This article is the continuation of [MSS09], which was devoted to the study of a
family of area-preserving planar maps Fh,ε obtained as perturbations of the so-

called McMillan map Fh,0 : (x, y) 7→
(

y,−x+ 2(cosh h)y
1+y2

)

. The map Fh,0 is known to
be integrable, with a hyperbolic fixed point at the origin for h > 0 and a separatrix,
i.e. a homoclinic loop. The goal was to investigate the splitting of this separatrix
when the real parameter ε is nonzero, a phenomenon which is exponentially small
with respect to h.

The main theorem of [MSS09] depended on intermediary results, which were
stated in Section 2.7 of that article, and which will be proved in the present article
as a consequence of the study of the “full inner equation” associated with Fh,ε. This
is the equation

φ(z + 1) + φ(z − 1) = F(φ(z), h, ε), (FIE)

where z 7→ φ(z) is the unknown scalar function and

F(y, h, ε) =
2(cosh h)y

1 + y2
+ εV ′(y, h, ε), (1)

with a function V ′ holomorphic in B = { (y, h, ε) ∈ C3 | |y| < y0, |h| < h0, |ε| < ε0 }
and satisfying

(A) V ′ is odd in y and even in h,

(B) there exists C > 0 such that |V ′(y, 0, ε)| ≤ C|y|5 for |y| < y0, |ε| < ε0.



The relationship between equation (FIE) and the original problem is as follows:
up to a simple rescaling, the perturbed map Fh,ε is (x, y) 7→

(

y,−x + F(y, h, ε)
)

,
its stable and unstable separatrices can be parametrized as t 7→ P s(t) =

(

ξs(t −
h/2), ξs(t+ h/2)

)

and t 7→ P u(t) =
(

ξu(t− h/2), ξu(t+ h/2)
)

, with functions

ξs(t) = ξs(t, h, ε) −−−−→
t→+∞

0, ξu(t) = ξu(t, h, ε) −−−−→
t→−∞

0

(so that the parametrized curves are positively or negatively asymptotic to the hy-
perbolic fixed point) which satisfy the “outer” difference equation

ξ(t+ h) + ξ(t− h) = F(ξ(t), h, ε)

(so that Fh,ε
(

P s,u(t)
)

= P s,u(t + h)). The full inner equation was obtained simply
by setting

ξ(t) = φ(z), t =
iπ

2
+ hz. (2)

The reader is referred to the beginning of [MSS09] for more information on the
geometric problem and a motivation of formula (2). We shall now focus on equa-
tion (FIE).

0.2 The integrable case ε = 0

For ε = 0, we know explicitly the solution of (FIE) which is related to the separatrix:

Φ0(z, h) = −i
sinhh

sinh(hz)
= −iz−1 + i

h2

6
(z − z−1) − i

h4

360
(7z3 − 10z + 3z−1) + . . . (3)

This is related to the integrability of the McMillan map Fh,0: the function

H(x, y;h) = x2y2 + x2 + y2 − 2(cosh h)xy (4)

is a first integral of Fh,0 (see Lemma 2.10 below) and z 7→
(

Φ0(z− 1
2 , h),Φ

0(z+ 1
2 , h)

)

is a parametrization of part of the complexified homoclinic loop {H(x, y;h) = 0 }.
(Other solutions of (FIE) for ε = 0, corresponding to other levels of H, will be
discussed in Section 2.3 below.)

For nonzero ε, we shall construct formal solutions of (FIE) which are deforma-
tions of Φ0 and from which we shall deduce analytic solutions.

0.3 The h2-expansion

We can expand

F(y, h, ε) =
∑

n≥0

h2nFn(y, ε). (5)

Looking for a solution of (FIE) in the form

φ =
∑

n≥0

h2nφn(z, ε)

and expanding in powers of h2, we get the “inner equation”

φ0(z + 1) + φ0(z − 1) = F(φ0(z), 0, ε) =
2φ0(z)

1 + φ0(z)2
+ εV ′(φ0(z), 0, ε) (IE)0
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(we sometimes omit the dependence in ε for notational convenience) and a system
of “secondary inner equations”

φn(z + 1) + φn(z − 1) = Fn(z, ε), n ≥ 1, (IE)n

where the right-hand sides are determined inductively:

Fn = ∂yF(φ0, 0, ε)φn + fn, (6)

fn = Fn(φ0, ε) +
∑ 1

r!
∂ryFn0(φ0, ε)φn1 . . . φnr , (7)

where the sum in (7) is taken over all n0 ≥ 0, r ≥ 1 such that n0 + r ≥ 2 and
n1, . . . , nr ≥ 1 such that n0 + n1 + · · · + nr = n. In fact, fn is the coefficient
of h2n in F(φ0 + h2φ1 + · · ·+ h2(n−1)φn−1, h, ε) (while Fn is the coefficient of h2n in
F(φ0 + h2φ1 + · · · + h2nφn, h, ε)).

0.4 Aim and structure of the article

We shall determine formal solutions Φ̃n(z, ε; b) (formal with respect to z) of equa-
tions (IE)n, n ≥ 0, depending on a free parameter b ∈ CN

∗

. These formal series
are generically divergent (contrarily to what happens when ε = 0), but their Borel
transforms with respect to z are analytic in a certain domain. Borel-Laplace sum-
mation then leads to solutions Φs

n and Φu
n holomorphic in two different domains

of the z-plane, the difference between them being related to complex singularities
of the Borel transforms. The analysis of the singularities in the Borel plane will
be performed with the help of the alien derivations, which are tools introduced by
J. Écalle in his resurgence theory, and will give access to the precise asymptotic
behavior of Φs

n − Φu
n.

In order not to interrupt the flow of the arguments with long and technical
explanations, we gather in Section 1 the results on the series Φ̃n(z, ε; b) and show
how they imply the statements which were mentioned in Section 2.7 of [MSS09].
These results are then proved in the subsequent sections of the present article:

– Section 2 is devoted to the formal part of the study (existence and definition of
the Φ̃n’s);

– Section 3 deals with the analytic study of the formal Borel transforms Φ̂n(ζ, ε; b);

– Section 4 is devoted to the computation of the singularities of the Φ̂n’s by means
of Écalle’s alien derivations;

– the appendix gathers a few technical proofs and reminders on second-order linear
difference equations.
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1 Main results

1.1 Formal solutions

We are interested in formal solutions of the above equations, more precisely solutions
in z−1C[[z−1]] for (IE)0 (power series involving only negative powers of z), solutions
in C((z−1)) for (IE)n, n ≥ 1 (formal Laurent series, with only finitely many positive
powers of z). Here it is understood that the coefficients of these formal series may
depend on ε.

Observe that the only nonlinear equation is the first one. Since it involves sub-
stitution of the unknown series into F( . , h, ε), it requires that the unknown series
belong to the maximal ideal z−1C[[z−1]] of the ring C[[z−1]]. The field of frac-
tions of this ring is C((z−1)) = C[[z−1]][z] and the operators ϕ(z) 7→ ϕ(z + 1) or
ϕ(z) 7→ ϕ(z − 1) are well-defined1 in C((z−1)).

Let us use the notation [φ]n for the coefficient of h2n in a formal series φ ∈
C((z−1))[[h2]]; thus [φ]n ∈ C((z−1)) and φ is invertible in C((z−1))[[h2]] iff [φ]0 6= 0.
We shall determine formal solutions φ(z, h) of (FIE) in the ring C((z−1))[[h2]] with
[φ]0 ∈ z−1C[[z−1]].

Theorem 1.1. For each value of ε, equation (IE)0 has a unique odd formal solu-
tion Φ̃0(z, ε) of the form −iz−1 +O(z−3). The solutions φ ∈ C((z−1))[[h2]] of (FIE)
which are odd in z and such that [φ]0 = Φ̃0 are in one-to-one correspondence with
the sequences b ∈ CN∗

; for each such b, the corresponding solution can be written

Φ̃(z, h, ε; b) = Φ̃0(z, ε) +
∑

n≥1

h2nΦ̃n(z, ε; b1, . . . , bn), (8)

where Φ̃n(z, ε; b1, . . . , bn) ∈ z4n−1C[[z−1]]. Moreover,

b1 = 0 ⇔ ∀n ≥ 1, Φ̃n(z, ε; b1, . . . , bn) ∈ z
2n−1C[[z−1]] (9)

and, for each n ≥ 0, the coefficients of the formal series Φ̃n depend analytically on ε.
The general nonzero solution of (FIE) in C((z−1))[[h2]] is ±Φ̃(z + a(h), h, ε; b),

with arbitrary a(h) ∈ C[[h2]] and b ∈ CN∗
.

The proof is given in Section 2. Observe that, for any φ(z, h), a(z, h) ∈ C((z−1))[[h2]]
with [a]0 ∈ C[[z−1]] (possibly depending on ε), the substitution φ

(

z + a(z, h), h
)

makes sense; in case a = a(h) does not depend on z, it is obvious that φ
(

z+a(h), h
)

is a solution of (FIE) whenever φ(z, h) is a solution.
When ε = 0, a certain choice b∗(0) of b leads to Φ̃(z, h, 0; b∗(0)) = Φ0(z, h) as

defined by (3). In particular
Φ̃0(z, 0) = −iz−1 (10)

1 More generally, if c(z) ∈ C[[z−1]], the substitution operator ϕ(z) 7→ ϕ
`

z+c(z)
´

is a well-defined
automorphism of the field C((z−1)); it can be written as a series

ϕ
`

z + c(z)
´

=
X

p≥0

1

p!
∂

p
zϕ(z)

`

c(z)
´p
,

which is convergent for the Krull topology, i.e. the metrizable topology of C((z−1)) induced by
the standard valuation (indeed ϕ ∈ z−vC[[z−1]] with v ∈ Z implies (∂p

zϕ)cp ∈ z−v−pC[[z−1]]; the
coefficient of a monomial z−m in the right-hand side is thus given by a finite sum of terms).
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and Φ̃1(z, 0; b
∗
1(0)) = i

6 (z− z−1), Φ̃2(z, 0; b
∗
1(0), b

∗
2(0)) = − i

360(7z3 −10z+3z−1), etc.

It turns out that all the series Φ̃n(z, 0; b1, . . . , bn) are convergent; in fact, they are
polynomials up to the factor z−1:

Proposition 1.2. When ε = 0, for any b ∈ CN
∗

,

∀n ≥ 1, Φ̃n(z, 0; b1, . . . , bn) ∈ z−1C[z].

The proof is given at the end of Section 2.
We shall see that on the contrary, for generic V ′ and ε, the series Φ̃n(z, ε; b1, . . . , bn)

are divergent, and this divergence will be analyzed through resurgence theory. (As
for their dependence on b1, . . . , bn, it is polynomial, with degree 1 in bn, as can be
seen from formulas (37)–(38) of Section 2.2).

As a consequence of Theorem 1.1, we can identify the formal series which
were denoted φ̃n(z, ε) in Section 2.6 of [MSS09] with the formal series
Φ̃n

(

z, ε; b∗1(ε), . . . , b
∗
n(ε)

)

, for specific values of the b∗n’s which we need not
compute. We only remark that ε 7→ b∗n(ε) is analytic and, in view of (9),
b∗1(ε) = 0 (see [MSS09], formulas (89) and (92) and Proposition 2.12).

1.2 Borel-Laplace summation

We define the Borel transform B : C((z−1)) → C[[ζ]] as follows: for ϕ̃(z) =
∑

p≥−v

apz
−p

with v ∈ N, we set

Bϕ̃(ζ) = ϕ̂(ζ) =
∑

p≥1

ap
ζp−1

(p− 1)!
.

This is thus a linear operator which cancels out the polynomial part of ϕ̃(z).
Observe that ϕ̂(ζ) ∈ C{ζ} simply means that ϕ̃(z) is Gevrey-1, i.e. there exist

C,K > 0 such that |ap| ≤ CKpp!. On the other hand, if ϕ̃(z) is convergent for |z|
large enough, then ϕ̂(ζ) must define an entire function of exponential type.

In the case of the formal solutions of (IE)n, n ≥ 0, we shall see that the Borel
transforms converge near the origin, but the holomorphic functions of ζ thus defined
are generically not entire: their analytic continuations are singular at ±2πi (thus
the formal solutions themselves are not convergent). We begin by considering the
cut plane R(0) = C \ ±2πi [1,+∞), which will be the common holomorphic star
of the BΦ̃n’s. (Later on, we shall see that these functions admit a multivalued
analytic continuation in a much larger domain; in fact, only the points of 2πi Z can
be singular.)

Definition 1.3. For any ρ ∈ (0, 2π), we set

R(0)
ρ =

{

ζ ∈ C | dist
(

[0, ζ], 2πi
)

≥ ρ, dist
(

[0, ζ],−2πi
)

≥ ρ
}

⊂ R(0)

(see Figure 1). We define R̂ES(0) to be the set of all ϕ̂ ∈ C{ζ} such that

(i) ϕ̂(ζ) extends analytically to R(0),

(ii) for each ρ ∈ (0, 2π), there exist τ, C > 0 such that |ϕ̂(ζ)| ≤ C eτ |ζ| for ζ ∈ R
(0)
ρ .
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Figure 1: Right: the domain R
(0)
ρ is a part of the cut plane R(0) in the ζ-plane.

Left: the domain D+
ρ,τ is the union of the half-planes Πθ,τ in the z-plane.

We also set R̃ES(0) = B−1 R̂ES(0).

Theorem 1.4. Let b ∈ CN
∗

and n ∈ N. Then the Borel transform Φ̂n(ζ, ε; b1, . . . , bn)
of the solution of equation (IE)n described in Theorem 1.1 is convergent for |ζ| < 2π
and defines a holomorphic function of two variables in { (ζ, ε) ∈ C2 | ζ ∈ R(0), |ε| <
ε0 } which depends polynomially on b1, . . . , bn. Moreover, for any ε′0 ∈ (0, ε0) and ρ ∈
(0, 2π), there exist positive constants Cn, τn which depend continuously on b1, . . . , bn,
such that

|Φ̂n(ζ, ε; b1, . . . , bn)| ≤ Cn eτn|ζ|, ζ ∈ R(0)
ρ , |ε| ≤ ε′0.

In particular Φ̃n(z, ε; b1, . . . , bn) ∈ R̃ES(0) for each ε.

The proof is given in Section 3.

We are thus in a position to apply the Borel-Laplace summation process, which
can be described as follows. Suppose that ϕ̃(z) =

∑

p≥−v apz
−p belongs to R̃ES(0)

and let ρ ∈ (0, 2π), δ = arcsin ρ
2π and τ = τ(ρ) as in Definition 1.3 (ii). The formula

(Sθϕ̃)(z) =
v
∑

p=0

a−pz
p +

∫ eiθ∞

0
e−zζ ϕ̂(ζ) dζ (11)

defines a function Sθϕ̃ which is holomorphic in the half-plane Πθ,τ = { z ∈ C |
ℜe(z eiθ) > τ }, provided the angle θ is such that the half-line of integration eiθR+

be contained in R
(0)
ρ . Such angles correspond to two intervals:

θ ∈ I+
ρ =

[

−π
2 + δ, π2 − δ

]

or θ ∈ I−ρ =
[

π
2 + δ, 3π

2 − δ
]

.

The Cauchy theorem shows that the functions Sθϕ̃ corresponding to angles θ from
the same interval mutually extend, so that we get two holomorphic functions:

S+ϕ̃ holomorphic in D+
ρ,τ =

⋃

θ∈I+ρ

Πθ,τ , S−ϕ̃ holomorphic in D−
ρ,τ =

⋃

θ∈I−ρ

Πθ,τ ,
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defined as

(S±ϕ̃)(z) = (Sθϕ̃)(z) for any θ ∈ I±ρ such that z ∈ Πθ,τ . (12)

Notice that the domains D+
ρ,τ and D−

ρ,τ can be considered as sectorial neighborhoods
of infinity of opening 2π − 2δ centered respectively on R+ and R− (see Figure 1).

The classical properties of the summation operators Sθ imply that ϕ̃ is the
asymptotic expansion of S±ϕ̃ in the Gevrey-1 sense uniformly in D±

ρ,τ , a property
which we denote

S±ϕ̃(z) ∼1 ϕ̃(z), z ∈ D±
ρ,τ ,

and which means that there exist C,K > 0 such that, for each p ∈ N∗,

|S±ϕ̃(z) −

p−1
∑

p′=−v

ap′z
−p′ | ≤ CKpp!|z|−p, z ∈ D±

ρ,τ .

The intersection of D+
ρ,τ and D−

ρ,τ has two connected components, in which S+ϕ̃
and S−ϕ̃ generically do not coincide; in fact, S+ϕ̃ and S−ϕ̃ mutually extend if
and only if the original series ϕ̃ has positive radius of convergence (then the union
D+
ρ,τ∪D

−
ρ,τ contains a full neighborhood of infinity, {|z| > R}, in which ϕ̃(z) converges

to S±ϕ̃(z)).
By letting ρ vary in (0, 2π), we see that S+ϕ̃ and S−ϕ̃ admit an analytic con-

tinuation to Ds =
⋃

D+
ρ,τ(ρ)

and Du =
⋃

D−
ρ,τ(ρ)

.

Moreover, R̃ES(0) is a differential subalgebra of C((z−1)) (it is stable by multi-
plication and differentiation), the operators S± are differential algebra morphisms
(they map the product of formal series on the product of analytic functions and
they commute with ∂z) and they commute with the shift operator ϕ̃(z) 7→ ϕ̃(z+ 1).
Consequently, when S+ and S− can be applied to a formal solution of a (possi-
bly non-linear) difference equation, it yields an analytic solution of this equation.
The reader is referred e.g. to [CNP93], [Eca81], [Mal95] or [Sau05] for these proper-
ties (for the stability under multiplication and differentiation, see also Section 3.4,
Lemma 3.12).

Corollary 1.5. Let b ∈ CN∗
. Then there exist two decreasing sequences of do-

mains Ds
n and Du

n, each of which contains sectorial neighborhoods of infinity with
opening arbitrarily close to 2π centered respectively on R+ and R−, such that the
functions

Φs
n(z, ε; b1, . . . , bn) := S+Φ̃n, Φu

n(z, ε; b1, . . . , bn) := S−Φ̃n (13)

are holomorphic for z ∈ Ds
n, resp. z ∈ Du

n, and |ε| < ε0, and solve equations (IE)n,
n ∈ N. Moreover, for each ρ ∈ (0, 2π), there exists τn > 0 such that

Φs,u
n (z, ε; b1, . . . , bn) ∼1 Φ̃n(z, ε; b1, . . . , bn), z ∈ Ds

ρ,τn or Du
ρ,τn ,

and Φs
n and Φu

n coincide for ε = 0.

Proof. Letting ρ vary in (0, 2π), we define Ds,u
n as

Ds
n =

⋃

D+
ρ,τn(ρ), Du

n =
⋃

D−
ρ,τn(ρ), (14)
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with τn given in function of ρ by Theorem 1.4 (there is no loss of generality in
assuming that the sequence (τn) is increasing).

There is a characterization of the solutions Φs
n and Φu

n by the beginning of their
asymptotic expansion, without any extra regularity assumption. If, for ϕ̃(z) =
∑

p≥−v apz
−p, we introduce the notation

[ϕ̃]≤2 =

2
∑

p=−v

apz
−p

(for instance
[

Φ̃0(z, ε)
]

≤2
= −iz−1 by Theorem 1.1), we indeed have

Proposition 1.6. Let b1, . . . , bn0 ∈ C, σ ∈ (2, 3], z0 ∈ Du
n0

and ε ∈ C such
that |ε| < |ε0|. Then the sequence of functions (φn)0≤n≤n0 defined by φn(z) =
Φu
n(z, ε; b1, . . . , bn) is the only sequence of solutions of (IE)n, 0 ≤ n ≤ n0, such that

each φn is defined on the half-line z0 + R− and satisfies

φn(z) =
[

Φ̃n(z, ε; b1, . . . , bn)
]

≤2
+O

(

|z|−σ
)

.

A similar statement holds for the functions Φs
n(z, ε; b1, . . . , bn), with z0+R− replaced

by z0 + R+.

The proof is given in Appendix A.3.

The above Corollary 1.5 and Proposition 1.6 yield Theorem 2.14 of [MSS09].
Indeed, the domain which is denoted Du

in(Rn) there is clearly contained
in Du

n.

1.3 The alien derivatives of the formal solution

Definition 1.7. Let ϕ̃ ∈ R̃ES(0). We say that ϕ̂ = Bϕ̃ has a simply ramified
singularity at ω = ±2πi if there exist reg(ζ) ∈ C{ζ} and ψ̃(z) =

∑

p≥−v bpz
−p ∈

C((z−1)) (with v ∈ N), such that ψ̂ = Bψ̃ ∈ C{ζ} and

ϕ̂(ζ) =

v
∑

p=0

b−p
(−1)pp!

2πi(ζ − ω)p+1
+ ψ̂(ζ − ω)

log(ζ − ω)

2πi
+ reg(ζ − ω) (15)

for ζ ∈ R(0) with |ζ − ω| small enough. In this situation, we use the notation

∆ωϕ̃ = ψ̃. (16)

Observe that, in the above situation, the Gevrey-1 formal series ψ̃ is indeed
determined by ϕ̃ (by Bϕ̃ in fact): the function ϕ̂ extends holomorphically to the
universal cover of a punctured disc centered at ω and ψ̂(ξ) is the variation (or
monodromy) of ϕ̂ at ω + ξ around ω, i.e. the difference between two consecutive
branches ψ̂(ξ) = ϕ̂(ω + ξ) − ϕ̂(ω + ξ e−2πi), while the polynomial part of ψ̃(z) is

determined by the polar part of the Laurent expansion at the origin of
∨

P (ξ) =
ϕ̂(ω + ξ) − ψ̂(ξ) log ξ

2πi (which is meromorphic in a small disc centered at the origin);
but the regular function reg(ξ) depends on the branch of the logarithm which is
chosen in (15).
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We thus have two linear operators ∆2πi and ∆−2πi defined on the subspace

of R̃ES(0) consisting of the formal series whose Borel transforms have simply ramified
singularities at ±2πi, with values in the space of Gevrey-1 formal series C((z−1))Gev.
These operators are particular instances of Écalle’s alien derivations. They are in-
deed derivations: it can be proved that ∆ω (ϕ̃1ϕ̃2) = (∆ωϕ̃1) ϕ̃2 + ϕ̃1 (∆ωϕ̃2) (see
e.g. [Eca81], [CNP93] or [Sau05]).

It will turn out that the Φ̂n’s have simply ramified singularities at ±2πi. The-
orem 1.10 will describe these singularities through the action of the alien deriva-
tions ∆±2πi on Φ̃n in Formula (20); this formula will involve auxiliary formal series
Ψ̃1,n, Ψ̃2,n which we now introduce.

Let b ∈ CN∗
. Associated with the formal solution Φ̃(z, h, ε; b) ∈ C((z−1))[[h2]]

of (FIE), there is a variational equation, which is the linear equation

Ψ(z + 1) + Ψ(z − 1) = ∂yF
(

Φ̃(z, h, ε; b), h, ε
)

Ψ(z), (FL)b

for an unknown Ψ =
∑

n≥0 h
2nΨn(z) ∈ C((z−1))[[h2]]. Similarly, one can con-

sider the variational equation associated with the solution Φu(z, h, ε; b) = Φu
0(z, ε)+

∑

n≥1 h
2nΦu

n(z, ε; b1, . . . , bn) (formal in h, analytic in z):

Ψ(z + 1) + Ψ(z − 1) = ∂yF
(

Φu(z, h, ε; b), h, ε
)

Ψ(z), (FL)ub

for an unknown Ψ =
∑

n≥0 h
2nΨn(z) with coefficients analytic in z.

For such linear difference equations, we call normalized fundamental system of
solutions a pair of solutions (Ψ1,Ψ2) such that

Ψ1(z)Ψ2(z + 1) − Ψ1(z + 1)Ψ2(z) ≡ 1

(see Section 2.1 and Appendix A.2 for reminders about the theory of linear difference
equations).

Proposition 1.8. For each b ∈ CN
∗

, there exists a normalized fundamental system
of solutions (Ψ̃1, Ψ̃2) for (FL)b, of the form

Ψ̃j(z, h, ε; b) = Ψ̃j,0(z, ε) +
∑

n≥1

h2nΨ̃j,n(z, ε; b1, . . . , bn), j = 1, 2, (17)

Ψ̃1 = ∂zΦ̃ even in z, Ψ̃1,0(z, ε) = iz−2 +O(z−4),

Ψ̃2 odd in z, Ψ̃2,0(z, ε) = −
i

5
z3 +O(z),

with all Ψ̃j,n ∈ R̃ES(0). Moreover, Ψ̃1,n ∈ z4n−2C[[z−1]] and Ψ̃2,n ∈ z4n+3C[[z−1]] in
general, while

b1 = 0 ⇒ ∀n ≥ 0, Ψ̃1,n ∈ z2n−2C[[z−1]], Ψ̃2,n ∈ z2n+3C[[z−1]]. (18)

The proof is in Section 4.1. We immediately deduce

Corollary 1.9. The formulas

Ψu
j =

∑

n≥0

h2nΨu
j,n, Ψu

j,n = S−Ψ̃u
j,n,

define a normalized fundamental system of solutions (Ψu
1 ,Ψ

u
2) for (FL)ub .

9



We thus have at our disposal formal series Ψ̃1,n, Ψ̃2,n, and analytic functions
which admit them as Gevrey-1 asymptotic expansions. In fact, the coefficients of
these formal series can be determined inductively, as was the case for the formal
series Φ̃n.

Proposition 1.8 and Corollary 1.9 contain Proposition 2.16 and the first
part of Theorem 2.17 of [MSS09].

We are now ready for the main statement of this section:

Theorem 1.10. Let b ∈ CN
∗

. Then the Borel transforms Φ̂n(ζ, ε; b) have simply
ramified singularities at ±2πi and there exist four formal series in h2, the coefficients
of which are complex polynomials in b1, b2 . . . that depend analytically on ε for |ε| <
ε0 and vanish at ε = 0,

A±(h, ε; b) =
∑

n≥0

A±
n (ε; b1, . . . , bn)h

2n, B±(h, ε; b) =
∑

n≥0

B±
n (ε; b1, . . . , bn)h

2n,

(19)
such that

∆±2πiΦ̃n =
∑

n1+n2=n

(

A±
n1

Ψ̃1,n2 + iB±
n1

Ψ̃2,n2

)

, n ∈ N. (20)

The analytic functions A±
0 (ε) and B±

0 (ε) do not depend on b. One has

A±
0 (ε) = εA±

0,1 +O(ε2), A±
0,1 = 2πDV̂0(±2π), (21)

B±
0 (ε) = εB±

0,1 +O(ε2), B±
0,1 = ±4π2V̂0(±2π), (22)

where V̂0 is the entire function obtained as Borel transform with respect to 1/y of a
primitive of V ′(y, 0, 0):

V ′(y, 0, 0) =
∑

p≥5

vpy
p, V0(y) =

∑

p≥5

vp
yp+1

p+ 1
, V̂0(ξ) =

∑

p≥5

vp
ξp

(p+ 1)!
, (23)

and D = 1
5ξ∂

5
ξ + ∂4

ξ + 1
3ξ∂

3
ξ + ∂2

ξ + 2
15ξ∂ξ + 2

15 Id.

The proof is given in Section 4.3. It relies on Écalle’s formalism of “singularities”
which is briefly described in Section 4.2 (and on auxiliary results contained in Sec-
tions 3.3 and 3.5).

Observe that equation (20) can be written in a more compact form if we ex-
tend the action of the linear operators ∆ω to formal series in h2 by the formula
∆ω

(
∑

h2nϕ̃n
)

=
∑

h2n∆ωϕ̃n, namely

∆±2πiΦ̃ = A±Ψ̃1 + iB±Ψ̃2. (24)

Equation (24) is an example of what is called the bridge equation in Écalle’s termi-
nology (see Section 1.5).

Remark 1.11. In Theorem 1.1 of [MSS09], the constant B+
0,1 is given in the form

4π2V̂ (2π) instead of 4π2V̂0(2π), where V̂ is the Borel transform of the original
potential Ṽ , whose y-derivative Ṽ ′ differs slightly from V ′:

Ṽ ′ = V ′(αy, h, ε) +
coshh

ε

(

f(αy) − αf(y)
)

, f(y) =
2y

1 + y2
,

10



with α = α(h, ε) satisfying α(0, ε) = 1 − v3
4 ε + O(ε2) for a certain v3 ∈ C (this

rescaling of potential is intended to kill the cubic term in the original function Ṽ ′(y),
which was only assumed to be O(y3)). The discrepancy for ε = h = 0 is thus

(Ṽ ′ − V ′)|ε=h=0 = c
(

yf ′(y) − f(y)
)

,

with a constant c, hence a discrepancy (Ṽ−V )|ε=h=0 = cG withG(y) =
∫ y
0

(

y1f
′(y1)−

f(y1)
)

dy1. However, this is coherent with formula (22), since the Borel transform
with respect to 1/y

Ĝ(ξ) = 2
∑

p≥0

(−1)p
2p

(2p+ 2)!
ξ2p+1 = 2 sin ξ +

4

ξ
(cos ξ − 1)

vanishes at 2π.

1.4 Consequences for the splitting of separatrices

Let n ∈ N. According to (20), Φ̂n has a simply ramified singularity at ω = 2πi, the

variation of which is ψ̂ =
∑

n1+n2=n

(

A+
n1

Ψ̂1,n2 + iB+
n1

Ψ̂2,n2

)

∈ R̂ES(0). This implies

that Φ̂n admits a multivalued analytic continuation through the cut between 2πi
and 4πi: if ζ = ω + ξ ∈ R(0) with ξ ∈ R(0), we can consider Φ̂n(ω + ξ e2πi) =
Φ̂n(ω + ξ) + ψ̂(ξ) as defining the branch of the analytic continuation of Φ̂n which
is obtained from the principal one (the branch holomorphic in R(0)) by turning
anticlockwise around 2πi.

Let λ ∈ (0, 1), β ∈ (0, π/2). Consider the path Γλ,β consisting of two half-
lines with vertex at 2π(1 + λ)i and angle β with respect to the horizontal, oriented
from left to right, as on Figure 2. Let ε′0 ∈ (0, ε0). We shall see in Sections 3.3
and 3.5 that, for any n ≥ 0, there exist constants C∗

n, τ
∗
n > 0 which depend only on

λ, β, ε′0, b1, . . . , bn such that

|Φ̂n(ζ, ε; b1, . . . , bn)| ≤ C∗
n eτ

∗
n |ζ−2π(1+λ)i|, ζ ∈ Γλ,β, |ε| ≤ ε′0, (25)

where the branch of Φ̂n considered in (25) is determined by the convention that the
right part of Γλ,β lies in R(0), while on its left part one should use the branch of Φ̂n

obtained by crossing the cut from right to left.
We now estimate the differences Φs

n − Φu
n for z belonging to the intersection of

half-planes

Dn = { z ∈ C | ℜe(z eiβ) ≥ 2τ∗n and ℜe(z e−iβ) ≥ 2τ∗n }. (26)

Taking τ∗n large enough, we can assume that Dn is contained in the lower component
of the intersection Ds

n ∩ Du
n of the domains defined by (14) (see Figure 2).

Theorem 1.12. Let n ≥ 0. For any ε ∈ C such that |ε| ≤ ε′0 and any z ∈ Dn,

Φs
n − Φu

n =
∑

n1+n2=n

(

A+
n1

Ψu
1,n2

+ iB+
n1

Ψu
2,n2

)

e−2πiz +R,

with |R| ≤ Kn|ε|e
−2π(1+λ)| ℑmz|, (27)

where Kn = 2C∗
n

ε′0τ
∗
n
.

11



Figure 2: Left: The domain Dn. Right: Computation of Φs
n − Φu

n for z ∈ Dn by
deformation of the integration contour.

Proof. For such ε and z, in view of (12) and (13), we can write

(Φs
n − Φu

n)(z, ε; b1, . . . , bn) =

∫ eiβ∞

ei(π−β)∞
e−zζ Φ̂n(ζ, ε; b1, . . . , bn) dζ.

By the Cauchy theorem, we can deform the contour: Φs
n − Φu

n = D +R with

D =

∫

γβ

e−zζ Φ̂n dζ, R =

∫

Γλ,β

e−zζ Φ̂n dζ,

where the path Γλ,β was already defined, while γβ comes from ei(π−β)∞ in R(0),
encircles the point 2πi anticlockwise and goes back to ei(π−β)∞ (thus on another
sheet of the Riemann surface of Φ̂n—see Figure 2).

Thanks to (20), we can express Φ̂n along γβ by a formula of the form (15) with
ω = 2πi; the change of variable ζ = 2πi + ξ then yields

∫

γβ

e−zζ (−1)pp!
2πi(ζ−ω)p+1 dζ = e−2πiz zp,

∫

γβ

e−zζ ψ̂(ζ − ω) log(ζ−ω)
2πi dζ = e−2πiz

∫ ei(π−β)∞

0
e−zξψ̂(ξ) dξ,

thus the contribution of the singularity at 2πi is given by the operator S− of (12)
applied to the alien derivative ∆2πiΦ̃n defined by (16):

D = e−2πizS−∆2πiΦ̃n =
∑

n1+n2=n

(

A+
n1

Ψu
1,n2

+ iB+
n1

Ψu
2,n2

)

e−2πiz.

As for the remainder R, we use the change of variable ζ = 2π(1 + λ)i + ξ and get

R(z, ε) = e−2π(1+λ)iz

(
∫ eiβ∞

0
−

∫ ei(π−β)∞

0

)

e−zξ Φ̂n(2π(1 + λ)i + ξ) dξ,

12



whence

|R(z, ε)| ≤ C∗
n e−2π(1+λ)| ℑmz|

∫ ∞

0

(

e−tℜe(z eiβ) + e−tℜe(z ei(π−β))
)

eτ
∗
nt dt

≤ 2C∗
n

τ∗n
e−2π(1+λ)| ℑmz|

(using (25) and z ∈ Dn). We finally get (27) by the Schwarz lemma, since R is
analytic for |ε| < ε′0 and vanishes for ε = 0.

Observe that |e−2πiz| = e−2π| ℑmz| is exponentially small and the asymptotics
of the functions Ψu

j,n’s is known from Proposition 1.8 and Corollary 1.9, while

e−2π(1+λ)| ℑmz| is exponentially smaller. The singularity analysis in the Borel plane
thus gave us access to the precise measure of the exponentially small splitting phe-
nomenon.

The last part of Theorem 2.17 of [MSS09] follows.

As previously explained, the previous results are sufficient to complete the proof
of the main results of [MSS09]. The rest of this article (except Section 1.5, which is
a side remark) is devoted to their proof, as announced in Section 0.4.

1.5 Rephrasing of the bridge equation and alternative description of
the formal solutions

The name “bridge equation” for (24) comes from the fact that it can be interpreted as
a bridge between the action of the alien derivations ∆±2πi and the natural derivations
∂
∂z ,

∂
∂b1
, ∂∂b2 , . . ., in view of

Proposition 1.13. For each n ≥ 1, there exists a formal series βn(h, ε; b) = 1 +
O(h2) ∈ C[[h2]] which depends analytically on ε and polynomially on b1, b2, . . ., such
that

∂Φ̃

∂bn
(z, h, ε; b) = h2nβn(h, ε; b)Ψ̃2(z, h, ε; b). (28)

Consequently, equation (24) can be written

∆±2πiΦ̃ = A± ∂Φ̃

∂z
+ C±

n h
−2n ∂Φ̃

∂bn
, C±

n = iB±/βn

with arbitrary n ∈ N∗.

The proof is given at the end of Section 4.1.

The resurgent analysis could be developed farther, with the help of the alien
derivations ∆ω of index ω ∈ 2πi Z∗. Indeed, it turns out that the Borel trans-
forms Φ̂n(ζ) are holomorphic on the whole universal cover of C\2πi Z (this property
is precisely the definition of a resurgent function with singular support in 2πi Z; see
e.g. [Eca81], [CNP93] or [Sau05]), but we shall not give details about this.

The relations (28) entail a certain functional dependence between the formal
series Φ̃(z, h; b), which comes from an alternative description of the formal solutions.
The set of all odd solutions φ of (FIE) such that [φ]0 = Φ̃0 can indeed be described
using a single sequence of formal series G̃0, G̃1, G̃2, . . . ∈ C((z−1))[[h2]] as follows: for

13



each b ∈ CN∗
, there exists c(h) =

∑

n≥1 cnh
2n (where each cn is the sum of bn and

a polynomial in (b1, . . . , bn−1)) such that

Φ̃(z, h; b) = G̃0(z, h) + c(h)G̃1(z, h) + c(h)2G̃2(z, h) + · · ·

(this series is formally convergent in C((z−1))[[h2]] because c(h) ∈ h2C[[h2]]). In fact,
G̃(z, c, h) =

∑

m≥0 c
mG̃m(z, h) is an odd solution of (FIE) in C((z−1))[[h2, c]]. The

general nonzero solution in C((z−1))[[h2]] can then be written ±G̃
(

z+ a(h), c(h), h),

with arbitrary a(h) ∈ C[[h2]] and c(h) ∈ h2C[[h2]]; the solution Φ̃ is obtained as
Φ̃(z, h; b) = G̃

(

z, cb(h), h
)

for a certain series cb(h).

The bridge equation for G̃ takes the form

∆ωG̃ = Aω
∂G̃

∂z
+ iBω

∂G̃

∂c
, ω = ±2πi,

with Aω = Aω(c, h) and Bω = Bω(c, h) ∈ C[[h2, c]]. The series A±(h; b) and
B±(h; b) (for any b ∈ CN∗

) of the bridge equation for Φ̃ can be expressed in terms
of A±2πi

(

cb(h), h
)

and B±2πi

(

cb(h), h
)

.

2 Formal solutions of the inner equations and related series

This section contains the proof of Theorem 1.1 (Sections 2.1 and 2.2) and Propo-
sition 1.2 (Section 2.3), which are statements on the formal solutions of equa-
tions (IE)n, n ≥ 0.

2.1 The inner equation and its variational equation

Lemma 2.1. For each value of ε, equation (IE)0 admits a unique formal solution
Φ̃0(z) = Φ̃0(z, ε) of the form −iz−1 +O(z−3). This solution is odd and the nonzero
formal solutions are exactly the series Φ̃0(z + c) and −Φ̃0(z + c), c ∈ C.

Proof. In view of assumption (B), equation (IE)0 can be written

φ0(z + 1) − 2φ0(z) + φ0(z − 1) = −2φ0(z)
3 +

∑

n≥0

vn(ε)φ0(z)
2n+5,

where the coefficients vn(ε) depend on the Taylor expansion in y of V ′(y, 0, ε). Sub-
stituting φ0(z) = a0z

−N + a1z
−N−1 + · · · with N ≥ 1 and a0 6= 0, and taking

into account that (z + 1)−N − 2z−N + (z − 1)−N = N(N + 1)z−N−2 + O(z−N−3),
one sees that N = 1 and a0 = ±i, the coefficient a1 is free and the next ones are
uniquely determined by a0 and a1 in terms of the vn’s. In particular, there is a
unique solution Φ̃0(z) of the form −iz−1 + O(z−3) (corresponding to a0 = −i and
a1 = 0).

If φ(z) is a formal solution, so are φ(−z), −φ(z), φ(z̄) and φ(z + c) for any c.

Uniqueness implies that −Φ̃0(−z) and −Φ̃0(z̄) coincide with Φ̃0(z), and the general
nonzero solution is ±Φ̃0(z + c).

Notice that, if V ′ is real-analytic, then Φ̃0 ∈ iz−1R[[z−1]].
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Definition 2.2. The variational equation of (IE)0 along Φ̃0(z) (with the notation of
Lemma 2.1) is the homogeneous equation L0ψ = 0, where L0 is the linear operator
of C((z−1)) defined by

L0ψ(z) = ψ(z + 1) + ψ(z − 1) − 2ψ(z) −A0(z)ψ(z), (29)

A0(z) = −2 + ∂yF(Φ̃0(z, ε), 0, ε). (30)

The corresponding inhomogeneous equations are the equations L0ψ = f with given
f ∈ C((z−1)).

The secondary inner equations (IE)n can be written L0φn = fn, with fn ∈
C((z−1)) inductively determined in terms of φ0 = Φ̃0, φ1, . . . , φn−1 according to for-
mula (7). It is thus worth recalling a few classical facts about operators of the
form (29), which will be used in Section 2.2 to construct solutions of the secondary
inner equations (and also in Section 3.2, to devise a perturbative method in order to
study (IE)0 and the Borel transform of Φ̃0); the reader is referred to Appendix A.2
for their proofs.

(i) Denoting by T and T−1 the mutually inverse shift operators ψ(z) 7→ T±1ψ(z) =
ψ(z ± 1) and by I the identity operator, we introduce the difference operators

∆ = T − I, P = T − 2I + T−1. (31)

Thus L0ψ = Pψ − A0ψ. The discrete Wronskian, or Casoratian, is classically
defined to be the determinant

W(ψ1, ψ2) =

∣

∣

∣

∣

∣

ψ1 ψ2

Tψ1 Tψ2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ψ1 ψ2

∆ψ1 ∆ψ2

∣

∣

∣

∣

∣

.

The Wronskian W (z) of any two solutions of L0 satisfies ∆W = 0; when dealing
with elements of C((z−1)), this implies that W (z) is constant (this only implies
periodicity if we deal with general functions as in Appendix A.3).

(ii) If two solutions ψ1 and ψ2 have Wronskian 1, we say that they form a nor-
malized fundamental system; ones finds that ψ is solution if and only if a =
W(ψ,ψ2) and b = W(ψ1, ψ) satisfy ∆a = ∆b = 0, and linear algebra yields
ψ = aψ1 + bψ2 = (T−1a)ψ1 + (T−1b)ψ2; in the case of formal series, a and b
are constant and the set of solutions is thus the linear span of (ψ1, ψ2) (in the
case of general functions, a and b are arbitrary 1-periodic functions).

(iii) The solutions of an inhomogeneous equation are obtained by adding any so-
lution of the homogeneous equation to a particular solution. If (ψ1, ψ2) is a
normalized fundamental system, we get a particular solution of L0ψ = f in the
form ψ = a∗ψ1 +b∗ψ2 as soon as a∗ and b∗ satisfy ∆a∗ = −ψ2f and ∆b∗ = ψ1f
(with W(ψ,ψ2) = Ta∗ and W(ψ1, ψ) = Tb∗ for this solution2).

(iv) If a particular solution ψ1 is known for the homogeneous equation and if ψ1Tψ1

is invertible, a standard method to find a normalized fundamental system con-
sists in “varying the constant”: ψ2(z) = c(z)ψ(z) is solution and W(ψ1, ψ2) ≡ 1
as soon as ∆c = 1

ψ1Tψ1
.

2 One gets a solution ψ = aψ1 + bψ2 such that W(ψ,ψ2) = a and W(ψ1, ψ) = b as soon as
(I − T−1)a = −ψ2f and (I − T−1)b = ψ1f .
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In our case, since the linear equation L0ψ = 0 was obtained as variational equa-
tional along Φ̃0 from (IE)0, it is obvious that a particular solution of L0 in C((z−1)) is
ψ̃1 = ∂zΦ̃0. To apply the aforementioned methods, we need to invert ∆ in C((z−1));
this could lead in principle to the appearance of logarithms in our formal series, but
the symmetries of the problem (ψ̃1(z) and A0(z) are even) will prevent this. We
henceforth denote by [ϕ](m) the coefficient of z−m in a formal series ϕ ∈ C((z−1)).

Lemma 2.3. Let β1, β2, . . . denote the coefficients of the Taylor expansion of the
even function X

eX−1
+ 1

2X − 1 =
∑

ℓ≥1 βℓX
2ℓ. Let C((z−1))(0), resp. C((z−1))(1),

denote the subspaces of formal series without constant term, resp. without residuum,
i.e.

C((z−1))(m) = {ϕ ∈ C((z−1)) | [ϕ](m) = 0 }, m = 0, 1, (32)

and let ∂−1
z be the unique operator C((z−1))(1) → C((z−1))(0) such that ∂z ◦ ∂

−1
z = I.

Then the range of ∆ is C((z−1))(1) and the formulas

∆−1 = ∂−1
z −

1

2
I +

∑

ℓ≥1

βℓ∂
2ℓ−1
z , ∆−1

(0) = ∂−1
z ◦

(

I −
1

2
∂z +

∑

ℓ≥1

βℓ∂
2ℓ
z

)

(33)

define two right inverses of ∆ on C((z−1))(1), the range of the second being C((z−1))(0).

Proof. On can write ∆ = ∂z ◦ α = α ◦ ∂z, with α =
∑

r≥0
1

(r+1)!∂
r
z invertible

in C((z−1)): α−1 = I − 1
2∂z +

∑

ℓ≥1 βℓ∂
2ℓ
z (the coefficients βℓ are essentially the

Bernoulli numbers). The range of ∆ thus coincides with the range of ∂z, which is
invariant by α−1, and ∆−1 = α−1 ◦∂−1

z and ∆−1
(0) = ∂−1

z ◦α−1 are right inverses of ∆

on C((z−1))(1).

Remark 2.4. The two right inverses do not coincide because the operators ∂2ℓ
z ◦∂−1

z

and ∂−1
z ◦∂2ℓ

z do not agree on polynomials (nor does ∂−1
z ◦∂z coincide with I in C[z]).

The restrictions of ∆−1 and ∆−1
(0) to z−2C[[z−1]] agree, whereas they leave C[z]

invariant with ∆−1Q− ∆−1
(0)Q = (∆−1Q)(0) for any polynomial Q ∈ C[z]. We shall

use ∆−1
(0) to find a normalized fundamental system of solutions of L0, and ∆−1 to

solve the secondary inner equations.

Remark 2.5. The operators ∆−1 and ∆−1
(0)

can be extended to the whole space C((z−1))

at the price of admitting multiples of log z in the target space: indeed, ∂−1
z can be

extended to an operator C((z−1)) → C[[z−1]][z, log z] as a right inverse of ∂z and
formulas (33) then yield right inverses ∆−1,∆−1

(0) : C((z−1)) → C[[z−1]][z, log z].

To apply the above point (iv) and use the solution ψ̃1 = ∂zΦ̃0 to determine an
independent solution of L0, we need to check that 1

ψ̃1T ψ̃1
has no residuum, so as

to be able to apply ∆−1
(0) and to set ψ̃2 = ψ̃1∆

−1
(0)

(

1
ψ̃1T ψ̃1

)

(note that 1
ψ̃1T ψ̃1

is well-

defined in C((z−1)), this was one of the reasons for introducing the field of fractions
of C[[z−1]]).

Lemma 2.6. If ϕ ∈ C((z−1)) is even or odd, then ϕ · Tϕ has no residuum and the
formal series ∆−1

(0)(ϕ · Tϕ) is odd.
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Proof. We have

ϕ · Tϕ =
∑

p≥0

1

p!
ϕ · ∂pϕ,

where ∂ is a shorthand for ∂z (cf. footnote 1 for the convergence of this series of
formal series). If p is even, then ϕ · ∂pϕ is even and has no residuum. If p is odd,
then the identity

∂

(

∑

p1+p2=p−1
p1,p2≥0

(−1)p1∂p1ϕ1 · ∂
p2ϕ2

)

= ϕ1 · ∂
pϕ2 + (−1)p+1∂pϕ1 · ϕ2 (34)

shows that 2ϕ · ∂pϕ is the derivative of an element of C((z−1)), thus it has no
residuum. Hence ϕ · Tϕ ∈ C((z−1))(1).

Let ψ = ∆−1
(0)(ϕ ·Tϕ): this is the unique element of C((z−1)) such that [ψ](0) = 0

and ∆ψ = ϕ ·Tϕ. Let ψ∗(z) = −ψ(−z). A straightforward computation shows that
∆ψ∗(z) = ϕ(−z)ϕ(−z−1). The symmetry assumption implies ∆ψ∗ = ϕ ·Tϕ, hence
ψ∗ = ψ.

Applying this with ϕ = 1/∂zΦ̃0, which is even, we finally get

Corollary 2.7. Let
ψ̃1 = ∂zΦ̃0 = iz−2 +O(z−4), (35)

where Φ̃0 is the solution of (IE)0 determined in Lemma 2.1. Then 1
ψ̃1T ψ̃1

∈ C((z−1))(1)
and the formula

ψ̃2 = ψ̃1∆
−1
(0)

(

1
ψ̃1T ψ̃1

)

= −
i

5
z3 +O(z)

defines a formal series such that (ψ̃1, ψ̃2) is a normalized fundamental system of
solutions in C((z−1)) of the variational equation of (IE)0 along Φ̃0. Moreover ψ̃1 is
even and ψ̃2 is odd.

2.2 The formal solutions of the secondary inner equations

Lemma 2.8. Let Φ̃0 be the odd formal solution of (IE)0 determined in Lemma 2.1.
Then there exist sequences of odd formal series Φ̃1, Φ̃2, . . . in C((z−1)) satisfying
equations (IE)1, (IE)2, . . . All these solutions are obtained inductively and are unique
up to the choice of a complex number bn at each step: for n ≥ 1, denoting by f̃n the
coefficient of h2n in F(Φ̃0+h

2Φ̃1+· · ·+h2(n−1)Φ̃n−1, h, ε) and using the operator ∆−1

of Lemma 2.3,

Φ̃n = −ψ̃1∆
−1(ψ̃2f̃n) + ψ̃2∆

−1(ψ̃1f̃n) + bnψ̃2, (36)

where bn ∈ C is arbitrary; thus Φ̃n(z) = Φ̃n(z; b1, . . . , bn).

Proof. We argue by induction and assume that, besides the odd solution Φ̃0 of (IE)0,
we have odd formal solutions Φ̃1, . . . , Φ̃n−1 of (IE)1, . . . , (IE)n−1, depending on n−1
free parameters b1, . . . , bn−1. The nth secondary equation, (IE)n, can be written
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L0Φn = f̃n. As a consequence of Corollary 2.7 and of what was explained in Sec-
tion 2.1 (points (ii), (iii) and Lemma 2.3), its solutions in C[[z−1]][z, log z] are exactly
the formal series Φ∗ + aψ̃1 + bψ̃2, where

Φ∗ = Φ∗(z; b1, . . . , bn−1) = −ψ̃1∆
−1(ψ̃2f̃n) + ψ̃2∆

−1(ψ̃1f̃n) (37)

and a and b are arbitrary complex numbers. These solutions will contain logarithmic
terms or not according to the values of the residuums of ψ̃2f̃n and ψ̃1f̃n. It is thus
enough to prove that these residuums vanish and to check that Φ∗ is an odd formal
series: the only odd formal solutions will then correspond to a = 0, and we shall set

Φ̃n(z; b1, . . . , bn) = Φ∗(z; b1, . . . , bn−1) + bnψ̃2(z). (38)

Let
χ = h2Φ̃1 + · · · + h2(n−1)Φ̃n−1 ∈ C((z−1))[h2],

with χ = 0 if n = 1. Clearly, f̃n =
[

F(Φ̃0 + χ, h)
]

n
is an odd formal series.

Thus ψ̃2f̃n is even and has no residuum: ψ̃2f̃n ∈ C((z−1))(1).
We have

ψ̃1f̃n =
[

∂zΦ̃0 F(Φ̃0 + χ, h)
]

n
= A−B,

with A =
[

(∂zΦ̃0 + ∂zχ)F(Φ̃0 + χ, h)
]

n
and B =

[

∂zχF(Φ̃0 + χ, h)
]

n
. Since A =

∂z

[

F(Φ̃0 + χ, h)
]

n
, this series has no residuum. We now show that B has no

residuum.
We observe that, for 1 ≤ k ≤ n − 1,

[

F(Φ̃0 + χ, h)
]

k
= Fk defined by (6),

and that this series coincides with Φ̃k(z + 1) + Φ̃k(z − 1) (in view of the previous
equations). Thus

B =
∑

j+k=n
1≤j,k≤n−1

[∂zχ]j

[

F(Φ̃0 + χ, h)
]

k
=

∑

j+k=n
1≤j,k≤n−1

∂zΦ̃j

(

Φ̃k(z + 1) + Φ̃k(z − 1)
)

,

and we can identify B with the coefficient of h2n in

∂zχ(z, h)
[

χ(z + 1, h) + χ(z − 1, h)
]

=
∑

r≥0

2

(2r)!
∂zχ · ∂2r

z χ ∈ C((z−1))[h2].

But the coefficients of this polynomial cannot have a nonzero residuum, because
none of the terms 2

(2r)!∂zχ · ∂2r
z χ has: the term with r = 0 is nothing but ∂z(χ

2),

and any term with r ≥ 1 can be written 1
(2r)!(ϕ1 · ∂2r−1

z ϕ2 + ∂2r−1
z ϕ1 · ϕ2), with

ϕ1 = ϕ2 = ∂zχ, which is also the z-derivative of an element of C((z−1))[h2] by virtue
of (34). Thus B has no residuum.

Since ψ̃2f̃n and ψ̃1f̃n belong to C((z−1))(1), the formula

Φ∗ = −ψ̃1∆
−1(ψ̃2f̃n) + ψ̃2∆

−1(ψ̃1f̃n)

defines a formal series in C((z−1)) which solves (IE)n. Let us check that Φ∗ is odd.
In view of (33), we can write ∆−1 = −1

2I + Γ with an operator Γ : C((z−1))(1) →

C((z−1)) which reverses parity, namely Γ = ∂−1
z +

∑

ℓ≥1 βℓ∂
2ℓ−1
z . Hence Φ∗ =

−ψ̃1Γ(ψ̃2f̃n) + ψ̃2Γ(ψ̃1f̃n), with Γ(ψ̃2f̃n) odd and Γ(ψ̃1f̃n) even.
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Lemma 2.9. The formal solutions of Lemma 2.8 with b1 = 0 satisfy

Φ̃n(z; 0, b2, . . . , bn) ∈ z2n−1C[[z−1]], n ≥ 1

for any choice of b2, . . . , bn, while Φ̃n(z; b1, b2, . . . , bn) ∈ z4n−1C[[z−1]] in general.

Proof. Let us choose any sequence b ∈ CN
∗

with b1 = 0. In view of formula (36) and
since ψ̃2 ∈ z3C[[z−1]] ⊂ z2n−1C[[z−1]] for n ≥ 2, the conclusion will follow from the
property

f̃n ∈ z2n−3C[[z−1]], n ≥ 1, (39)

since multiplication by ψ̃1, resp. multiplication by ψ̃2, resp. ∆−1 adds 2, resp. −3,
resp. −1 to the (z−1)-valuation.

To prove (39), we shall make use of formula (7). In view of formula (1) and
assumption (A), the holomorphic functions Fn(y, ε) are odd in y for all n ≥ 0.
Hence ∂ryFn(Φ̃0, ε) ∈ C[[z−1]] for r ≥ 0, with ∂ryFn(Φ̃0, ε) ∈ z

−1C[[z−1]] for even r.

Let n ≥ 1; we argue by induction and suppose that Φ̃m ∈ z2m−1C[[z−1]] for
1 ≤ m ≤ n− 1. Each product Φ̃n1 · · · Φ̃nr involved in (7) thus belongs to the space
z2n−(2n0+r)C[[z−1]], which is included in z2n−3C[[z−1]] as soon as 2n0 + r ≥ 3. Since
n0 + r ≥ 2, the only terms which have 2n0 + r < 3 correspond to n0 = 0 and r = 2,
but then ∂ryFn0(Φ̃0, ε) ∈ z−1C[[z−1]], which is sufficient to prove (39).

The case b1 6= 0 is treated similarly, yielding f̃n ∈ z4n−3C[[z−1]].

Theorem 1.1 follows easily from Lemmas 2.1, 2.8 and 2.9, with the help of argu-
ments analogous to those employed in the proof of Lemma 2.1 to get the description
of all the formal solutions.

2.3 The formal solutions in the integrable case

We now prove Proposition 1.2. We thus fix ε = 0 and first show how the function H
defined by (4) appears in relation with (FIE). Let µ = coshh.

Lemma 2.10. Assume Φ ∈ C((z−1))[[h2]] is not independent of z, i.e. not reduced
to an element of C[[h2]]. Then Φ is solution of (FIE) for ε = 0 if and only if
H(Φ, TΦ;h) = Φ2 + TΦ2 + Φ2TΦ2 − 2µΦTΦ is independent of z, i.e. of the form
c(h) ∈ C[[h2]].

Proof. Let c = H(Φ, TΦ;h): a priori, c ∈ C((z−1))[[h2]]. The assumption on Φ
implies TΦ − T−1Φ 6= 0. Thus

(FIE) ⇔ (1 + Φ2)(TΦ + T−1Φ) − 2µΦ = 0 ⇔
[

(1 + Φ2)(TΦ + T−1Φ) − 2µΦ
]

(TΦ − T−1Φ) = 0 ⇔

(1 + Φ2)(TΦ2 − T−1Φ2) − 2µΦ(TΦ − T−1Φ) = 0 ⇔

Φ2TΦ2 + TΦ2 − 2µΦTΦ + Φ2 −
[

Φ2T−1Φ2 + T−1Φ2 − 2µΦT−1Φ + Φ2
]

= 0

⇔ c− T−1c = 0.

In the case of Φ0 = Φ̃(z, h, 0; b), we have [c]0 = 0 and, for n ≥ 1, [c]n depends on
b1, . . . , bn. In order to take advantage of the symmetries of the problem, we rewrite
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the equation H(Φ, TΦ;h) = c(h) as H(U−1Φ, UΦ;h) = c(h), where U is the shift
operator Φ(z, h) 7→ Φ(z + 1

2 , h). Let us divide the equation by (U−1Φ2)(UΦ2):

U
(

1
Φ2

)

+ U−1
(

1
Φ2

)

+ 1 − 2µU
(

1
Φ

)

U−1
(

1
Φ

)

= c(h)U
(

1
Φ2

)

U−1
(

1
Φ2

)

.

Since, for Φ ∈ C((z−1))[[h2]] with [Φ]0 = −iz−1,

∀n ≥ 1, [Φ]n ∈ z−1C[z] ⇔ ∀n ≥ 1, [1/Φ]n ∈ zC[z],

Proposition 1.2 follows from

Lemma 2.11. Let c(h) ∈ h2C[[h2]]. There exists a unique Ψ ∈ C((z−1))[[h2]] such
that [Ψ]0 = iz, each [Ψ]n is odd and

1 + UΨ2 + U−1Ψ2 − 2µ(UΨ)(U−1Ψ) − c(h)(UΨ2)(U−1Ψ2) = 0. (40)

Moreover, each [Ψ]n ∈ zC[z].

Proof. Let Ψ =
∑

n≥0 h
2nΨn(z) ∈ C((z−1))[[h2]]. Equation (40) can be written

K(U−1Ψ, UΨ;h) = 0 with K(x, y;h) = 1 + x2 + y2 − 2µxy − c(h)x2y2. Expanding
in powers of h2, we get K0(U

−1Ψ0, UΨ0) = 0, where K0(x, y) = 1 + (x − y)2, for
which Ψ0(z) = iz is an obvious solution, and

∂xK0(U
−1Ψ0, UΨ0)U

−1Ψn + ∂yK0(U
−1Ψ0, UΨ0)UΨn = χn, n ≥ 1, (41)

where χn is the polynomial in (Ψ1, . . . ,Ψn−1) inductively defined as

χn =
[

K(U−1Ψ<n, UΨ<n;h)
]

n
, Ψ<n = Ψ0 + h2Ψ1 + · · · + h2(n−1)Ψn−1.

The choice Ψ0(z) = iz yields −∂xK0(U
−1Ψ0, UΨ0) = ∂yK0(U

−1Ψ0, UΨ0) = 2(U −
U−1)Ψ0 = i, thus equation (41) can be written

(U − U−1)Ψn = −iχn,

which is equivalent to ∂zΨn = −i
∑

ℓ≥0 γℓ∂
2ℓ
z χn where

∑

ℓ≥0 γℓX
2ℓ = X

eX/2−e−X/2 . By

induction on n, one finds a unique odd solution Ψn in C((z−1)), because K(x, y;h) =
K(y, x;h) = K(−y,−x;h) implies that χn is even. Moreover, this unique odd
solution is easily seen to be a polynomial in z.

Remark 2.12. In fact, when ε = 0, equation (FIE) can be “integrated by quadra-
ture” in the following sense. To compute Φ0 = Φ̃(z, h, 0; b), we let c = c(h) ∈
h2C[[h2]] denote the value of H(Φ0, TΦ0;h) and consider the Hamiltonian vector
field generated by 1

2H,

ẋ = y + x2y − µx, ẏ = −x− xy2 + µy.

In the energy level {H = c }, the first differential equation yields y = ẋ+µx
1+x2 , whence

c = y2(1 + x2) − 2µxy + x2 = ẋ2+x2(x2+1)−µ2x2

x2+1 and

ẋ2 = −x4 + (c+ sinh2 h)x2 + c. (42)
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We integrate this first-order differential equation in C((t−1))[[h2]] by choosing a
branch for the square root: let T (x, h) denote the unique odd series in C((x−1))[[h2]]
such that

∂xT (x, h) = −ix−2(1 − (c+ sinh2 h)x−2 − cx−4
)−1/2

,

it is of the form

t = T (x, h) = −ix−1(1 + h2P1 + h4P2 + · · · ) with each Pn ∈ x−2C[x−2]

and has a composition inverse (with respect to x) of the form

x = X(t, h) = −it−1(1 + h2Q1 + h4Q2 + · · · ), with each Qn ∈ t2C[t2],

the solutions of (42) in C((t−1))[[h2]] are t 7→ ±X(t − α(h), h), with α(h) ∈ C[[h2]]
(if c = 0, then X(t, h) = −iγ/ sinh(γt) with γ = sinhh).

Now, for any solution x(t) = X(t−α(h), h), the other component of the solution
of the Hamiltonian vector field is y(t) = ẋ+µx

1+x2 ; the symmetries of the problem are
such that y(t) is solution of the same branch of (42), thus

y(t) = X(t− α(h) + α0(h), h)

with a certain α0(h) ∈ C[[h2]] which can be computed in terms of c(h). One finds
α0(h) = 1 +O(h2) (if c = 0, then α0(h) = h/γ).

Let Φ(z) = X
(

α0(h)z
)

and consider P (z) =
(

Φ(z − 1
2),Φ(z + 1

2 )
)

: we have
H
(

P (z);h
)

= H
(

P (z + 1);h
)

(conservation of energy along the Hamiltonian flow)
and H

(

P (z);h
)

= H
(

Fh,0
(

P (z)
)

;h
)

(conservation of H by the McMillan map);
since P (z + 1) and Fh,0

(

P (z)
)

have the same first component, it is easy, knowing
the first terms of the h2-expansions, to check that they coincide.

Thus X
(

α0(h)z
)

is an odd solution of (FIE), which we can identify with Φ0(z)
thanks to the uniqueness statement in Lemma 2.11 (this gives a second way of
checking that it belongs to z−1C[z2][[h2]]).

3 Borel transforms of the formal solutions

This section contains the proof of Theorem 1.4. The general strategy to control the
Borel transforms Φ̂n(ζ) of the formal series Φ̃n(z) consists in studying equations in
the ζ-plane (i.e. equations in which the unknowns belong to C[[ζ]], and hopefully
to C{ζ} too) which are the counterparts of equations (IE)n.

3.1 Preliminary remarks on the Borel transform and the convolution

Our equations involve the operator T : ϕ̃(z) 7→ ϕ̃(z + 1). One sees easily that, if
ϕ̃(z) ∈ z−1C[[z−1]] and ϕ̂ = Bϕ̃, then

B(∂zϕ̃)(ζ) = −ζϕ̂(ζ), B(T ϕ̃)(ζ) = e−ζ ϕ̂(ζ). (43)

The counterpart in the ζ-plane of linear difference operators is thus manageable.
It is equation (IE)0 that will require more efforts because it is nonlinear: it

involves the product of the unknown formal series Φ̃0 with itself (through the sub-
stitution into F( . , 0, ε)). We shall thus need to deal repeatedly with the following
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situation: suppose that ϕ̃(z), ψ̃(z) ∈ z−1C[[z−1]] with ϕ̂ = Bϕ̃, ψ̂ = Bψ̃ ∈ C{ζ}, and
let χ̃ = ϕ̃ψ̃, χ̂ = Bχ̃. Then

χ̂(ζ) = ϕ̂ ∗ ψ̂(ζ) =

∫ ζ

0
ϕ̂(ζ1)ψ̂(ζ − ζ1) dζ1 (44)

for any ζ belonging to the intersection of the discs of convergence of ϕ̂ and ψ̂. The
law ∗ is called convolution; it is bilinear, commutative and associative. For example,
in the particular case corresponding to ψ̃(z) = z−1, ψ̂(ζ) = 1, one gets for χ̂ = 1 ∗ ϕ̂
the primitive of ϕ̂ which vanishes at the origin, and 1 ∗ 1 ∗ ϕ̂ = ζ ∗ ϕ̂. But the
existence of the analytic continuation for a convolution product requires in general
stronger assumptions than that for a primitive (except if one of the factor extends
to an entire function).

In this section, we are interested in the possibility of following analytic con-
tinuation in the domain R(0), which is star-shaped with respect to the origin, i.e.
[0, ζ] ⊂ R(0) for every ζ ∈ R(0). The following elementary result will thus be useful:

Lemma 3.1. Suppose ϕ̂ and ψ̂ are holomorphic in R(0). Then ϕ̂ ∗ ψ̂ extends holo-
morphically to R(0).

Suppose moreover that ρ ∈ (0, 2π), that Φ̂ and Ψ̂ are non-negative continuous
functions on R+ and that τ1, τ2 are non-negative constants such that

|ϕ̂(ζ)| ≤ Φ̂
(

|ζ|
)

eτ1|ζ|, |ψ̂(ζ)| ≤ Ψ̂
(

|ζ|
)

eτ2|ζ|, ζ ∈ R(0)
ρ .

Then
|ϕ̂ ∗ ψ̂(ζ)| ≤ Φ̂ ∗ Ψ̂

(

|ζ|
)

eτ |ζ|, ζ ∈ R(0)
ρ , (45)

where τ = max(τ1, τ2) and Φ̂ ∗ Ψ̂(ξ) =
∫ ξ
0 Φ̂(ξ1)Ψ̂(ξ − ξ1) dξ1 for ξ ∈ R+.

Proof. Formula (44) makes sense for all ζ ∈ R(0) and defines the analytic continua-
tion of the convolution product. Inequality (45) follows from

ϕ̂ ∗ ψ̂(ζ) =

∫ |ζ|

0
ϕ̂
(

γ(s)
)

ψ̂
(

ζ − γ(s)
) ζ
|ζ| ds, where γ(s) = s ζ|ζ| for s ∈

[

0, |ζ|
]

.

As a consequence of the first statement, R̂ES(0) is stable by convolution; it is
a subring of the ring

(

C{ζ},+, ∗
)

. There is no unit for the convolution law in the
ring C{ζ}. It is sometimes convenient to adjoin a unit element3 to it, i.e. to work

in C{ζ} ⊕ Cδ, which is in fact a unitary algebra (and R̂ES(0) ⊕Cδ is a subalgebra).
The unit δ can be interpreted as the image of 1 by an extended Borel trans-

form Bext: let DP = {a0δ + a−1δ
′ + · · · + a−vδ

(v) | v ∈ N, a0, . . . , a−v ∈ C} denote
the free unitary commutative associative algebra generated by the symbol δ′ (the
symbol δ(v) represents the “convolution product” of δ′ with itself v times—the ele-
ments of DP are “Dirac polynomials”), the space of Gevrey-1 series C((z−1))Gev is
itself a unitary algebra and the extended Borel transform can be defined as

Bext : C((z−1))Gev → C{ζ} ⊕ DP,

Bext

(

∑

n≥−v

anz
−n

)

=
∑

n≥1

an
ζn−1

(n− 1)!
+ a0δ + a−1δ

′ + · · · + a−vδ
(v).

3This element δ, unit of the convolution, can be identified with the Dirac mass at the origin.
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This is an algebra isomorphism if we define the extended convolution in C{ζ}⊕DP
coherently, by

δ ∗ ϕ̂ = ϕ̂, δ(n) ∗ ϕ̂ = ϕ̂(0)δ(n−1) + ϕ̂′(0)δ(n−2) + · · · + ϕ̂(n−1)(0)δ + ϕ̂(n)(ζ) (46)

for ϕ̂(ζ) ∈ C{ζ} and n ∈ N∗ (for instance, convolution with δ′ is just the counterpart
of multiplication by z and can be interpreted as an extended differentiation with
respect to ζ; this is due to the fact that B(zϕ̃) boils down to ϕ̂′(ζ) when ϕ̃(z) ∈
z−2C[[z−1]]). The counterpart of the derivation ∂z of C((z−1))Gev is the derivation
∂
(

ϕ̂(ζ) + a0δ + a−1δ
′ + · · ·+ a−vδ

(v)
)

= −ζϕ̂(ζ) + a−1δ + 2a−2δ
′ + · · ·+ va−vδ

(v−1).
The relation with Section 1.2 is that, for any ϕ̃ ∈ C((z−1))Gev, Bϕ̃ is the projec-

tion onto C{ζ} of Bextϕ̃ ∈ C{ζ}⊕DP. We shall see in Section 4.2 how Bext and DP
fit in Écalle’s formalism of singularities.

3.2 The Borel transform of Φ̃0(z, ε)

We first prove the statement relative to Φ̃0(z, ε) in Theorem 1.4. With the notations
of Section 2.1, equation (IE)0 can be written

Tφ0 + T−1φ0 = F(φ0, 0, ε) = F0,0(φ0) + εV ′(φ0, 0, ε),

F0,0(y) = F(y, 0, 0) =
2y

1 + y2
.

Since Φ̃0(z, 0) = −iz−1 is known to be solution of (IE)0|ε=0 (see (10)), we can set

Φ̃0(z, ε) = −iz−1 + η̃(z, ε)

and look for η̃ = η̃(z, ε) as the unique odd solution in z−3C[[z−1]] of

T η̃ + T−1η̃ = F0,0(Φ0,0 + η̃) −F0,0(Φ0,0) + εV ′(Φ0,0 + η̃, 0, ε),

where Φ0,0(z) := Φ̃0(z, 0). It turns out that it will be convenient to study the more
general equation in which εV ′(Φ0,0 + η̃, 0, ε) is replaced by εV ′(Φ0,0 + η̃, 0, ε), thus
introducing an auxiliary parameter ε, to be identified with ε when returning to
equation (IE)0:

Proposition 3.2. One has

Φ̃0(z, ε) = −iz−1 + η̃(z, ε, ε),

where η̃(z, ε, ε) is, for each ε ∈ C and ε such that |ε| < ε0, an odd solution in
z−3C[[z−1]] of

T η̃ + T−1η̃ = F0,0(Φ0,0 + η̃) −F0,0(Φ0,0) + εV ′(Φ0,0 + η̃, 0, ε). (47)

The Borel transform η̂(ζ, ε, ε) is convergent for |ζ| < 2π and defines a holomorphic
function of three variables in { (ζ, ε, ε) ∈ C3 | ζ ∈ R(0), |ε| < ε0 }. Moreover, for
any ε′0 ∈ (0, ε0) and ρ ∈ (0, 2π), there exist positive constants τ0, τ1, C such that

|η̂(ζ, ε, ε)| ≤ C|ε| |ζ|
2

2 e(τ0+τ1|ε|)|ζ|, ζ ∈ R(0)
ρ , ε ∈ C, |ε| ≤ ε′0.
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Proof. We shall expand in powers of ε (but not ε). We first write equation (47) as

T η̃ + T−1η̃ = F ′
0,0

(

Φ0,0(z)
)

η̃ +
∑

r≥2

fr(z)η̃
r + ε

∑

r≥0

wr(z, ε)η̃
r

with

fr(z) =
1

r!
F

(r)
0,0

(

Φ0,0(z)
)

, wr(z, ε) =
1

r!
∂ryV

′
(

Φ0,0(z), 0, ε
)

. (48)

Particularizing Definition 2.2 to the case ε = 0, the linear difference operator L0,0

associated with the variational equation of (IE)0|ε=0 along Φ0,0 can be written

L0,0ψ = Pψ −A0,0ψ, A0,0(z) = −2 + F ′
0,0

(

Φ0,0(z)
)

(49)

(see (29)–(31)). We can thus rewrite equation (47) as the system











L0,0η̃ = γ̃,

γ̃ = ε
∑

r≥0

wr(z, ε)η̃
r +

∑

r≥2

fr(z)η̃
r.

(50)

We only need to study the Borel transform of odd solutions η̃(z, ε, ε), γ̃(z, ε, ε) of
this system, with η̃ ∈ z−3C[[z−1]] and γ̃ ∈ z−5C[[z−1]].

Particularizing Corollary 2.7 to the case ε = 0, we get the following normalized
fundamental system of solutions of L0,0:

ψ1,0 = ∂zΦ0,0(z) = iz−2, ψ2,0 = ψ1,0 ∆−1
(0)

1

ψ1,0Tψ1,0
.

Since 1
ψ1,0Tψ1,0

= −z2(z+ 1)2 is a polynomial of degree 4, the computation of ψ2,0 is

easy and requires only the knowledge of the constants β1 = 1/12 and β2 = −1/720
involved in Lemma 2.3. One finds

ψ2,0(z) = −
i

5
z3 +

i

3
z −

2i

15
z−1.

The method of point (iii) of Section 2.1 allows us to define a right inverse to L0,0 in
z−5C[[z−1]]: we set

L−1
0,0ϕ̃ = −ψ1,0∆

−1(ϕ̃ ψ2,0) + ψ2,0∆
−1(ϕ̃ ψ1,0), ϕ̃ ∈ z−5C[[z−1]] (51)

(recall that ∆−1 is defined on C((z−1))(1); here we use it only in z−2C[[z−1]]). This

way, L−1
0,0ϕ̃ is the only preimage of ϕ̃ which lies in z−3C[[z−1]] (the other preimages

are obtained by adding a linear combination of ψ1,0 and ψ2,0). We can thus replace
the first equation in system (50) by

η̃ = L−1
0,0γ̃.

For technical reasons, it will be easier to deal with Ã = z2η̃ and B̃ = z4γ̃ instead
of η̃ and γ̃, and to use the linear operator E defined by

B̃ ∈ z−1C[[z−1]] 7→ EB̃ = z2L−1
0,0(z

−4B̃) ∈ z−1C[[z−1]]. (52)
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A pair of formal series (η̃, γ̃) with η̃ ∈ z−3C[[z−1]] is thus solution of (50) if and only
if Ã = z2η̃ and B̃ = z4γ̃ satisfy B̃ ∈ z−1C[[z−1]] and











Ã = EB̃

B̃ = ε
∑

r≥0

CrÃ
r +

∑

r≥2

C∗
r Ã

r, (53)

where

Cr = z−(2r−4)wr(z) =
1

r!
z−(2r−4)∂ryV

′(−iz−1, 0, ε),

C∗
r = z−(2r−4)fr(z) =

1

r!
z−(2r−4)F

(r)
0,0 (−iz−1).

Notice that, due to assumptions (A) and (B), Cr ∈ z−r−1C{z−1} for r = 0, 1, 2
or 3, that Cr, C

∗
r ∈ z−(2r−4)C{z−1} for r ≥ 2, and that Cr and C∗

r have the same
parity as r + 1.

We now observe that, for any n ∈ N∗,

B̃ ∈ z−nC[[z−1]] ⇒ EB̃ ∈ z−nC[[z−1]]

and that, when acting on odd or even formal series, E preserves parity. This is due
to the properties of the restriction of ∆−1 to z−2C[[z−1]], which can be written I+Γ
with Γ : z−n−1C[[z−1]] → z−nC[[z−1]] defined by Γ = ∂−1

z +
∑

ℓ≥1 βℓ∂
2ℓ−1
z , as at the

end of the proof of Lemma 2.8, whence L−1
0,0ϕ̃ = −ψ1,0Γ(ϕ̃ ψ2,0) + ψ2,0Γ(ϕ̃ ψ1,0).

One can thus check by induction that the formulas

Ãn = EB̃n, n ≥ 1 (54)

B̃1 = C0 (55)

B̃n =
∑

r≥1, n1,...,nr≥1
n1+···+nr=n−1

CrÃn1 · · · Ãnr +
∑

r≥2, n1,...,nr≥1
n1+···+nr=n

C∗
r Ãn1 · · · Ãnr , n ≥ 2 (56)

define, for each ε, odd series B̃n(z, ε), Ãn(z, ε) ∈ z−nC[[z−1]] for n ≥ 1, such that
the formally convergent series

Ã(z, ε, ε) =
∑

n≥1

εnÃn(z, ε), B̃(z, ε, ε) =
∑

n≥1

εnB̃n(z, ε) ∈ z−1C[[z−1]]

are odd and solve (53) (in fact, one even has B̃n, Ãn ∈ z−2n+1C[[z−1]]).
Correspondingly, the Borel transform Â(ζ, ε, ε) can be written as the series

Â =
∑

n≥1

εnÂn(ζ, ε) ∈ C[[ζ]] (57)

which is formally convergent. The formal series

η̃(z, ε, ε) = z−2Ã(z, ε, ε)

is the desired odd solution of equation (47). We shall show that Â is holomorphic for

ζ ∈ R(0), with holomorphic dependence on (ε, ε) too, and suitably bounded in R
(0)
ρ ;

Proposition 3.2 will then follow by applying Lemma 3.1 to η̂(ζ, ε, ε) = ζ ∗ Â.
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Proposition 3.3.

(i) Each of the formal series Ân(ζ, ε) defined by (54)–(56) has positive radius of
convergence and defines a holomorphic function of R(0).

(ii) Let ε′0 ∈ (0, ε0) and ρ ∈ (0, 2π). Then there exist c, τ1, τ0 > 0 such that, for
every n ≥ 1,

|Ân(ζ, ε)| ≤ cτn1
|ζ|n−1

(n− 1)!
eτ0|ζ|, ζ ∈ R(0)

ρ , |ε| ≤ ε′0. (58)

Proof that Proposition 3.3 implies Proposition 3.2: The series of holomorphic func-
tions

∑

εnÂn(ζ, ε) is uniformly convergent in any compact subset of R(0)×C×{|ε| <
ε0}, its sum is a holomorphic function Â(ζ, ε, ε) which satisfies

|Â(ζ, ε, ε)| ≤ cτ1|ε| e
(τ0+τ1|ε|)|ζ|, ζ ∈ R(0)

ρ , ε ∈ C, |ε| ≤ ε′0.

For any ε, ε, the Taylor expansion at the origin of ζ 7→ Â(ζ, ε, ε) is nothing but
the formal series Â(ζ, ε, ε) defined by (57) (by formal convergence, because Ân ∈
ζn−1C{ζ}). Thus Â(ζ, ε, ε) has positive radius of convergence and the holomorphic
germ that it defines extends to the holomorphic function Â(ζ, ε, ε). Consequently,
η̂ = ζ ∗ Â is convergent too and Lemma 3.1 yields the conclusion (with C = cτ1).

Proof of Proposition 3.3: From now on, we sometimes omit the explicit dependence
on (ε, ε).

(i) The formal series Cr(z), C
∗
r (z) belong to z−1C{z−1}, hence their Borel trans-

forms Ĉr(ζ), Ĉ
∗
r (ζ) are entire functions of exponential type and we can write B̂1 = Ĉ0

and

B̂n =
∑

r≥1, n1,...,nr≥1
n1+···+nr=n−1

Ĉr ∗ Ân1 ∗ · · · ∗ Ânr +
∑

r≥2, n1,...,nr≥1
n1+···+nr=n

Ĉ∗
r ∗ Ân1 ∗ · · · ∗ Ânr

for n ≥ 2. Here, convolution is to be understood as the counterpart in C[[ζ]] of
multiplication in z−1C[[z−1]], but we shall readily see that the formal series Ân
belong to C{ζ}, hence the facts indicated in Section 3.1 are in force.

We need to examine the counterpart in C[[ζ]] of the operator E defined by (52).
We have ψ1,0 = iz−2 and ψ2,0 = −iz3P(z), where P(z) = 1

5 − 1
3z

−2 + 2
15z

−4, hence

EB̃ = −∆−1(z−1
PB̃) + z5

P∆−1(z−6B̃), B̃ ∈ z−1C[[z−1]].

Using the elementary properties of B,

ϕ̃ ∈ z−2C[[z−1]] ⇒ B(zϕ̃) = ∂ζ ϕ̂, B(∆−1ϕ̃) =
1

e−ζ − 1
ϕ̂(ζ) (59)

(the second property follows from (43) and the first one is to be used five times), we
get

ÊB̂ := B(EB̃) = −J(ζ) · (1 ∗
▽

P ∗ B̂) +
▽

P ∗ ∂5
ζ

[

J(ζ) ·
(ζ5

5!
∗ B̂
)

]

, (60)

J(ζ) =
1

e−ζ − 1
,

▽

P(ζ) =
1

5
δ −

1

3
ζ +

1

45
ζ3 (61)
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(with the convention of the end of Section 3.1 to interpret convolution with δ as the
identity operator). The counterpart of equation (54) is thus

Ân = ÊB̂n, n ≥ 1.

We now observe that B̂ ∈ C{ζ} implies ÊB̂ ∈ C{ζ} (the simple pole of J(ζ) at 0 is
compensated by the vanishing at 0 of the functions with which J(ζ) is multiplied),
hence Ân(ζ), B̂n(ζ) ∈ C{ζ} by induction. But even if B̂ extends to an entire function
(as is the case of B̂1 for instance), ÊB̂ is in general singular at ±2πi.

It is the meromorphic function J(ζ) which introduces singular points in the ζ-
plane, not at the origin, as previously mentioned, but at all non-zero integer multiples
of 2πi. Ultimately, this is the source of the divergence of the formal series Ãn(z),
η̃(z), Φ̃0(z).

The property of extending holomorphically to R(0) is preserved by Ê and by
convolution (by virtue of formula (60) and Lemma 3.1). We thus obtain that all
the convergent series Ân(ζ), B̂n(ζ) define holomorphic functions of R(0). Moreover,
they depend holomorphically on the parameter ε provided |ε| < ε0.

(ii) We now fix ε′0 ∈ (0, ε0) and ρ ∈ (0, 2π). We shall use a majorant series

method to bound inductively Ân in R
(0)
ρ and prove (58).

Definition 3.4. Let τ ≥ 0. We say that a function Â(ζ) is τ -majorized by Â (ζ),
and we write Â4τ Â , if

• Â is a holomorphic function of R(0),

• Â is an entire function with real non-negative Taylor coefficients at the origin,

• |Â(ζ)| ≤ Â
(

|ζ|
)

eτ |ζ| for all ζ ∈ R
(0)
ρ .

For Ã, Ã ∈ C[[z−1]] with constant terms A0,A0 and Borel transforms Â = BÃ, Â =
BÃ ∈ C{ζ}, we write Ã4τ Ã if

|A0| ≤ A0, Â4τ Â .

In this last situation, we also write A0δ + Â(ζ)4τ A0δ + Â (ζ).

Lemma 3.5. Suppose Ã, B̃ ∈ C[[z−1]] satisfy Ã4τ Ã and B̃4τ B̃. Then

Ã · B̃4τ Ã · B̃. (62)

Suppose now Â4τ Â (the corresponding formal series Ã, Ã have no constant term)
and p ∈ N. Then

ζp

p!
∗ Â4τ Âp, Âp(ξ) =

ξp+1

(p+ 1)!
Â (ξ). (63)

Proof of Lemma 3.5: The first statement follows from Lemma 3.1, since (A0δ+ Â) ∗
(B0δ + B̂) = A0B0δ + A0B̂ + B0Â+ Â ∗ B̂. The second statement stems from the
inequalities

∣

∣

∣

∣

ζp

p!
∗ Â

∣

∣

∣

∣

≤

∫ |ζ|

0

sp

p!
Â
(

|ζ| − s
)

eτ(|ζ|−s) ds ≤ Â
(

|ζ|
)

eτ |ζ|
∫ |ζ|

0

sp

p!
ds

(where we used the fact that Â is monotonic non-decreasing on R+).
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Lemma 3.6. Let τ ≥ 1+3max
{

1, 1
y0

}

with y0 as in assumption (B) of Section 0.1.

Then there exist positive constants c, κ such that, for |ε| ≤ ε′0,

Cr(z, ε)4τ Cr(z) = cκrz−1, r ≥ 0 (64)

C∗
r (z)4τ C

∗
r (z) = cκr−2z−1, r ≥ 2. (65)

Notice that Ĉr and Ĉ ∗
r are the constant functions cκr and cκr−2.

Proof of Lemma 3.6: Let

c0 = max
{

|V ′(y, 0, ε)|; |y| ≤ 2y0
3 , |ε| ≤ ε′0

}

.

The Cauchy inequalities yield
∣

∣

1
r!∂

r
yV

′(y, 0, ε)
∣

∣ ≤ c0
(y0

3

)−r
for each r ∈ N and (y, ε)

such that |y| ≤ y0
3 and |ε| ≤ ε′0. One can apply again the Cauchy inequalities to

bound the coefficients of the Taylor expansion of the function y 7→ 1
r!∂

r
yV

′(y, 0, ε)
at the origin. Since wr(z, ε) is obtained by replacing y by −iz−1 in this function
(see (48)), we get

wr(z, ε) =
∑

p≥0

wr,p(ε)z
−p for |z−1| < y0, with |wr,p(ε)| ≤ c0

(y0
3

)−r−p
. (66)

As a consequence,

k ≥ 1, τ ≥ 1 + 3
y0

and |ε| ≤ ε′0 ⇒ z−kwr(z, ε)4τ c0
(y0

3

)−r
z−1. (67)

Indeed, B(z−kwr) is the entire function
∑

p≥0wr,p(ε)
ζp+k−1

(p+k−1)! , the modulus of which

is less than |ζ|k−1

(k−1)!

∑

|wr,p(ε)|
|ζ|p

p! (because binomial coefficients are ≥ 1), and (67)

follows from (66) and |ζ|k−1

(k−1)! ≤ e|ζ|.

Now, for each r ≥ 3, we can apply this to Cr = z−kwr(z, ε) with k = 2r− 4 ≥ 2.
For the remaining cases we must make use of assumption (B): V ′(y, 0, ε) = O(y5)
implies

w0 =
∑

p≥0

w0,p+5z
−p−5, w1 =

∑

p≥1

w1,p+3z
−p−3, w2 =

∑

p≥2

w2,p+1z
−p−1.

The Borel transforms of C0 = z4w0, C1 = z2w1 and C2 = w2 thus satisfy, by virtue
of (66),

|Ĉ0(ζ, ε)| ≤ c0
(y0

3

)−5
eτ |ζ|, |Ĉ1(ζ, ε)| ≤ c0

(y0
3

)−4
eτ |ζ|, |Ĉ2(ζ, ε)| ≤ c0

(y0
3

)−3
eτ |ζ|,

provided τ ≥ 3
y0

. We have thus checked that (64) holds if τ ≥ 1 + 3
y0

and c and κ
are large enough.

We treat C∗
r by following the same steps. The function F0,0(y) = 2y

1+y2
is holo-

morphic in the unit disc and bounded by 3 for |y| ≤ 2
3 , thus

∣

∣

1
r!∂

r
yF0,0(y)

∣

∣ ≤ 3r+1 for

|y| ≤ 1
3 , and

fr(z) =
∑

p≥0

fr,pz
−p for |z−1| < 1, with |fr,p| ≤ 3r+p+1.

As previously, this implies that C∗
r 4τ 3r+1z−1 for r ≥ 3, provided τ ≥ 4. As for

C∗
2 = f2, since this convergent series is odd, it has no constant term and we can

write Ĉ∗
2 (ζ) =

∑

p≥0 f2,p+1
ζp

p! , hence |Ĉ∗
2 (ζ)| ≤ 27 e3|ζ|.
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Lemma 3.7. There exists λ > 0 such that, for any τ ≥ 0 and B̃ ∈ z−1C[[z−1]],

B̃4τ B̃ ⇒ EB̃4τ E · B̃,

with E = λ(1 + z−1)5.

Proof of Lemma 3.7: Let us assume τ ≥ 0 and B̂4τ B̂. We should prove ÊB̂4τ

▽

E ∗

B̂, where
▽

E = λ(δ + 1)∗5 = δ + 5 + 10ζ + 5ζ2 + 5
6ζ

3 + 1
24ζ

4 and, in view of (60),

ÊB̂ = −D̂0 +
▽

P ∗ D̂, D̂0 = J · (1 ∗
▽

P ∗ B̂), D̂ =

5
∑

p=0

(

5

p

)

J (p) ·
(ζp

p!
∗ B̂
)

.

Formula (61) shows that
▽

P 4τ (δ + 1)∗4, and J is a meromorphic function which
has a simple pole at the origin and which is holomorphic in R(0) \ {0}. Writing
J(ζ) =

∑

n≥1 enζ for ℜe ζ < 0 and J(ζ) = −
∑

n≥0 e−nζ for ℜe ζ > 0, we see that the

function J is bounded and its derivatives J (p) are exponentially small as | ℜe ζ| → ∞,
thus we can find K > 0 such that

|J(ζ)| ≤ K
(

1 + |ζ|−1
)

, |J (p)(ζ)| ≤ K|ζ|−p−1, for 1 ≤ p ≤ 5, ζ ∈ R(0)
ρ (68)

(by treating separately the unbounded domain R
(0)
ρ ∩

{

| ℜe ζ| > 1
}

, the disc
{

|ζ| < 1
}

and the compact set R
(0)
ρ ∩

{

| ℜe ζ| ≤ 1, |ζ| ≥ 1
}

).
We now observe that, as a consequence of Lemma 3.5,

Â4τ Â ⇒















J ·
(

1 ∗ Â
)

4τ K(δ + 1) ∗ Â = K
(

Â + 1 ∗ Â

)

J (p) ·
(ζp

p!
∗ Â
)

4τ
K

(p+ 1)!
Â , 1 ≤ p ≤ 5

(for the first inequality we used both (62) and (63), 1 ∗ Â4τ 1 ∗ Â and 1 ∗ Â4τ ξÂ ,
before multiplying by |J(ζ)| ≤ K +K/|ζ|).

Applying this with Â =
▽

P ∗ B̂4τ (δ + 1)∗4 ∗ B̂, we get D̂0 4τ K(δ + 1)∗5 ∗ B̂.
Applying it with Â = B̂, we get D̂4τ K

(

1 ∗ B̂
)

+
∑5

p=0

(

5
p

)

KB̂, and a fortiori

D̂4τ K
′(δ + 1) ∗ B̂, K ′ = 25K,

whence the conclusion follows, with λ = K +K ′.

End of the proof of Proposition 3.3: Let us choose τ, c, κ as in Lemma 3.6. We define
inductively formal series Ãn, B̃n by the formulas

Ãn = E B̃n, n ≥ 1

B̃1 = C̃0

B̃n =
∑

r≥1, n1+···+nr=n−1

C̃rÃn1 · · · Ãnr +
∑

r≥2, n1+···+nr=n

C̃
∗
r Ãn1 · · · Ãnr , n ≥ 2.

The previous lemmas show that

Ãn 4τ Ãn, B̃n 4τ B̃n, n ≥ 1. (69)
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Let us consider the generating series Ã (z, ε) =
∑

n≥1 ε
nÃn(z): it is the unique

solution in εC[[z−1, ε]] of the equation

Ã = E ·
(

ε
∑

r≥0

CrÃ
r +

∑

r≥2

C
∗
r Ã

r
)

,

in which the right-hand side can be written cz−1E
(

ε+ Ã 2
)(

1−κÃ
)−1

by virtue of
(64)–(65). We thus get the quadratic equation

Ã = cεz−1
E + (κ+ cz−1

E )Ã 2

and the solution can be written explicitly: using R(x) = 1−(1−4x)1/2

2x =
∑

n≥0Rnx
n,

we have

Ã (z, ε) = U (z, εz−1), U (z, t) = ctE (z)R
(

ctE (z)
(

κ+ cz−1
E (z)

)

)

.

We have thus found

Ãn(z) = z−nUn(z) =
∑

p≥0

Un,pz
−n−p, n ≥ 1,

with the notations Un(z) = Rn−1

(

cE (z)
)n(

κ + cz−1E (z)
)n−1

=
∑

p≥0 Un,pz
−p.

Now, we can consider U as a holomorphic function of two variables in the poly-
disc

{

|z−1| ≤ 1
2

}

×
{

|t| ≤ 1
τ1

}

, continuous on the closure of this polydisc, for an
appropriate τ1 > 0 (determined by c, κ, λ). Hence |Un,p| ≤ const 2pτn1 and

0 ≤ Ân(ξ) =
∑

p≥0

Un,p
ξn+p−1

(n+ p− 1)!
≤ const τn1

ξn−1

(n− 1)!
e2ξ , ξ ∈ R+

(because binomial coefficients are ≥ 1), and (69) shows that

|Ân(ζ)| ≤ const τn1
|ζ|n−1

(n− 1)!
e(τ+2)|ζ|, n ≥ 1,

as desired.

The statement relative to Φ̃0(z, ε) in Theorem 1.4 follows from Proposition 3.2
(with C0 = 1 + Cε′0 and τ = 1 + τ0 + τ1ε

′
0 for instance).

3.3 The analytic continuation of Φ̂0(ζ, ε) through the cuts ±2πi[1,+∞)

Before going on with the study of the Borel transforms of the formal solutions
of the secondary inner equations, we build on the previous arguments to improve
our knowledge of the analytic continuation of Φ̂0, with a view to the study of its
singularities in Section 4.3.

To deal with multivalued analytic continuation, it is convenient to define a Rie-
mann surface R(1) over C, in which R(0) will appear as the principal sheet and which
is itself a part of a larger Riemann surface R.
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Definition 3.8. Let R be the set of all homotopy classes4 of paths issuing from
the origin and lying inside C \ 2πi Z (except for their initial point), and let π : R →
(C \ 2πi Z) ∪ {0} be the map, which associates with any class c the extremity γ(1)
of any path γ : [0, 1] → C which represents c. We consider R as a Riemann surface
by pulling back by π the complex structure of (C \ 2πi Z) ∪ {0}.

Observe that π−1(0) consists of only one point (the homotopy class of the con-
stant path), which we may call the origin of R. We define the “principal sheet”
of R as the set of all the classes of segments [0, ζ], ζ ∈ R(0); equivalently, it is the
connected component of π−1(R(0)) which contains the origin; we identify it with
the cut plane R(0) itself. We define the “half-sheets” of R as the various connected
components of π−1({ℜe ζ ≥ 0}) or of π−1({ℜe ζ ≤ 0}).

A holomorphic function of R can be viewed as a germ of holomorphic function at
the origin of C which admits analytic continuation along any path avoiding 2πi Z; we
then say that this germ “extends holomorphically to R” (see Section 1.3 of [Sau05]).
This definition a priori does not authorize analytic continuation along a path which
leads to the origin, unless this path stays in R(0).

It turns out that the Borel transform Φ̂0 of the formal solution of the first inner
equation extends holomorphically to R; however, in this section, we content ourselves
with explaining why Φ̂0 extends holomorphically to a subspace R(1) of R.

Definition 3.9. We define R(1) ⊂ R as the union of the principal sheet R(0) and
the “contiguous” half-sheets, i.e. a point ζ in R(1) can be represented by a path γζ
which issues from 0 and lies in C\2πi Z but crosses at most once the imaginary axis
(no crossing at all means we stay in R(0), but we arrive to a new half-sheet when we
cross between two consecutive singular points 2πim and 2πi(m+1), or −2πi(m+1)
and −2πim, with m ≥ 1).

We follow Sections 2.1.2 and 2.3.3 of [OSS03] and use auxiliary subsets R
(1)
ρ , the

points of which can be represented by paths γζ which stay in R(0) or pass between
two discs D(±2πim,mρ) and D

(

±2πi(m + 1), (m + 1)ρ
)

with 1 ≤ m < 1
2(2π

ρ − 1)
and cross the imaginary axis at most once—see the left part of Figure 3 and the
precise definition in Section 2.3.3 of [OSS03] (which deals with the same situation
but without the factor 2π). Observe that

R(1) =
⋃

0<ρ< 2π
3

R(1)
ρ .

The right part of Figure 3 illustrates the possibility of defining, for each ζ ∈ R
(1)
ρ ,

a path Γζ which represents ζ, is contained in R
(1)
ρ and is “symmetrically contractile”.

The meaning of this property and the definition of Γζ are given in Section 2.3.3
of [OSS03]; here, we only mention the existence of a constant Kρ > 0 such that

|π(ζ)| ≤ ℓ(ζ) ≤ Kρ|π(ζ)|, ζ ∈ R(1)
ρ , (70)

where ℓ(ζ) denotes the length of Γζ , and a lemma which extends to R
(1)
ρ the

Lemma 3.1 that we used to control convolution products in R
(0)
ρ :

4When mentioning homotopy of paths, we always refer to homotopy with fixed extremities.
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Figure 3: Left: One path among the ones which define points of R
(1)
ρ . Right: The

path Γζ defines the same point ζ ∈ R
(1)
ρ as γζ .

Lemma 3.10. Suppose ϕ̂ and ψ̂ extend holomorphically to R(1). Then ϕ̂∗ψ̂ extends
holomorphically to R(1).

Suppose moreover ρ ∈ (0, 2π
3 ), τ1, τ2 ≥ 0 and Φ̂ and Ψ̂ are non-negative continu-

ous monotonic non-decreasing functions on R+ such that

|ϕ̂(ζ)| ≤ Φ̂
(

ℓ(ζ)
)

eτ1ℓ(ζ), |ψ̂(ζ)| ≤ Ψ̂
(

ℓ(ζ)
)

eτ2ℓ(ζ), ζ ∈ R(1)
ρ .

Then
|ϕ̂ ∗ ψ̂(ζ)| ≤ Φ̂ ∗ Ψ̂

(

ℓ(ζ)
)

eτℓ(ζ), ζ ∈ R(1)
ρ , (71)

where τ = max(τ1, τ2).

The proof is given in [GS01], p. 539. The idea is that the analytic continuation
of ϕ̂ ∗ ψ̂ at a point ζ represented by a path γζ is given by

∫

Γζ
ϕ̂(ζ1)ψ̂(ζ − ζ1) dζ1.

We leave it to the reader to adapt the computations of the previous section so

as to prove that Φ̂0 extends holomorphically to R
(1)
ρ with a bound C ′

0 eτ
′
0ℓ(ζ) (follow

the same steps, replacing |ζ| by ℓ(ζ); it is essentially the proof of Proposition 3.3
that needs to be adapted, it will involve a lemma analogous to Lemma 3.7 for which
one must use (70)). Inequality (25) for Φ̂0 follows from this (choose ρ > 0 less than
πλ cos β so that the path Γλ,β pass between the discs D(2πi, ρ) and D(4πi, 2ρ)).

We thus obtain that Φ̃0 ∈ R̃ES(1), with the notation of

Definition 3.11. We define R̃ES(1) as B−1 R̂ES(1), where R̂ES(1) is the set of all
ϕ̂ ∈ C{ζ} such that

(i) ϕ̂(ζ) extends analytically to R(1),

(ii) for each ρ ∈ (0, 2π
3 ), there exist τ, C > 0 such that |ϕ̂(ζ)| ≤ C eτℓ(ζ) for ζ ∈ R

(1)
ρ .

Obviously, R̂ES(1) ⊂ R̂ES(0) and R̃ES(1) ⊂ R̃ES(0).
What will be used in Section 4 is the fact that the analytic continuation of Φ̂0

can be followed around the points 2πi and −2πi.
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3.4 The Borel transform of Φ̃n(z, ε; b1, . . . , bn)

The analysis to control Φ̂n(ζ, ε; b1, . . . , bn) is easier than for Φ̂0(ζ, ε), and we shall
not give details about the dependence on ε, since it is easily seen to be analytic with
uniform bounds for |ε| ≤ ε′0, nor on the dependence on b1, . . . , bn, which is clearly
polynomial.

According to (36) and (7), we have

Φ̃n = −ψ̃1∆
−1(ψ̃2f̃n) + ψ̃2∆

−1(ψ̃1f̃n) + bnψ̃2, f̃n = C̃n,0 +
∑

C̃n0,rΦ̃n1 . . . Φ̃nr ,

(72)
where the sum is taken over all n0 ≥ 0, r ≥ 1 such that n0+r ≥ 2 and n1, . . . , nr ≥ 1
such that n0 + n1 + · · · + nr = n, and with

C̃n,r =
1

r!
∂ryFn

(

Φ̃0(z, ε), ε
)

.

The part of Theorem 1.4 concerning Φ̂n, n ≥ 1, follows from (72) and the fol-

lowing stability properties of the space R̃ES(0) of Definition 1.3:

Lemma 3.12.

(i) The space R̃ES(0) is stable under multiplication, differentiation and the shift
operator T .

(ii) If F (y) ∈ C{y} and ϕ̃(z) ∈ R̃ES(0) ∩ z−1C[[z−1]], then F
(

ϕ̃(z)
)

∈ R̃ES(0).

(iii) If ϕ̃ ∈ R̃ES(0) ∩C((z−1))(1) (using the notation (32) of Lemma 2.3), then ∆−1ϕ̃

and ∆−1
(0)ϕ̃ ∈ R̃ES(0).

Lemma 3.13. The formal series ψ̃1, ψ̃2, C̃n,r all belong to R̃ES(0) (with uniform
estimates for |ε| ≤ ε′0).

Indeed, in view of (72), these lemmas imply that Φ̃n ∈ R̃ES(0) by induction on
n ≥ 1.

Proof of Lemma 3.12: Let ϕ̃, ψ̃ ∈ R̃ES(0). We denote by P (z) =
∑

akz
k and

Q(z) =
∑

bkz
k the polynomial parts of ϕ̃(z) and ψ̃(z), and by ϕ̂(ζ) and ψ̂(ζ) their

Borel transforms (thus the extended Borel transforms, as defined at the end of
Section 3.1, are Bextϕ̃ =

∑

akδ
(k) + ϕ̂(ζ) and Bextψ̃ =

∑

bkδ
(k) + ψ̂(ζ); both sums

over k are finite). Let ρ ∈ (0, 2π) and τ, c > 0 such that |ϕ̂(ζ)|, |ψ̂(ζ)| ≤ c eτ |ζ| for

ζ ∈ R
(0)
ρ/2.

(i) According to (46), we have

B
(

ϕ̃ · ψ̃
)

=
∑

akψ̂
(k) +

∑

bkϕ̂
(k) + ϕ̂ ∗ ψ̂.

The Cauchy inequalities imply that

|ϕ̂(k)(ζ)|, |ψ̂(k)(ζ)| ≤ k!(ρ/2)−kc eτ(|ζ|+ρ/2), ζ ∈ R(0)
ρ (73)

(because the disc of center ζ and radius ρ/2 is included in R
(0)
ρ whenever ζ ∈ R

(0)
ρ ).

On the other hand, Lemma 3.1 implies that
∣

∣ϕ̂ ∗ ψ̂(ζ)
∣

∣ ≤ c2|ζ| eτ |ζ| ≤ c2 e(τ+1)|ζ|.
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Hence ϕ̃ · ψ̃ ∈ R̃ES(0). For the stability of R̃ES(0) under ∂z and T , use (43).

(ii) We now suppose ϕ̃ ∈ R̃ES(0) ∩ z−1C[[z−1]], i.e. P ≡ 0. Let F (y) =
∑

r≥0 ary
r ∈

C{y}. Substitution gives rise to the formally convergent series

ψ̃(z) = F
(

ϕ̃(z)
)

=
∑

r≥0

arϕ̃(z)r ∈ C[[z−1]].

Its Borel transform is obtained by discarding the constant term: ψ̂ =
∑

r≥1 arϕ̂
∗r.

Lemma 3.1 yields
∣

∣ϕ̂∗r(ζ)
∣

∣ ≤ cr |ζ|
r−1

(r−1)! eτ |ζ| in R
(0)
ρ (and even in R

(0)
ρ/2) and there exist

C, κ > 0 such that |ar| ≤ Cκr, hence
∣

∣ψ̂(ζ)
∣

∣ ≤ cCκ e(cκ+τ)|ζ|, and ψ̃ ∈ R̃ES(0).

(iii) We now suppose ϕ̃ ∈ C((z−1))(1), i.e. ϕ̂(0) = 0, hence ϕ̂ = 1 ∗ ϕ̂′. We have

B
(

∆−1ϕ̃
)

= B
(

∆−1
(0)ϕ̃

)

= J · ϕ̂.

Indeed, ∆−1P and ∆−1
(0)P are polynomials in z because ∆−1 and ∆−1

(0) leave C[z]

invariant, as was mentioned in Remark 2.4, and we can apply (59) to ϕ̃(z)−P (z) ∈

z−2C[[z−1]]. The function J(ζ) was defined by (61) and, in R
(0)
ρ , we can use the

bound provided by (68), together with the bounds |ϕ̂(ζ)| ≤ c eτ |ζ| or

|ϕ̂(ζ)| ≤ c′|ζ| eτ |ζ|, c′ = c(ρ/2)−1 eτρ/2

(the last one results from the Cauchy inequalities (73) and Lemma 3.1 applied to
ϕ̂ = 1 ∗ ϕ̂′). Hence

∣

∣J(ζ) · ϕ̂(ζ)
∣

∣ ≤ K
(

∣

∣ϕ̂(ζ)
∣

∣+
1

|ζ|

∣

∣ϕ̂(ζ)
∣

∣

)

≤ K(c+ c′) eτ |ζ|, ζ ∈ R(0)
ρ ,

which shows that ∆−1ϕ̃,∆−1
(0)ϕ̃ ∈ R̃ES(0).

Proof of Lemma 3.13: Let ρ ∈ (0, 2π). We know from Section 3.2 that there exists
τ, c > 0 such that the Borel transform of Φ̃0(z) = −iz−1 +O(z−3) satisfies

∣

∣Φ̂0(ζ, ε)
∣

∣ ≤ c eτ |ζ|, ζ ∈ R
(0)
ρ/2.

The formal series ψ̃1 = ∂zΦ̃0 = iz−2+O(z−4) thus has a Borel Transform ψ̂1 = −ζΦ̂0

which satisfies
∣

∣ψ̂1(ζ)
∣

∣ ≤ c|ζ| eτ |ζ| ≤ c e(τ+1)|ζ|, ζ ∈ R
(0)
ρ/2.

In particular ψ̃1 ∈ R̃ES(0).

Let us now consider ψ̃2 = ψ̃1∆
−1
(0)

(

1
ψ̃1T ψ̃1

)

(according to Corollary 2.7). We

have ψ̃1T ψ̃1 = −z−4(1− Ã) with the Borel transform of Ã ∈ z−1C[[z−1]] defined by
Â = ∂4

ζ

(

ψ̂1 ∗(e−ζ ψ̂1)
)

; Lemma 3.1 and the Cauchy inequalities yield
∣

∣ψ̂1 ∗(e−ζ ψ̂1)
∣

∣ ≤

c2 |ζ|3

3! e(τ+1)|ζ| ≤ c2 e(τ+2)|ζ| in R
(0)
ρ/2 and

∣

∣Â(ζ)
∣

∣ ≤ c′ e(τ+2)|ζ|, ζ ∈ R(0)
ρ ,

with c′ = 4!(ρ/2)−4c2 e(τ+2)ρ/2. Thus Ã ∈ R̃ES(0) and Lemma 3.12 (ii) implies

that (1− Ã)−1 ∈ R̃ES(0). Point (i) of this lemma then implies that −z4(1− Ã)−1 ∈
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R̃ES(0), and point (iii) yields ∆−1
(

1
ψ̃1T ψ̃1

)

= ∆−1
(

−z4(1−Ã)−1
)

∈ R̃ES(0), whence

ψ̃2 ∈ R̃ES(0).
The case of the C̃n,r’s is treated by applying Lemma 3.12 (ii) to the Taylor

expansion of Fn(y, ε) =
∑

p≥1 Fn,p(ε)y
p (in fact, since F is odd in y, the coefficients

with even p vanish) and its derivatives (the uniformity of the estimates for |ε| ≤ ε′0
stems from the inequalities |Fn,p(ε)| ≤ (h0/2)

−n(y0/2)
−p max

{

|F(y, h, ε)|; |y| ≤
y0/2, |h| ≤ h0/2, |ε| ≤ ε′0

}

).

3.5 The analytic continuation of the Φ̂n’s through the cuts ±2πi[1,+∞)

Lemmas 3.12 and 3.13 are also valid for the space R̃ES(1) introduced in Section 3.3,
as can be checked by means of Lemma 3.10. By adapting the above arguments, one
can thus deduce that all the Φ̃n’s belong to R̃ES(1): their Borel transforms extend

holomorphically to R(1), with bounds of the form C ′
n eτ

′
nℓ(ζ) in each R

(1)
ρ , and they

satisfy inequalities of the form (25) (choose ρ > 0 less than πλ cos β so that the
path Γλ,β pass between the discs D(2πi, ρ) and D(4πi, 4ρ)).

What will be used in Section 4 is the fact that the analytic continuation of Φ̂n

can be followed around the points 2πi and −2πi for any n ≥ 1.

4 The bridge equation

The goal of this section is to analyze the singularities of the Φ̂n’s, so as to prove
Theorem 1.10. In Section 4.1, we first describe a normalized fundamental system
of formal solutions of the linear equation (FL)b introduced in Section 1.3, then
we return to the theory of the analytic functions of the complex variable ζ in the
“Borel plane”: Écalle’s formalism of singularities (Section 4.2) will allow us to obtain
information on ∆±2πiΦ̃n almost “automatically” by considering the counterpart of
equation (FL)b in the space of singularities (Section 4.3).

4.1 A normalized fundamental system of formal solutions for the full
variational equation

We now prove Proposition 1.8.
We first define Ψ̃1(z, h; b) = ∂zΦ̃(z, h; b): this is clearly an even solution of (FL)b,

which is of the form (17) with Ψ̃1,0(z, ε) = iz−2 +O(z−4) and Ψ̃1,n ∈ z4n−2C[[z−1]]
(in fact, Ψ̃1,0 was already used under the name ψ̃1 in Sections 2.1 and 2.2—see (35)).
In view of Appendix A.1, the last property can be written Ψ̃1 ∈ z−2C[[z−1, h2z4]];
as a consequence of (9), we also have b1 = 0 ⇒ Ψ̃1 ∈ z−2C[[z−1, (hz)2]], which

amounts to (18). As mentioned in Section 1.2, the space R̃ES(0) is stable under

differentiation, thus each Ψ̃1,n = ∂zΦ̃1,n belongs to R̃ES(0).
In order to define Ψ̃2, we write ∂yF

(

Φ̃(z, h, ε; b), h, ε
)

= 2 + A(z, h, ε) = 2 +
A0 +

∑

n≥1 h
2nAn, with A0 = A0(z, ε) as in (30) and An = An(z, ε; b1, . . . , bn) for

n ≥ 1. Thus, equation (FL)b reads LΨ = 0 with LΨ := PΨ−A(z, h, ε)Ψ (still using
the operator P defined by (31)). We shall proceed as in Section 2.1, adapting to
the case of C((z−1))[[h2]] the theory of linear difference operators and particularly
point (iv): the independent solution Ψ̃2 will be defined as Ψ̃1∆

−1
(0)

(

1
Ψ̃1T Ψ̃1

)

, we just

need to check that this definition makes sense.
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Let A4 = C[[z−1, h2z4]]. The formal series 1
Ψ̃1

is a well-defined even element of

z2A4 ⊂ C((z−1))[[h2]]. The argument of Lemma 2.6 shows that 1
Ψ̃1
T
(

1
Ψ̃1

)

∈ z4A4

has no residuum with respect to z and that ∆−1
(0)

(

1
Ψ̃1T Ψ̃1

)

is a well-defined odd

element of z5A4 (the operator ∆−1
(0) = ∂−1

z ◦
(

I − 1
2∂z +

∑

ℓ≥1 βℓ∂
2ℓ
z

)

is well-defined

in {
∑

h2nϕn(z) ∈ C((z−1))[[h2]] | ∀n ≥ 0, ϕn ∈ C((z−1))(1) }). We thus get a

normalized fundamental system of solutions (Ψ̃1, Ψ̃2) with Ψ̃2 = Ψ̃1∆
−1
(0)

(

1
Ψ̃1T Ψ̃1

)

odd and of the form (17). Moreover Ψ̃2,0(z, ε) = − i
5z

3 + O(z) (already used under

the name ψ̃2 in Sections 2.1 and 2.2) and each Ψ̃2,n belongs to z4n+3C[[z−1]], and
also to z2n+3C[[z−1]] when b1 = 0 (using A2 = C[[z−1, (hz)2]] in that case).

Let us check that each Ψ̃2,n belongs to R̃ES(0). Let χ̃ = Ψ̃1T Ψ̃1. Since Ψ̃1 ∈

R̃ES(0)[[h2]], point (i) of Lemma 3.12 yields χ̃ =
∑

n≥0 h
2nχ̃n(z) ∈ R̃ES(0)[[h2]].

Writing the first term as χ̃0(z) = −z−4
(

1 + ϕ̃(z)
)

with ϕ̃ ∈ R̃ES(0) ∩z−1C[[z−1]], we

see that 1/χ̃0 belongs to R̃ES(0) by point (ii) of Lemma 3.12 applied to F (y) = (1+

y)−1. It follows that 1
χ̃ = 1

χ̃0

(

1+
∑

r≥1(−1)r(
∑

n≥1 h
2n χ̃n

χ̃0
)r
)

belongs to R̃ES(0)[[h2]]

(each term is a polynomial in 1
χ̃0
, χ̃1, χ̃2, . . . ) and ∆−1

(0)

(

1
χ̃

)

∈ R̃ES(0)[[h2]] by point (iii)

of Lemma 3.12. Hence Ψ̃2 ∈ R̃ES(0)[[h2]].
In fact, in view of Sections 3.3 and 3.5, we can strengthen the statements on the

analytic continuation of the Borel transforms: by an easy adaptation of the above
arguments, one can check that the Ψ̂j,n’s belong to R̂ES(1), thus

Ψ̃1, Ψ̃2 ∈ R̃ES(1)[[h2]]. (74)

This will be used in Section 4.3.
We end this section with the proof of equation (28) of Proposition 1.13. Let n ≥

1; the formal series ∂bnΦ̃ is clearly an odd solution of (FL)b and is thus proportional
to Ψ̃2:

∂bnΦ̃ = β(h, ε; b)Ψ̃2(z, h, ε; b), β ∈ C[[h2]].

We have ∂bnΦ̃ =
∑

p≥n h
2p ∂bnΦ̃p and, according to (38), ∂bnΦ̃n = Ψ̃2,0, hence β =

h2n +O(h2(n+1)).

4.2 Écalle’s theory of singularities

Let ̟ ∈ (0, π2 ). The results contained in Sections 3.3 and 3.5 allow us to define

multivalued analytic functions
∨
χn by the formulas

∨
χn(ζ) = Φ̂n(2πi + ζ), |ζ| < 2π, −3π

2 −̟ < arg ζ < π
2 +̟, (75)

i.e. functions holomorphic in a part of the Riemann surface of the logarithm (which
also depend analytically on ε, and on b1, . . . , bn if n ≥ 1)—see Figure 4.

Similarly, we can consider Φ̂n(−2πi + ζ) for −π
2 −̟ < arg ζ < 3π

2 +̟. These
analytic functions are examples of “majors of singularities”. After moding out by
the regular germs, the equivalence classes that we obtain can be considered as the
“singularities” of Φ̂n at ±2πi; these are examples of singularities in the direction
θ = ±π

2 in the following sense:
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Figure 4: The sector in which the
∨
χn’s are defined.

Definition 4.1. Let θ ∈ R and ̟ > 0. Consider the space Mθ,̟ of germs of holo-

morphic functions
∨
ϕ(ζ) defined for θ−2π−̟ < arg ζ < θ+̟ and |ζ| small enough.

The quotient space SINGθ,̟ = Mθ,̟/C{ζ} is called the space of singularities in the
direction θ with aperture 2̟.

A germ
∨
ϕ ∈ Mθ,̟ is called a major, its class in SINGθ,̟ is called the singularity

of
∨
ϕ and is denoted by sing(

∨
ϕ) or

▽

ϕ.
With any singularity

▽

ϕ ∈ SINGθ,̟ is associated a germ ϕ̂, which is obtained

from any major of
▽

ϕ by the formula

ϕ̂(ζ) =
∨
ϕ(ζ) −

∨
ϕ(ζ e−2πi), |ζ| < 2π, θ −̟ < arg ζ < θ +̟

and which is called the minor, or the variation, of
▽

ϕ, and denoted by

ϕ̂ = var
▽

ϕ.

Elementary examples of singularities are

δ(n) = sing
((−1)nn!

2πiζn+1

)

, n ∈ N, ♭ϕ̂ = sing
(

ϕ̂(ζ)
log ζ

2πi

)

, ϕ̂ ∈ C{ζ},

(76)

with var δ(n) = 0 and var(♭ϕ̂) = ϕ̂. Although all the singularities we shall encounter
in this article will be combinations of such elementary singularities, it is worth to
have at one’s disposal a general theory which does not even require, for instance,
that the minor of a singularity be a regular germ. Observe that the kernel of var
consists of the singularities represented by convergent Laurent expansions, which can
thus be written

∑

n≥0 anδ
(n) with lim sup(n!|an|)

1/n = 0 (because the corresponding

majors
∨
ϕ must be single-valued and holomorphic in a punctured disc).

In the space of general singularities SINGθ,̟, one can define a convolution product
which makes it a commutative algebra and which is an extension of the convolution
product discussed in Section 3.1 in the sense that

♭ϕ̂ ∗ ♭ψ̂ = ♭(ϕ̂ ∗ ψ̂), ϕ̂, ψ̂ ∈ C{ζ}.

The reader is referred e.g. to Section 2.4.1 of [OSS03] or Section 3 of [Sau05] for
the definition of this convolution of singularities. Let us simply mention here that
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a major of
▽

ϕ ∗
▽

ψ is obtained by considering, for any majors
∨
ϕ and

∨

ψ, the analytic

continuation of an integral of the form
∫ ζ+u e−iπ

u

∨
ϕ(ζ1)

∨

ψ(ζ−ζ1) dζ1 with a well-chosen
auxiliary point u.

The notation δ(n) in (76) is coherent with the notation δ(n) = Bextz
n used in

Section 3.1: the definition of the convolution of singularities is such that δ := δ(0) is
the unit for convolution and

δ(n)∗♭ϕ̂ = ϕ̂(0)δ(n−1)+ϕ̂′(0)δ(n−2)+· · ·+ϕ̂(n−1)(0)δ+♭(ϕ̂(n)), n ∈ N∗, ϕ̂ ∈ C{ζ},

which is the proper rewriting of formula (46) in the formalism of singularities. This
means that, from now on, the extended Borel transform which was defined at the
end of Section 3.1 will be better interpreted as the algebra isomorphism

Bext : C((z−1))Gev → DP⊕ ♭
(

C{ζ}
)

⊂ SINGθ,̟,

Bext

(

∑

n≥−v

anz
−n

)

= a0δ + a−1δ
′ + · · · + a−vδ

(v) +
♭
(

∑

n≥1

an
ζn−1

(n− 1)!

)

(in fact, the definition of the Laplace transform too can be extended to certain sin-
gularities, so that δ(n) and z−n correspond to each other—see Section 3.2 of [Sau05]).
More generally, δ(n) ∗ sing(

∨
ϕ) = sing(

∨
ϕ(n)) for any

∨
ϕ ∈ Mθ,̟.

The definition of the alien derivations ∆2πi and ∆−2πi given in Section 1.3 can
also be extended. Given any

▽

ϕ ∈ SINGπ/2,̟ such that ϕ̂ = var
▽

ϕ extends analytically
along (0, 2πi) and ϕ̂(2πi + ζ) defines an element of Mπ/2,̟, we set

∆2πi
▽

ϕ = sing
(

ϕ̂(2πi + ζ)
)

. (77)

This is a generalization of Definition 1.7, which can be rephrased as follows: let
ϕ̃ ∈ R̃ES(0) and

▽

ϕ = Bextϕ̃, then ϕ̂ = var
▽

ϕ has a simply ramified singularity at 2πi
if and only if ∆2πi

▽

ϕ ∈ DP⊕ ♭
(

C{ζ}
)

(and the connection between (16) and (77) is

∆2πi
▽

ϕ = Bext∆2πiϕ̃).
It turns out that the operator ∆2πi thus extended still satisfies the Leibniz rule.

One can extend similarly ∆−2πi to a subspace of SING−π/2,̟.
We shall content ourselves with a particular case of the previous situation:

▽

RES(1) = var−1
(

R̂ES(1)
)

is a subalgebra of SING±π/2,̟ and ∆±2πi is a well-defined

operator from
▽

RES(1) to SING±π/2,̟ which satisfies the Leibniz rule.

4.3 Proof of Theorem 1.10

a) Let us consider Φ̂n = BΦ̃n as the minor of

▽

Φn = BextΦ̃n ∈
▽

RES(1)

(thus
▽

Φ0 = ♭Φ̂0, but
▽

Φn contains a Dirac polynomial for n ≥ 1). Let

▽

χn
± = ∆±2πi

▽

Φn ∈ SING±π/2,̟ .

The statement in Theorem 1.10 amounts to
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(i)
▽

χn
± ∈ DP ⊕ ♭

(

C{ζ}
)

;

(ii)
▽

χn
± =

∑

n1+n2=n

(

A±
n1

▽

ψ1,n2
+ iB±

n1

▽

ψ2,n2

)

, where
▽

ψj,n = Bextψ̃j,n, with certain
families of constants (A±

n ), (B±
n ).

In fact, we shall prove directly (ii), which entails (i). The idea consists in study-
ing equations satisfied by the

▽

χn
±’s, which are derived from equations satisfied by

the
▽

Φn’s.

b) The equations satisfied by the
▽

Φn’s will be obtained by applying Bext to the inner
equations (IE)n. The case n = 0 deserves special attention because the first inner
equation is non-linear.

Suppose ϕ̃ ∈ z−1C[[z−1]] with ϕ̂ = Bϕ̃ ∈ R̂ES(1) and let
▽

ϕ = ♭ϕ̂ (thus
▽

ϕ = Bextϕ̂).
Let v(y) =

∑

n≥1 vny
n ∈ C{y} and ψ̃(z) = v

(

ϕ̃(z)
)

. The arguments of Section 3.3

show that ψ̂ = Bψ̃ =
∑

n≥1 vnϕ̂
∗n ∈ R̂ES(1). Let us denote by v∗(

▽

ϕ) the singularity

which is thus defined by ♭ψ̂ =
∑

n≥1 vn
▽

ϕ∗n. One can check that

∆±2πi

(

v∗(
▽

ϕ)
)

=
(

∂yv
∗(

▽

ϕ)
)

∗ ∆±2πi
▽

ϕ. (78)

Suppose now that ϕ̃ ∈ C((z−1)) with ϕ̂ = Bϕ̃ ∈ R̂ES(1) and let
▽

ϕ = Bextϕ̃ (thus
▽

ϕ may differ from ♭ϕ̂ by a Dirac polynomial). Then one can check that

Bext

(

ϕ̃(z + 1)
)

= e−ζ
▽

ϕ, ∆±2πiBext

(

ϕ̃(z + 1)
)

= e−ζ ∆±2πi
▽

ϕ. (79)

Here we use the fact that SINGθ,̟ is a C{ζ}-module: the multiplication of a sin-
gularity by a regular germ α(ζ) is defined from the product of any major rep-
resenting the singularity with α(ζ); the second identity in (79) follows from the
fact that α(ζ) = e−ζ is entire and satisfies α(±2πi) = 1. Of course, we have
Bext

(

ϕ̃(z − 1)
)

= eζ
▽

ϕ and ∆±2πi(e
ζ ▽

ϕ) = eζ ∆±2πi
▽

ϕ in a similar way.
After these preliminaries, we can apply Bext to the first inner equation: (IE)0

yields

(e−ζ + eζ)
▽

Φ0 = F∗
0

( ▽

Φ0

)

,
▽

(IE)0

to which we apply ∆±2πi, getting

(e−ζ + eζ)
▽

χ0
± = ∂yF

∗
0

( ▽

Φ0

)

∗
▽

χ0
± (80)

by virtue of (78) and (79). Notice that the equation (80) satisfied by
▽

χ0
± is the

counterpart in SING±π/2,̟ via Bext of the variational equation associated with (IE)0,
namely

ψ(z + 1) + ψ(z − 1) = ∂yF0

(

Φ̃0(z)
)

ψ(z). (81)

Equation (81) is a priori given for an unknown ψ ∈ C((z−1)), while equation (80)
makes sense for an unknown in SING±π/2,̟. It is easy to see that the set of solutions

of (81) is the linear span of (Ψ̃1,0, Ψ̃2,0) and is thus contained in C((z−1))Gev. In
the rest of this section, we shall see that, although SING±π/2,̟ is a much larger
space than Bext

(

C((z−1))Gev

)

, the set of solutions of (80) is the linear span of

(BextΨ̃1,0,BextΨ̃2,0) and is thus contained in DP⊕♭
(

C{ζ}
)

. This will be done by
mimicking the arguments of Appendix A.2 for the theory of linear second-order
difference equations.
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c) Similarly to
▽

(IE)0, which is the counterpart in
▽

RES(1) of (IE)0, there are equa-

tions
▽

(IE)n which are the counterparts of equations (IE)n and are satisfied by the
▽

Φn’s. We shall content ourselves with writing one equation in
▽

RES(1)[[h2]]; the

equations
▽

(IE)n can be obtained by expanding it in powers of h2.

Let
▽

Φ =
∑

n≥0 h
2n

▽

Φn ∈
▽

RES(1)[[h2]]. According to (5), we had F(y, h) =
∑

n≥0 h
2nFn(y) ∈ yC{y}[[h2]], we can thus define

F∗
( ▽

Φ, h
)

=
∑

n0≥0,r≥0
n1,...,nr≥1

1

r!
h2(n0+n1+···+nr)∂ryF

∗
n0

( ▽

Φ0

)

∗
▽

Φn1 ∗ · · · ∗
▽

Φnr .

By applying Bext to (FIE), we get

(e−ζ + eζ)
▽

Φ = F∗
( ▽

Φ, h
)

.
▽

(FIE)

We now apply ∆±2πi to equation
▽

(FIE) and get an equation for
▽

χ± =
∑

n≥0 h
2n ▽

χn
± ∈

SING±π/2,̟[[h2]]:

(e−ζ + eζ)
▽

χ± = ∂yF
∗
( ▽

Φ, h
)

∗
▽

χ±.
▽

(FL)b

By expanding
▽

(FL)b in powers of h2,we would get a system of equations satisfied by
the

▽

χn’s, the first of which is (80).
The above point (ii) will follow from

Lemma 4.2. Let

▽

Ψj =
∑

n≥0

h2nBextΨ̃j,n ∈
▽

RES(1)[[h2]], j = 1, 2

and suppose that
▽

χ ∈ SING±π/2,̟[[h2]] satisfies

(e−ζ + eζ)
▽

χ = ∂yF
∗
( ▽

Φ, h
)

∗
▽

χ. (82)

Then there exist A,B ∈ C[[h2]] such that
▽

χ = A
▽

Ψ1 + iB
▽

Ψ2.

Proof. Observe that
▽

Ψ1,
▽

Ψ2 ∈
▽

RES(1)[[h2]] because of (74). Since (Ψ̃1, Ψ̃2) is a
normalized fundamental system of solutions of (FL)b, we obtain (by applying Bext)

that
▽

Ψ1 and
▽

Ψ2 are particular solutions of (82) and that

▽

Ψ1 ∗ T
▽

Ψ2 −
(

T
▽

Ψ1

)

∗
▽

Ψ2 = δ,

if we denote by T the operator of SING±π/2,̟[[h2]] defined by T
▽

χ = e−ζ
▽

χ. One
can check that T is an automorphism of the convolution algebra SING±π/2,̟[[h2]]

(because of the definition of the convolution and of the property e−ζ1−ζ2 = e−ζ1 e−ζ2);
this implies that the proof of Lemma A.2 is valid in this space. As a consequence,
if we set

▽

A =
▽

χ ∗ T
▽

Ψ2 − (T
▽

χ) ∗
▽

Ψ2, i
▽

B =
▽

Ψ1 ∗ T
▽

χ− (T
▽

Ψ1) ∗
▽

χ, (83)
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then we get

▽

χ =
▽

A ∗
▽

Ψ1 + i
▽

B ∗
▽

Ψ2,
▽

A− T−1
▽

A = i
▽

B − T−1(i
▽

B) = 0. (84)

But the last equation means that any major
∨

B of
▽

B satisfies (1 − eζ)
∨

B(ζ, h) =

R(ζ, h) ∈ C{ζ}[[h2]], hence
▽

B = −2πiR(0, h)δ; similarly,
▽

A too is proportional
to δ.

Applying this lemma to
▽

χ±, we get A± =
∑

n≥0A
±
n h

2n and B± =
∑

n≥0B
±
n h

2n

defined by (83) and such that
▽

χ± = A±
▽

Ψ1 + iB±
▽

Ψ2. By expanding this relation in
powers of h2, we get the desired formula for the

▽

χn
±’s.

d) According to Theorem 1.4, the minors Φ̂n(ζ) depend polynomially on b1, . . . , bn
and analytically on ε for |ε| < ε0; one can thus choose majors

∨
χn

± with the same

dependence on ε and b. The same is true for the singularities
▽

Ψ1,n,
▽

Ψ2,n, as is
easily checked from the construction of Ψ̃1 and Ψ̃2 in Section 4.1. The definition of
the coefficients A±

n , B
±
n via formula (83) then shows that they are polynomials in b

which depend analytically on ε (by regularity of a convolution product with respect
to parameters). Their vanishing for ε = 0 follows from Proposition 1.2.

Only formulas (21)–(22) remain to be proved. For this, we use again the notations
of Section 3.2 and consider expansions at first order in ε: the proof of Proposition 3.2
shows that

Φ̃0 = Φ0,0(z) + εϕ̃(z) +O(ε2), Φ0,0(z) = −iz−1, ϕ̃ = L−1
0,0W0,0,

W0,0(z) = V ′
(

Φ0,0(z), 0, 0
)

with the operator L−1
0,0 of (51) (the convergent series W0,0(z) is the series w0(z, 0)

of (48)).
We can thus write

ϕ̃ = α̃ ψ1,0 + β̃ ψ2,0, α̃ = −∆−1(W0,0ψ2,0), β̃ = ∆−1(W0,0ψ1,0),

where ψ1,0 = ∂zΦ0,0 = iz−2 is nothing but
(

Ψ̃1,0

)

|ε=0
and

ψ2,0(z) =

(

−
1

5
z5 +

1

3
z3 −

2

15
z

)

ψ1,0(z)

coincides with
(

Ψ̃2,0

)

|ε=0
. Since the alien derivations are derivations which annihilate

the convergent series, we get

∆±2πiϕ̃ = (∆±2πiα̃)ψ1,0 + (∆±2πiβ̃)ψ2,0,

and we know in advance that the alien derivatives ∆±2πiα̃ and ∆±2πiβ̃ boil down to
complex numbers

∆±2πiα̃ = A±
0,1, ∆±2πiβ̃ = iB±

0,1,

according to (20), since ∆±2πiΦ̃0 = A±
0 Ψ̃1,0 + iB±

0 Ψ̃2,0 = ε∆±2πiϕ̃+O(ε2).

Indeed, in view of (59), the minors α̂(ζ) and β̂(ζ) are meromorphic in C, with
simple poles only:

α̂ = −JB(W0,0ψ2,0), β̂ = JB(W0,0ψ1,0),
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with J(ζ) = (e−ζ − 1)−1. Therefore,

A±
0,1 = 2πiB(W0,0ψ2,0)|ζ=±2πi, iB±

0,1 = −2πiB(W0,0ψ1,0)|ζ=±2πi.

We compute W0,0ψ1,0 = Φ′
0,0(z)V

′
(

Φ0,0(z), 0, 0
)

= dV
dz with V(z) = V0(−iz−1), hence

βV(ζ) = −iV̂0(−iζ) and β(W0,0ψ1,0) = iζV̂0(−iζ), which gives the value

1

2π
B±

0,1 = ±2πV̂0(±2π).

On the other hand, W0,0ψ2,0 =
(

−1
5z

5 + 1
3z

3 − 2
15z
)

dV
dz yields

β(W0,0ψ2,0) =

(

−
1

5
∂5
ζ +

1

3
∂3
ζ −

2

15
∂ζ

)

(

− ζβV(ζ)
)

,

whence 1
2πA

±
0,1 = DV̂0(±2π).

A Appendix

A.1 The subspaces z−vC[[z−1, (hz)2]] of C((z−1))[[h2]]

Lemma A.1. For any v ∈ Z, z−vC[[z−1, (hz)2]] can be identified with the subspace
of C((z−1))[[h2]] which consists of all the series of the form

∑

n≥0 h
2nϕn(z) with

ϕn(z) ∈ z2n−vC[[z−1]].

Proof. The general element of z−vC[[z−1, (hz)2]] is z−v
∑

m,n≥0 am,nz
−m(hz)2n with

arbitrary coefficients am,n, and it can be rewritten
∑

n≥0 h
2nϕn(z), where ϕn(z) =

∑

m≥0 am,nz
2n−v−m is the general element of z2n−vC[[z−1]].

It follows that

∂pz
(

z−vC[[z−1, (hz)2]]
)

⊂ z−v−pC[[z−1, (hz)2]]

for any p ∈ N. In particular z−vC[[z−1, (hz)2]] is stable under the operator

T : φ(z, h) 7→ φ(z + 1, h) =
∑

p≥0

1

p!
∂pzφ(z, h),

and, since C[[z−1, (hz)2]] is a ring, it is easy to follow the value of v when we apply
difference operators or multiplication to our formal series. For instance,

A ∈ C[[h2]], φ ∈ z−vC[[z−1, (hz)2]] ⇒ A(h) · φ(z, h) ∈ z−vC[[z−1, (hz)2]],

since C[[h2]] ⊂ C[[z−1, (hz)2]] (because h2n = z−2n(hz)2n).
One has similar properties for the spaces z−vC[[z−1, h2z4]], to be identified with

{
∑

h2nϕn(z) ∈ C((z−1))[[h2]] | ∀n ≥ 0, ϕn(z) ∈ z4n−vC[[z−1]] }. This is used in
Section 4.1.

42



A.2 Elementary theory of second-order linear difference equations

We gather here the proof of a few classical facts which were stated in Section 2.1. In
addition to the operators T and T−1, which are automorphisms of the field C((z−1)),
and to the difference operators ∆ and P defined by (31), we introduce

∇ = I − T−1 = T−1∆. (85)

We consider a linear difference operator ψ 7→ L0ψ = Pψ−Aψ as in Section 2.1 and
assume that ψ1 and ψ2 are two solutions of the homogeneous equation L0ψ = 0.

The verification of point (i) of Section 2.1 is immediate: W = ψ1(Tψ2)−(Tψ1)ψ2

satisfies

∇W = ψ1(Tψ2) − (Tψ1)ψ2 − (T−1ψ1)ψ2 + ψ1(T
−1ψ2) = ψ1(Pψ2) − (Pψ1)ψ2,

hence Pψj = Aψj implies ∇W = 0, or ∆W = 0. We have moreover

Lemma A.2. Suppose ψ1 and ψ2 are solutions of L0 with W(ψ1, ψ2) ≡ 1. Consider
an arbitrary ψ and let a = W(ψ,ψ2), b = W(ψ1, ψ). Then

ψ = aψ1 + bψ2 = (T−1a)ψ1 + (T−1b)ψ2, (86)

L0ψ = −(∇a)T−1ψ1 − (∇b)T−1ψ2, (87)

∇a = −ψ2L0ψ, ∇b = ψ1L0ψ. (88)

Proof. The relations (86) are obtained by solving the linear system (which has de-
terminant 1)

{

(Tψ2)ψ − ψ2(Tψ) = a

−(Tψ1)ψ + ψ1(Tψ) = b.

We now compute Pψ by using Tψ = aTψ1 + bTψ2 and T−1ψ = (T−1a)T−1ψ1 +
(T−1b)T−1ψ2:

Pψ = aTψ1 + bTψ2 − 2aψ1 − 2bψ2 + (T−1a)T−1ψ1 + (T−1b)T−1ψ2,

hence Pψ = aPψ1 + bPψ2 − (∇a)T−1ψ1 − (∇b)T−1ψ2 and (87) follows. Finally, the
linear system with determinant 1

{

(T−1ψ1)∇a+ (T−1ψ2)∇b = −L0ψ

ψ1∇a+ ψ2∇b = 0

(where the first equation was just proved and the second is a consequence of (86))
implies (88).

This lemma immediately yields the description of the solutions of L0 of point (ii)
of Section 2.1.

In order to check point (iii), we give ourselves f , a∗ and b∗ such that ∆a∗ = −ψ2f
and ∆b∗ = ψ1f , and set ψ = a∗ψ1 + b∗ψ2. Let a = W(ψ,ψ2) and b = W(ψ1, ψ). We
have

(Ta∗)ψ1 + (Tb∗)ψ2 = (∆a∗)ψ1 + (∆b∗)ψ2 + ψ = ψ.
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We can thus write a linear system with determinant 1

{

(T−1ψ1)a
∗ + (T−1ψ2)b

∗ = T−1ψ

ψ1a
∗ + ψ2b

∗ = ψ

which shows that a∗ = T−1a and b∗ = T−1b, whence ∇a = −ψ2f and ∇b = ψ1f ,
and the conclusion follows from (87). (The variant of footnote 2 is obtained similarly
by checking that (T−1a)ψ1 + (T−1b)ψ2 = ψ in that case.)

As for point (iv), we suppose Pψ1 = Aψ1 with ψ1Tψ1 invertible and consider an
arbitrary c. As straightforward computation shows that W(ψ1, cψ1) = (∆c)ψ1Tψ1.
The conclusion follows from the computation

P (cψ1) = (Tc)Tψ1−2cψ1+(T−1c)T−1ψ1 = (∆c)Tψ1+cPψ1−(∇c)T−1ψ1

⇒ L0(cψ1) =
1

ψ1
∆
(

(∆c)ψ1Tψ1

)

.

A.3 Proof of Proposition 1.6

In this appendix we fix a complex number z0 in the domain Du
n0

of Section 1.2 and a
complex number ε with |ε| < ε0. We shall treat only the question of the uniqueness
of the solutions on z0 + R− (the case of z0 + R+ is similar).

A.3.1 Preliminaries

For every σ ≥ 0 and ℓ > 0, the space Buσ,ℓ will consist of all the complex-valued

functions which are defined on the half-line (z0 − ℓ2) + R− and which are O
(

|z|−σ
)

(without any extra regularity requirement). This is a Banach space for the norm

‖ϕ‖σ,ℓ = sup
t≥ℓ2

∣

∣(t+ ℓ)σϕ(z0 − t)
∣

∣. (89)

Observe that z−σ
′
∈ Buσ,ℓ for every σ′ ≥ σ, because the condition z0 ∈ Du

n0
prevents z

from vanishing on the half-line z0+R−, which contains (z0−ℓ
2)+R−. Our motivation

for the definition (89) is the fact that

lim
ℓ→∞

‖z−σ‖σ,ℓ = 1, lim
ℓ→∞

‖z−σ
′

‖σ,ℓ = 0 if σ′ > σ. (90)

(Proof: We have

‖z−σ
′

‖σ,ℓ = sup
t≥ℓ2

(t+ ℓ)σ

|z0 − t|σ
′ , σ′ ≥ σ.

It is thus sufficient to check (90) for σ′ = 2 and σ ≤ 2. We can write |z0 − t|2 =

(t− t0)
2 + d2 with d = | ℑmz0| and t0 = ℜe z0. The function t 7→ (t+ℓ)σ

(t−t0)2+d2 is easily

seen to be decreasing for t ≥ T+(ℓ), where T+(ℓ) −−−→
ℓ→∞

t0, thus ‖z−2‖σ,ℓ = (ℓ2+ℓ)σ

(ℓ2−t0)2+d2

for ℓ large enough, whence the result follows.)

We now introduce right inverses for the operators ∆ and ∇ defined by (31)
and (85); by composition, we shall obtain a right inverse for P = ∆ ◦ ∇ = ∇ ◦ ∆.
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Lemma A.3. Suppose σ, ℓ > 0. Then the formulas

∆−1
u ϕ(z) =

∑

n≥1

ϕ(z − n), ∇−1
u ϕ(z) =

∑

n≥0

ϕ(z − n)

define two linear operators ∆−1
u ,∇−1

u : Buσ+1,ℓ → Buσ,ℓ which are right inverses5 of ∆
and ∇ and which satisfy

‖∆−1
u ϕ‖σ,ℓ ≤

1
σ‖ϕ‖σ+1,ℓ, ‖∇−1

u ϕ‖σ,ℓ ≤
(

1
σ + 1

ℓ

)

‖ϕ‖σ+1,ℓ

for every ϕ ∈ Buσ+1,ℓ.

Proof. Let ϕ ∈ Buσ+1,ℓ. The series which define ∆−1
u ϕ(z) and ∇−1

u ϕ(z) are absolutely

convergent for z = z0 − t with t ≥ ℓ2, because |ϕ(z − n)| = |ϕ(z0 − n − t)| ≤
‖ϕ‖σ+1,ℓ (n+ t+ ℓ)−σ−1. Moreover,

∣

∣(t+ ℓ)σ ∆−1
u ϕ(z0 − t)

∣

∣ ≤ ‖ϕ‖σ+1,ℓ

∑

n≥1

xσ

(n+x)σ+1

with x = t+ ℓ, and there is a similar inequality for
∣

∣(t+ ℓ)σ∇−1
u ϕ(z0 − t)

∣

∣ but with

a sum starting at n = 0. Using
∑

n≥1
1

(n+x)σ+1 ≤
∫ +∞
x

dt
tσ+1 = 1

σxσ and 1
x ≤ 1

ℓ , we

get the desired inequality by passing to the supremum.

Corollary A.4. Suppose σ, ℓ > 0. Then the formula

P−1
u ϕ(z) =

∑

n≥1

nϕ(z − n)

defines a linear operator P−1
u : Buσ+2,ℓ → Buσ,ℓ such that, for every ϕ ∈ Buσ+2,ℓ,

‖P−1
u ϕ‖σ,ℓ ≤

1
σ+1

(

1
σ + 1

ℓ

)

‖ϕ‖σ+2,ℓ

and the function ψ = P−1
u ϕ is the only function defined on z0 − ℓ

2 +R− which tends
to 0 at infinity with Pψ = ϕ on z0 − 1 − ℓ2 + R−.

Proof. Observe that P−1
u = ∇−1

u ◦ ∆−1
u with ∆−1

u : Buσ+2,ℓ → Buσ+1,ℓ and ∇−1
u :

Buσ+1,ℓ → Buσ,ℓ, and apply Lemma A.3.

A.3.2 Case of the inner equation

We now begin the proof of Proposition 1.6 by considering the case n0 = 0: we
suppose that φ(z) and φ∗(z) are two solutions of (IE)0 on z0 + R− of the form
−iz−1 +O

(

|z|−σ
)

, with 2 < σ ≤ 3, and we wish to prove that φ = φ∗ on z0 + R−.
Equation (IE)0 can be written Pφ = F1(φ), with F1(y) = F(y, 0, ε) − 2y =

−2y3 +O(y5) and ∂yF1(y) = −6y2 +O(y4). Let

A∗(z) =

∫ 1

0
∂yF1

(

(1 − t)φ(z) + tφ∗(z)
)

dt = 6z−2 +O
(

|z|−σ−1
)

. (91)

5In the case of ∆−1
u , we mean that ψ = ∆−1

u ϕ satisfies ∆ψ = ϕ on z0 − 1 − ℓ2 + R− only (as a
matter of fact, this identity holds also on the whole half-line z0 − ℓ2 + R−, but this is because ψ
has an extension to the segment [z0, z0 + 1]).
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This function A∗ is defined on z0 + R− and the function ψ = φ∗ − φ satisfies

Pψ = A∗ψ. (92)

For every ℓ > 0, we have A∗ ∈ B2,ℓ and ψ ∈ Bσ,ℓ. Consequently, A∗ψ ∈ Bσ+2,ℓ with
‖A∗ψ‖σ+2,ℓ ≤ ‖A∗‖2,ℓ ‖ψ‖σ,ℓ, and Corollary A.4 shows that ψ = P−1

u (A∗ψ), hence

‖ψ‖σ,ℓ ≤
1

σ+1

(

1
σ + 1

ℓ

)

‖A∗‖2,ℓ ‖ψ‖σ,ℓ.

By virtue of (90) and (91), we have ‖A∗‖2,ℓ −−−→
ℓ→∞

6, while the limit of 1
σ+1

(

1
σ + 1

ℓ

)

is 1
σ(σ+1) <

1
6 , hence ‖ψ‖σ,ℓ = 0 for ℓ large enough.

Knowing that ψ = 0 on z0 − ℓ2 + R− for a particular ℓ > 0, we conclude that
ψ = 0 on the whole of z0 + R− by iterating equation (92) in the form ψ(z + 1) =
2ψ(z) − ψ(z − 1) +A∗(z)ψ(z).

Therefore (IE)0 admits at most one solution of the form −iz−1 + O
(

|z|−σ
)

and
we know that Φu(z; ε) is such a solution (with σ ≤ 3).

A.3.3 Case of the secondary inner equations

Let σ ∈ (2, 3], n0 ≥ 1, b1, . . . , bn0 ∈ C and φn(z) = Φu
n(z, ε; b1, . . . , bn) for 0 ≤ n ≤ n0.

We already know by Corollary 1.5 that these functions solve (IE)0, (IE)1, . . . , (IE)n0

and that they are defined on z0 + R− and of the form
[

Φ̃n(z, ε; b1, . . . , bn)
]

≤2
+

O
(

|z|−σ
)

. To conclude the proof of Proposition 1.6, it is thus sufficient to prove that
any solution φ∗n0

of (IE)n0 on z0 +R− which is such that φ∗n0
−φn0 = O

(

|z|−σ
)

must
coincide with φn0.

Equation (IE)n0 can be written Pφ(z) − Au(z)φ(z) = fun0
(z) with Au(z) =

∂yF
(

Φu
0(z, ε), 0, ε

)

− 2 and fun0
determined according to formula (7). The function

ψ = φ∗n0
− φn0 is thus a solution of the linear difference operator Lu0 defined by

Lu0ψ = Pψ −Auψ.
Since Φu

0 = S−Φ̃0, the classical properties of the Borel-Laplace summation op-
erator S− show that Au = S−A, where the formal series A was defined by (30),
and that ψu1 = S−ψ̃1 and ψu2 = S−ψ̃2 provide a normalized fundamental system of
solutions of Lu0 on z0 + R− (in the sense of Section 2.1, point (i)), where (ψ̃1, ψ̃2) is
the formal fundamental system of L0 described in Corollary 2.7.

Now the general theory of Section 2.1, point (ii), shows that ψ = aψu1 +bψu2 , with
1-periodic functions a and b defined on z0+R. Since ψu2 (z) ∼ − i

5z
3 and ψu1 (z) ∼ iz−2,

if the function b were not identically zero, this would contradict ψ(z0 − t) −−−−→
t→+∞

0,

and also a must vanish identically to ensure ψ(z) = O
(

|z|−σ
)

with σ > 2.
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for the Hénon map. Ann. Inst. Fourier, Grenoble 51, 2 (2001), 1001–1055.

[Mal95] B. Malgrange. Resommation des séries divergentes. Exp. Math. 13 (1995),
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