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Abstract

We investigate binary voting systems with two types of voters and a hierarchy among

the members in each type, so that members in one class have more influence or importance

than members in the other class. The purpose of this paper is to count, up to isomorphism,

the number of these voting systems for an arbitrary number of voters. We obtain a closed

formula for the number of these systems, this formula follows a Fibonacci sequence with a

smooth polynomial variation on the number of voters.
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1 Introduction

We consider voting systems in which each player casts a “yes” or “no” vote, and the outcome
is a collective “yes” or “no”. These voting systems, known in the literature as simple games,
can be very complicated. Their specialization to symmetric simple games, however, are simple
indeed; each such game corresponds to the qualified majority rule, in which an issue is passed if
and only if the number of voters in favour meets or exceeds some threshold or quota. We refer,
as in [5], to this result as May’s Theorem for Simple Games “with bias”1. Thus, May’s Theorem
with bias may be stated as follows: for each positive integer n, there is, up to isomorphism, a
unique simple game that is anonymous or symmetric (i.e., voters play an equivalent rôle in the
game). At least two facts are relevant of this result:

1. all symmetric games are weighted,2

2. the function S on the number of voters n that counts all these games is, up to isomorphism,
the identity, i.e., S(n) = n.

There seems to be only one natural direction in which to extend symmetric games3 within
simple games. To accommodate this new class of voting systems, we make two changes to

∗All the results contained in this file are included in a paper submitted to Annals of Operations Research in
October, 2008 on ocasion of the Conference on Applied Mathematical Programming and Modelling, that held in
Bratislava in May, 2008.

†Universitat Politècnica de Catalunya. DMA3 and EPSEM. E-08240 Manresa, Spain. josep.freixas@upc.edu
‡Universitat Politècnica de Catalunya. LSI and EPSEM. E-08240 Manresa, Spain. molinero@lsi.upc.edu
§Universitat Politècnica de Catalunya. LSI. E-08034 Barcelona, Catalonia, Spain. roura@lsi.upc.edu
1Because May’s original result (see [8] or [9]) considers only anonymous voting systems (for two alternatives)

that are neutral : there is no built-in bias towards “yes” or “no” outcomes, so that they are treated symmetrically.
2Loosely speaking, a game is weighted if it can be assigned a quota and a weight for each voter, so that

winning coalitions are those with the sum of the weights of their members greater than or equal to the quota.
3Symmetric games are also called q–out–of–n games, understanding that n is the number of voters, a weight

of 1 is assigned to each voter, and the quota q is a fixed integer between 1 and n.
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the symmetric simple games: we allow two classes of symmetric voters instead of one, and we
consider that voters in one class are more influential or important than voters in the other class.
The goal of this paper is to analyze the joint effect of these two changes. What voting systems
are possible? How many of them are these, up to isomorphism, for a fixed number of voters?

As we shall see in this paper, the obtained results are paradoxically opposed to those de-
scribed above for symmetric games, which demonstrates that the complexity of these close voting
systems is considerably higher than that of symmetric games. Indeed, we will prove that the
number of them is F (n + 6) − (n2 + 4n + 8), where F (n) are the Fibonacci numbers4, being n
the number of voters. Hence, the number of these games is asymptotically exponential, which
contrasts with the linear behavior of symmetric games.

The paper is organized as follows. Basic definitions and preliminary results are included in
Section 2. Section 3 contains the main result of the paper, which is devoted to count the number
of voting systems in terms of the number of voters, resulting a closed formula with asymptotic
exponential behavior.

2 Preliminaries

Simple games can be viewed as models of voting systems in which a single alternative, such as
a bill or an amendment, is pitted against the status quo.

Definition 2.1 A simple game is a pair (N, W ) in which N = {1, 2, . . . , n}, and W is a col-
lection of subsets of N that satisfies N ∈ W , ∅ /∈ W and the monotonicity property: if S ∈ W
and S ⊆ T ⊆ N , then T ∈ W .

Any set of voters is called a coalition, and the set N is called the grand coalition. Members of
N are called players or voters, and the subsets of N that are in W are called winning coalitions.
The subfamily of minimal winning coalitions Wm = {S ∈ W : T ⊂ S ⇒ T /∈ W} determines
the game. The subsets of N that are not in W are called losing coalitions. The subfamily of
maximal losing coalitions is LM = {S ∈ L : S ⊂ T ⇒ T ∈ W}. A voter i is null in (N, W )
if i /∈ S for all S ∈ Wm. Thus, for a non–null voter i there is at least a coalition S such that
S ∈ W , i ∈ S and S \{i} ∈ L. Real–world examples of simple games are given by Taylor [9, 10].

The “desirability” relation defined on the set of voters represents a way to make precise the
idea that a particular voting system may give one voter more influence than another. Isbell
already used it in [7].

Definition 2.2 Let (N, W ) be a simple game.

(i) Player i is more desirable than j (i % j, in short) in (N, W ) iff

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W, for all S ⊆ N \ {i, j}.

(ii) Players i and j are equally desirable (i ≈ j, in short) in (N, W ) iff

S ∪ {i} ∈ W ⇔ S ∪ {j} ∈ W, for all S ⊆ N \ {i, j}.

(iii) Player i is strictly more desirable than player j (i ≻ j, in short) in (N, W ) iff i is more
desirable than j, but i and j are not equally desirable.

Definition 2.3 A simple game (N, W ) is complete or linear if the desirability relation is a
complete preordering.

4The Fibonacci numbers are defined by the following recurrence relation: F (0) = 0, F (1) = 1, and F (n) =
F (n − 1) + F (n − 2) for all n > 1.
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In the field of Boolean algebra, complete games correspond to 2-monotonic positive Boolean
functions, which were already considered in [6]. The problem of identifying this type of functions
by using polynomial-time recognition have been treated in [1, 2]. In a complete simple game
we may decompose N in a collection of subsets, called classes, N1 > N2 > · · · > Nt, forming a
partition of N , and understanding that if i ∈ Np and j ∈ Nq then: p = q if and only if i ≈ j;
and p < q if and only if i ≻ j.

Now we are going to define the δ-ordering, introduced in [4] for an arbitrary number of types
of voters.

Definition 2.4 Let n be the number of players of a complete simple game (N, W ) with two types
of players N1 > N2. Let n1 = |N1| and let n2 = |N2|, where (n1, n2) ∈ N×N with n1 + n2 = n.
Then the rectangle of (n1 + 1) × (n2 + 1) profiles for (N, W ) is:

In1
× In2

= {(m1, m2) ∈ (N ∪ {0})× (N ∪ {0}) : m1 ≤ n1, m2 ≤ n2}.

In In1
× In2

, the δ-ordering given by the comparison of partial sums is:

(p1, p2) δ (m1, m2) if and only if p1 ≥ m1 and p1 + p2 ≥ m1 + m2.

It is not difficult to check that the pair (In1
× In2

, δ) is a distributive lattice that possesses
a maximum element (n1, n2) and a minimum element (0, 0). The profiles in In1

× In2
can be

completely ordered by the lexicographical ordering: profile (p1, p2) is lexicographically greater
than (m1, m2) if either p1 > m1, or p1 = m1 with p2 > m2.

Definition 2.5 Two simple games (N, W ) and (N ′, W ′) are said to be isomorphic if there is a
bijective map f : N → N ′ such that S ∈ W if and only if f(S) ∈ W ′; f is called an isomorphism
of simple games.

The following known result has three parts. The first part shows how to associate a vector
(n1, n2) and a matrix M to a complete simple game (N, W ), and describes the restrictions that
these parameters need to fulfill. The second part establishes that every pair of isomorphic com-
plete simple games (N, W ) and (N ′, W ′) corresponds to the same associated vector (n1, n2) and
matrix M (uniqueness). The third part shows that a vector (n1, n2) and a matrix M fulfilling
the conditions in Part A always correspond to a complete simple game (N, W ) (existence).

Theorem 2.6 (Carreras and Freixas’ Theorems 4.1 and 4.2 in [4] for 2 types of voters)

Part A Let (N, W ) be a complete simple game with two nonempty classes N1 > N2, and let
(n1, n2) be the vector defined by their cardinalities. For each coalition S ∈ W , consider
the node or profile (s1, s2) ∈ In1

× In2
with components sk = |S ∩ Nk| (k = 1, 2). Let M

be the matrix

M =







m1,1 m1,2

...
...

mr,1 mr,2







whose r rows are the nodes corresponding to winning coalitions which are minimal in the
δ-ordering. Matrix M satisfies the two conditions below:

1. mi,1, mi,2 ∈ N ∪ {0}, 0 ≤ mi,1 ≤ n1 and 0 ≤ mi,2 ≤ n2 for all 1 ≤ i ≤ r;

2. if r = 1, then m1,1 > 0 and m1,2 < n2;

if r ≥ 2, then mi,1 > mj,1 and mi,1 + mi,2 < mj,1 + mj,2 for all 1 ≤ i < j ≤ r.5

5The lexicographic ordering chosen guarantees uniqueness under permutation of rows. This lexicographic
ordering is a plausible choice which could be replaced for other alternative criteria.
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Part B (Uniqueness) Two complete simple games with two types of voters (N, W ) and (N ′,W ′)
are isomorphic if and only if (n1, n2) = (n′

1, n
′
2) and M = M′.

Part C (Existence) Given a vector (n1, n2) and a matrix M satisfying the conditions of Part A,
there exists a complete simple game (N, W ) with two types of voters associated to (n1, n2)
and M.

For example, to illustrate how (N, W ) is obtained, let (n1, n2) = (2, 3) and M =

(

2 0
0 3

)

.

The set of winning profiles in I2 × I3 is {(0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3)} because each
of these profiles either δ-dominates (2, 0) or (0, 3); and the set of minimal winning profiles is
{(0, 3), (1, 2), (2, 0)}, because the other winning profiles can be obtained from one of these three
profiles by simply adding some element in any of its components. If we take N1 = {1, 2} and
N2 = {3, 4, 5}, then N = N1 ∪ N2, and

Wm = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}},

where the first coalition corresponds to profile (2, 0), the last coalition to profile (0, 3) and the
remaining coalitions to profile (1, 2).

Theorem 2.6 is a parametrization theorem because it allows one to enumerate all complete
games up to isomorphism by listing the possible values of certain invariants. We will see in next
section that such enumeration can be done for every number of voters.

3 Counting complete games with two types of voters: Fi-

bonacci numbers

We establish a relation between the number of non–isomorphic complete simple games with n
voters of two different types and the Fibonacci numbers.

Definition 3.1 Let H(n) denote the number of non–isomorphic complete simple games with n
voters of two different types.

Note that H(n) is the number of matrices










m1,1 m1,2

m2,1 m2,2

...
...

mr,1 mr,2











such that there exists (n1, n2) ∈ N × N, with n = n1 + n2, verifying Properties (1) − (2) of
Theorem 2.6-(A).

Theorem 3.2

H(n) = F (n + 6) − (n2 + 4n + 8),

where F (n) is the n-th Fibonacci number.

The proof of this theorem is a consequence of some additional definitions and lemmas.

Definition 3.3 Let N(a, s, b) be the number of matrices with non-negative integer entries and
an arbitrary number of rows r ≥ 1











m1,1 m1,2

m2,1 m2,2

...
...

mr,1 mr,2
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such that

1. m1,1 = a;

2. m1,1 + m1,2 = s;

3. mr,2 = b;

4. if r ≥ 2, then mi,1 > mj,1 and mi,1 +mi,2 < mj,1 +mj,2 for all i and j with 1 ≤ i < j ≤ r.

Lemma 3.4 Let N(a, s, b) be as defined above, then

N(a, s, b) =



















0, if s − a > b;

1, if s − a = b;
a−1
∑

k=0

(

b+a−2−s
k

)

, if s − a < b.

Proof: We consider three cases depending on the relation between a, s and b.

Case 1: s − a > b.

By definition, it is clear that N(a, s, b) is equal to 0 whenever s − a > b.

Case 2: s − a = b.

Note that s − a = b implies r = 1. In fact, we just have one matrix with one row

(a s − a) ≡ (a b).

Thus, N(a, s, s − a) = 1.

Case 3: s − a < b.

It is clear that s − a < b implies r > 1, and N(a, s, b) is equal to the number of matrices
with r − 1 rows







m2,1 m2,2

...
...

mr,1 b







such that verify (from Definition 3.3):

1. 0 ≤ m2,1 < a;

2. m2,1 + m2,2 > s;

3. if r ≥ 3, then mi,1 > mj,1 and mi,1 +mi,2 < mj,1 +mj,2 for all i and j with 2 ≤ i < j ≤ r.

That is,

N(a, s, b) =

a−1
∑

i=0

∑

j>s

N(i, j, b).

On the other hand, since N(i, j, b) = 0 if j > i + b (Case 1 ), we have that

N(a, s, b) =

a−1
∑

i=0

i+b
∑

j=s+1

N(i, j, b).

Now, by mathematical induction we are going to prove the equality

a−1
∑

i=0

i+b
∑

j=s+1

N(i, j, b) =

a−1
∑

k=0

(

b + a − 2 − s

k

)

.

5



By induction hypothesis [i.h.], it is clear that

a−1
∑

i=0

i+b
∑

j=s+1

N(i, j, b) =
a−1
∑

i=0

b+i−1
∑

j=s+1

N(i, j, b) + f(a, s, b)

[i.h.]
=

a−1
∑

i=0

b+i−1
∑

j=s+1

i−1
∑

k=0

(

b+i−2−j

k

)

+ f(a, s, b)

where we define

f(a, s, b) :=

a−1
∑

i=0

N(i, b + i, b) if and only if (s + 1 ≤ b + i).

Note that s + 1 ≤ b + i ⇐⇒ s + 1 − b ≤ i; thus, it is clear that (by definition):

f(a, s, b) =











a, if (s < b) ⇐⇒ (s + 1 − b ≤ 0)

a + b − 1 − s, if (s ≥ b) ⇐⇒ (s + 1 − b > 0)

(1)

From now on we will use some elementary combinatorial equalities like [3]

∑

α≤β

(

α

γ

)

=

(

β + 1

γ + 1

)

, for all γ ≥ 0.

First, we consider the following equalities

b+i−1
∑

j=s+1

i−1
∑

k=0

(

b+i−2−j

k

)

=
∑

j≥s+1

∑

k≤i−1

(

b+i−2−j

k

)

=
∑

k≤i−1

∑

j≥s+1

(

b+i−2−j

k

)

=
∑

k≤i−1

∑

z≤b+i−3−s

(

z
k

)

=
i−1
∑

k=0

(

b+i−2−s
k+1

)

Second, reorganizing the previous results we have:

a−1
∑

i=0

i−1
∑

k=0

(

b+i−2−s

k+1

)

=
a−2
∑

k=0

a−1
∑

i=k+1

(

b+i−2−s

k+1

)

=
a−2
∑

k=0

b+a−3−s
∑

y=b+k−1−s

(

y

k+1

)

=
a−2
∑

k=0

(

(

b+a−2−s

k+2

)

−
(

b+k−1−s

k+2

)

)

=
a−2
∑

k=0

(

b+a−2−s

k+2

)

−
a−2
∑

k=0

(

b+k−1−s

k+2

)

Third, note that

a−2
∑

k=0

(

b+a−2−s
k+2

)

=
a
∑

k=2

(

b+a−2−s
k

)

=
a−1
∑

k=0

(

b+a−2−s
k

)

+
(

b+a−2−s
a

)

− 1 − (b + a − 2 − s)

=
a−1
∑

k=0

(

b+a−2−s

k

)

+
(

b+a−2−s

a

)

− b − a + 1 + s

(2)

and
a−2
∑

k=0

(

b+k−1−s
k+2

)

=
a−1
∑

k=0

(

b+k−1−s
b−3−s

)

=
b+a−3−s
∑

p=b−1−s

(

p
b−3−s

)

=



























(

b+a−2−s

b−2−s

)

−
(

b−1−s

b−2−s

)

=
(

b+a−2−s

a

)

+ s + 1 − b,

if (b − 1 − s ≥ 0) ⇐⇒ (b > s)
b+a−3−s
∑

p=0

(

p

b−3−s

)

=
(

b+a−2−s

b−2−s

)

=
(

b+a−2−s

a

)

,

if (b − 1 − s < 0) ⇐⇒ (b ≤ s)

(3)
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Finally, the equality for s−a < b follows from Equations (1), (2) and (3) depending on either
s < b or s ≥ b.

Case 1: s < b:

N(a, s, b) = a+
(

a−1
∑

k=0

(

b+a−2−s

k

)

+
(

b+a−2−s

a

)

− b − a + 1 + s

)

−
(

(

b+a−2−s

a

)

+ s + 1 − b
)

=
a−1
∑

k=0

(

b+a−2−s
k

)

Case 2: s ≥ b:

N(a, s, b) = (a + b − 1 − s)+
(

a−1
∑

k=0

(

b+a−2−s
k

)

+
(

b+a−2−s
a

)

− b − a + 1 + s

)

−
(

b+a−2−s

a

)

=
a−1
∑

k=0

(

b+a−2−s
k

)

.

�

Definition 3.5 Let G(a, b) be the number of matrices given by N(a, s, b) such that 0 ≤ m1,1 ≤ a,
0 ≤ mr,2 ≤ b, a ≤ m1,1 + m1,2 ≤ a + b (equivalently, 0 ≤ m1,2 ≤ b) and, furthemore, m1,1 > 0.

Lemma 3.6 Let G(a, b) be as Definition 3.5, then

G(a, b) =

a
∑

i=0

i−1
∑

k=0

(

b

k + 2

)

+ a b.

Proof: Note that in order to fulfill m1,1 > 0 we have to subtract (a + b + 1) matrices:

(i b) with 0 < i ≤ a → a matrices,
(0 j) with 0 < j ≤ b → b matrices,
(0 0) → 1 matrix.

Now, using elemetal algebraic manipulations, the equality [3] follows:

G(a, b) =

(

a
∑

i=0

b
∑

j=0

i+j
∑

s=i

N(i, s, j)

)

− (a + b + 1)

=

(

a
∑

i=0

b
∑

j=0

((

i+j−1
∑

s=i

i−1
∑

k=0

(

j+i−2−s

k

)

)

+ 1

)

)

− (a + b + 1)

=
a
∑

i=0

b
∑

j=0

i−1
∑

k=0

i+j−2
∑

s=i

(

j+i−2−s

k

)

+

(

a
∑

i=0

b
∑

j=0

1

)

− (a + b + 1)

=
a
∑

i=0

b
∑

j=0

i−1
∑

k=0

i+j−2
∑

s=i

(

j+i−2−s
k

)

+ (a + 1) (b + 1) − (a + b + 1)

=
a
∑

i=0

b
∑

j=0

i−1
∑

k=0

j−2
∑

z=0

(

z
k

)

+ a b =
a
∑

i=0

b
∑

j=0

i−1
∑

k=0

(

j−1
k+1

)

+ a b

=
a
∑

i=0

i−1
∑

k=0

b−1
∑

j=0

(

j

k+1

)

+ a b =
a
∑

i=0

i−1
∑

k=0

(

b

k+2

)

+ a b.

�

Finally, Lemma 3.7 proves Theorem 3.2.
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Lemma 3.7 Let H(n) and G(a, b) as defined above, then

H(n) =

n
∑

a=1

G(a, n − a)

and, furthermore,

H(n) = F (n + 6) − (n2 + 4n + 8).

Proof: From Definition 3.1 and 3.5, where H(n) and G(a, b) are respectively defined, it is clear
that

H(n) =

n
∑

a=1

G(a, n − a).

Thus, we just have to prove that

n
∑

a=1

G(a, n − a) = F (n + 6) − (n2 + 4n + 8).

In fact, taking into account that G(0, n) = 0, Lemma 3.6, and the known identity of Fibonacci
numbers [3]

F (n) =

n−1
∑

k=0

(

n − k

k

)

,

the equality results

n
∑

a=1
G(a, n − a) =

n
∑

a=0
G(a, n − a)

=
n
∑

a=0

(

a
∑

i=0

i−1
∑

k=0

(

n−a
k+2

)

+ a (n − a)

)

=
n
∑

i=0

i−1
∑

k=0

n−i
∑

y=0

(

y
k+2

)

+
(

n+1
3

)

=
n
∑

i=0

i−1
∑

k=0

(

n−i+1
k+3

)

+
(

n+1
3

)

=
n−1
∑

k=0

n
∑

i=k+1

(

n−i+1
k+3

)

+
(

n+1
3

)

=
n−1
∑

k=0

n−k
∑

x=1

(

x
k+3

)

+
(

n+1
3

)

=
n−1
∑

k=0

(

n−k+1
k+4

)

+
(

n+1
3

)

=
n+3
∑

k=4

(

n+5−k
k

)

+
(

n+1
3

)

=
n+5
∑

k=0

(

n+5−k
k

)

−
[(

n+5
0

)

+
(

n+4
1

)

+
(

n+3
2

)

+
(

n+2
3

)]

+
(

n+1
3

)

= F (n + 6) − (n2 + 4n + 8).

�
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