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Abstract. Spain occupies a first ranking position in worldwide production and exportation for olive oil and table 
olives. Such position is enforced by the positive evolution of investment demonstrated by an increase of 
approximately 5% of area dedicated to this cultivation during the last 6 years. This study analyzes Spanish olive 
sector investment decision taking into consideration the technical efficiency as a relevant element that could impact 
that decision by integrating the real option approach and a dynamic stochastic frontier model. This analysis has been 
applied to a 158 Spanish olive farms using FADN data set. The results show that the technical inefficiency 
persistence parameter is fairly low to unity, which means that small technical inefficiency is transmitted to the next 
time period. The olive groves investment is irreversible and characterized by uncertainty on price and discount rate. 
An increase of discount rate means that the farmers take the decision to postpone investment. An increase on price 
along with a decrease of discount rate leads to the decision to invest with no option value of waiting to invest. The 
results suggest that the decision of investment in Spanish olive depends also on technical inefficiency and it 
persistence. The increase of farms inefficiency means that the decision is to wait to invest. Consequently, the 
inefficient farmers take time and wait to invest, while a smaller persistence parameter leads to the decision to invest. 

Keywords: Investment, olive sector, dynamic technical efficiency. 

1. Introduction 
The olive sector has an important social, economic and environmental role in Spain encompassing more 
than 2.5 million hectares1 (Spanish Ministry of Environment and Rural and Marine Affairs, MARM, 
2008a). With most of olive production concentrated in less-developed areas, this production activity 
represents an important source of employment and a solid column of social and economic development of 
such area. A further contribution of olive groves is the mitigation they provide for environmental 
problems such as desertification and loss of biodiversity associated to the production region. 

World-wide, Spain occupies a first ranking position in worldwide production and exportation for olive oil 
and table olives. Such position is enforced by the positive evolution of investment demonstrated by an 
increase of approximately 5% of area dedicated to this cultivation during the last 6 years (Spanish 
Ministry of Environment and Rural and Marine Affairs, MARM, 2008b). 

As other types of investment, the olive sector investment is characterized by irreversibility and 
uncertainty (Dixit and Pindyck, 1994). The irreversibility is due to the presence of a sunk cost associated 
with various factors: a) the planting of new orchard, which includes pulling out the old ones when 
necessary, land preparation and new plantation material costs. b) the opportunity cost associated with the 
establishment expense and, c) the opportunity cost of the land while the orchard is being established. 

The uncertainty is reflected through factors that affect future outcome and therefore, farmer’s investment 
decision. Moreover, uncertainty can emerge from many sources as: market conditions, regulatory 
initiatives and constraints, farmer’s knowledge and information access. Thus, farmers take time before 

                                                 
1 Spain has a largest area of olive groves and the largest number of olive trees in the World (Spanish 

Ministry of Environment and Rural and Marine Affairs, 2008a) 
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deciding to invest until they dispose of new information and diminish their uncertainty. Farmers who 
search information have more managerial experience which is associated to high technical efficiency 
level (Wilson et al., 2001). 

This study analyzes Spanish olive sector investment decision under irreversibility and uncertainty taking 
into consideration the technical efficiency as a relevant element that could impact that decision by 
integrating the real option approach and a dynamic stochastic frontier model. The real option approach 
allows us to analyse the decision to invest under uncertainty and irreversibility. There is an extensive 
literature applying this approach to agricultural sector applications (e.g., Purvis et al., 1995; Engel and 
Hyde, 2003, Tauer, 2006, Stokes et al., 2009), with Price and Wetzstein (1999) addressing orchard 
management specifically. However, up to date no previous published papers have focused on the analysis 
of investment decision under uncertainty and irreversibility in Spanish olive sector. Moreover, the novelty 
of our approach is assessing the impact of managerial skills (the farmer’s knowledge, information 
access…etc) on investment, such skills are associated to farms technical efficiency (Wilson et al., 2001 
and Battese and Broca, 1997). The key question of our analysis is the evaluation of the relationship 
between the investment under uncertainty and irreversibility and the persistence of technical inefficiency. 

A dynamic stochastic frontier model is developed to estimate the long run technical efficiency and it 
persistence. In a posterior step, the rate of technical efficiency and it persistence are used to evaluate their 
impact on investment decision. The measurement of long-run technical inefficiency levels and it 
persistence helps us to evaluate the subsistence of farms over the long run and adjustment factors and 
forces leading to technical inefficiency.  

The next section presents a background and literature review for both approaches the dynamic efficiency 
and real option. Section 3 deals with the methodology approach. Section 4; discuss the econometric 
specification and empirical application. In section 5, we present the results and discussion, and in the last 
section, we draw our conclusions. 

2. Background and literature review 

2.1 The dynamic stochastic frontier model 

The majority of traditional stochastic frontier models tend to estimate frontier function and firm-specific 
inefficiency levels assuming that inefficiency levels are time-invariant (e.g. Schmidt and Sickles, 1984; 
Kumbhakar, 1987; and Greene, 2008). These studies do not allow for the explanation of time-varying 
efficiency levels through a formulation of production inefficiency that is impacted by behavioral or 
structural linkages over time. The change in efficiency is autonomous with the passing of time. Therefore, 
their technical efficiency models remain static and they fail to associate measurable evolution in technical 
efficiency with an economic motivation, giving a limited analysis of production slack.  

Few stochastic frontier production studies account for dynamics in panel data models of technical 
inefficiency (e.g. Cornwell et al., 1990; Kumbhakar, 1990; Battese and Coelli, 1992; Lee and Schmidt, 
1993 and Ahn and Schmidt, 1995). Such models aim to estimate the temporal pattern of time series 
variation in firm efficiencies levels. However, they are criticized by: a) the imposition of an arbitrary 
restriction on the short-run dynamic efficiency levels and, b) their incompatibility for the analysis of long-
run dynamics on technical inefficiency.  

Other studies, such as Ahn et al., (2000), allow firm specific technical inefficiency levels to follow an 
autoregressive process of order one (AR(1)). This approach does not require the imposition of the 
arbitrary restrictions on the short-run dynamic efficiency levels, but it is criticized by the absence of a 
theoretical justification. The authors claim that this is a useful approach to examine a dynamic link 
between technical innovations and production inefficiency levels by specifying an autoregressive 
processes implying the ability of firms to change systematically by a fixed percentage of their past-period 
inefficiency level. The limited number of studies focusing on this aspect about dynamic models efficiency 
(e.g. Ahn et al., 2002; Huang, 2004 and Tsionas, 2006) are justified by a complex likelihood function 
specification as well as the difficulties of assuming the inference on unobserved firm-specific 
inefficiencies (Tsionas, 2006). 

The dynamic stochastic frontier models tend to estimate firms’ long-run technical inefficiency level, 
given the pressure on a firm’s ability to remain competitive in the long run unless they are technically 
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efficient. Tsionas (2006) proposes that the inefficiency factors need to be adjusted by time which depends 
on adjustment costs. The higher the cost of adjustment; the great is the probability of finding evidence of 
persistent technical inefficiency.  In this study, we consider a dynamic stochastic frontier model with 
persistent technical inefficiency over time using a parameter inferences and inferences on technical 
inefficiency on a firm-specific basis. 

2.2 The real options approach 

The expanded NPV analysis reflects the traditional (static or passive) NPV of expected cash flow and the 
option value of operating and strategic adaptability. Thus, an options approach to capital budgeting 
quantifies the value of options, which is represented as a collection of real options. The most common 
options are to defer, contract, shut down, abandon, expand, default or switch between alternative. In this 
study, we are interested in the deferral option, or the option of waiting to invest. This option derives its 
value from reducing uncertainty by delaying an investment decision until more information has arrived, 
having this kind of managerial flexibility implies value to the firm from an opportunity cost perspective.  

The dynamic version of discounted cash flow analysis and, in particular NPV offers significant 
advantages over static discounted cash flow analysis such as the incorporation of future uncertainty and 
offers the flexibility of the adjusting managers’ decisions in the future. Such attributes allows managing 
risk and increasing the value of a project or strategy for situations that differ from those that were 
expected. This approach considers all important future uncertainties by solving a dynamic programming 
problem which provides the manager the possibility to take many future states into account and 
incorporates the best possible set of decisions at each time and state into the analysis. This approach uses 
the opportunity cost of capital as the discount rate to determine the project expected present value, and the 
estimation of the discounted rate is based on market data about projects with similar or identical risks. 

There are three methodologies available to evaluate corporate risk and uncertainty. In addition to capital 
budgeting methods2, there are portfolio analyses evaluating the risk in the context of the existing assets 
and projects, and the option pricing uses a direct analysis of risk via probability assignment (Brach, 
2003). 

Black and Scholes (1973) pioneered the concept allowing the pricing of call option on shares of stock. 
Myers (1977) built on this concept by considering how financial investments generate real options and he 
indicates that the use of traditional discounted cash flow approach ignores the value of options arising in 
uncertain and risky investment projects by viewing of discretionary investment opportunities as “growth 
options”. Later, Kester (1984) discussed strategic and competitive aspects of growth opportunities. Other 
studies on real option approaches focused on methodological problems in analysing an investment 
decision. Dean (1951); Hayes and Abernathy (1980), and Hayes and Garvin (1982) recognized that 
standard discounted cash flow undervalued investment opportunities as financial analysts ignored 
important strategic considerations. Hodder and Riggs (1985), and Hodder (1986) indicated that the 
problem arises from abuse of discounted cash flow techniques, while Myers (1987) confirms that the 
problem results from various misapplications of the underlying theory.  

In 1994, Dixit and Pindyck introduced the irreversibility model3 and were the first to point out the 
interactions between the irreversibility nature of investments in an uncertain future and the timing of 
those investments. With farms investing frequently in plants and machinery such investments embody 
three important characteristics: i) irreversibility, ii) uncertainty, and iii) the optimal timing of investment 
decisions. The uncertainty is associated with the future outcomes that can be greater or smaller profit. 
Irreversibility means that they are an initial cost of investment that must be at least partially sunk, thus the 
investment is partially or completely irreversible. The timing of investment means that prorogue 
investment to get more information about the future. 

                                                 
2In this methodology the risk is measured indirectly and the discount rate represents the opportunity cost 

of capital. 
3 Dixit and Pindyck in their book “Investment under uncertainty” elaborated this notion 
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2.3 The Orchard investment analysis 

The most of research in orchard investment developed by economists have used the mathematical 
programming approach to analyse the decision of investment. Such models have the maximization of the 
net present value (NPV) of the orchard as an objective, subject to optimal replacement of trees (Hester 
and Cacho, 2003). Early examples include Graham et al., (1977) and Willis and Hanlon (1976), both of 
whom used the mathematical programming methodology to address the profit maximization of apple 
cherry and pear orchard using the timing of replacement as a decision variable, while the second one built 
a temporal model for long-run orchard decision. Childs et al., (1983) and, later Thiele and Zhang, 1992 
used the dynamic programming to maximise profit under the replacement policy applied to apple 
orchards. Applied to the same orchards, Cahn et al., (1997) used the simulation methodology to explore 
net present value under the planting density restriction. However, few models have used the econometric 
approach on orchard investment with emphasis on uncertainty, adjustment costs and informational 
imperfections (e.g. Bernstein and Nadiri, 1986). Dorfman and Heien (1989) presented a model of 
investment behaviour which incorporates uncertainty and adjustment costs through the maximization of 
the expected present value of almond orchard profits.  

The real option approach to analysing orchard investment is undertaken by Price and Wetzstein (1999), 
which consider uncertainty on yield and price to analyse irreversible investment decisions in peach 
orchards. In the present study, we consider the real option approach as formulated by Dixit and Pindyck 
(1994) specification model to analyse the investment under uncertainty and irreversibility. 

3. Methodology  

3.1 Dynamic stochastic frontier model 

Several methods are used to analyze technical efficiency in a production function. In this study, the 
Bayesian stochastic frontier production model is applied. Koop et al. (1995) and Osiewalski and Steel 
(1998) were the first that suggested the use of Bayesian methods for technical efficiency. They used a 
model with an informative prior for firm-specific intercepts. Such a model is similar to the classical fixed 
effects model assuming a distribution for inefficiency. 

Many applications have used this approach. We point out among others Van den Broeck et al., (1994) that 
used a sampling technique to obtain the posterior distribution for the Erlang model. Koop et al., (1995) 
that developed a Gibbs sampling approach. Greene (1990 and 2000) evaluates a complicated integral 
using numerical and Monte Carlo integration. More recently, Tsionas (2000, 2002 and 2006) and Kozumi 
and Zhang (2005), used a Gibbs sampling method to analyze the case of non-integer shape parameter.  

Following Tsionas (2006), the stochastic frontier production function with panel data can be expressed as 
follows: 

1, . . . . , , 1, . . . . ,i t i t i t i ty x v u i n t T    
 (1) 

where itx and   are a 1k   vector of regressors and parameters respectively. 

itv  is a two-sided random errors that are assumed to be iid 20 vIN( , ) , 1,..., , 1,...,i n t T  , and 

itu  is a vector of independently distributed and nonnegative random disturbances that represent technical 

inefficiency. 

We assume that technical efficiency follows an autoregressive process: 

, 1log log ,it it i t itu z u      for 2 , . . . ,t T  (2) 

1 1 1log /(1 ) ,i i iu z     
 for 1t   for all 1 , . . . , .i n  (3) 
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where 2~ (0, ),it IN   for 2,...,t T  is a random variable capturing the “unexpected log-efficiency 

sources” and 2 2
1~ (0, /(1 )),i IN    for all 1,...,i n . The “systematic part” , 1logit i tz u    

reflects “expected” log-inefficiency sources. itz  and   are an 1m  vector of covariates and parameters, 

respectively. We assume that itv , itu , itx and itz  are independent.  

The joint density of the model is given by: 
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The first line of the joint density comes from the normality of 
| , ,it it ity x u 

, while the second come 

from log-normality of , 1| , ,it it i tu z u  , and the last one is due to lognormal assumption on 1 1| ,i iu z  . 

In order to carry out the Bayesian inference, the likelihood function is completed with a prior distribution 
( )p  for location parameters4  ,   and  . The joint prior distribution is given by: 

( , , ) ( , ) ( , ) ( )k m
N Np f V f V p          (5) 

( , )k
Nf x m V refers to the density of the k-variate normal distribution with mean vector m and covariance 

V.   has a Jeffreys´prior distribution5 and is independent of  , while scale parameter ( and  ) are 

independent with inverted-gamma prior: 

( 1) 2( ) exp( /(2 )), 0, 0np q n q
          (6) 

where   refers to any of  ,  , and ,n q  are parameters of the prior distribution. 

An application of Bayes´ theorem by the multiplication of the u prior’s given by (3) with the prior on 
structural parameters given in (5) and (6), gives a joint prior distribution involving  and latent variables 
u (Tsionas, 2006): 

 ( , , , ) ( , , , ) ( )p u y X Z p y u X Z p      (7) 

where ( , , , )p y u X Z  is the augmented likelihood function given in equation (4). The high 

dimensional integral precludes a closed form solution to the likelihood function and thus, requires a 

                                                 
4 There are assumed to be independent of the scale parameters and  . 
5The Jeffreys´s prior in the context of a simple AR(1) model has a following density: 

1/ 2 1/ 2( ) (1 ) (1 ) , 1 1p           . 
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numerical solution approach.  Gibbs sampling6 method with data augmentation has been used in order to 
make Monte Carlo draws from the joint posterior distribution of the model and to perform the 
computations (Gelfand and Smith, 1990, Tanner and Wong, 1987).  

Using the conditional distribution of , , ,itu y X Z provided by Markov Chain Monte Carlo (MCMC) 

scheme, the technical efficiency is measured for each farm (Van den Broeck et al., 1994, Koop and Steel, 
2001). 

3.2 Real option methodology 

The first model in real option approach was developed by McDonald and Siegel (1986), with a starting 
point to find the optimal sunk cost (K)  to pay in return for a given project. 

Following Dixit and Pindyck (1994), we assume that the project value V  follows a geometric Brownian 

motion with drift  and diffusion , which implies that the current value of the project is known, but the 
future values are always uncertain. 

 dV Vdt Vds   (8) 

where ds is the increment of a Wiener process with   0E ds   and   2
E ds dt . The 

assumption of V following a geometric Brownian motion is conditioned on the level of technical 
inefficiency. In principle, the technical efficiency function is not stochastic, but it can contain unknown 
parameters. In the SFM, technical inefficiency is combined with the two-sided error specification; thus, 
by its construction the technical inefficiency function can be scaled to behave as a probability density 
function which is combined with the two-sided error probability density function. This all leads to a 
common practice specifying a composed error with a non-zero expectation.   

We define the value of the option to invest or the investment opportunities ( )F V  and the objective is to 

find the rule that maximizes this value. Using a dynamic programming approach, we can derive the 
optimal investment.  

The maximization of expected present value leads to: 

 
( ) max ( ) T

TF V E V K e     (9) 

where tV K  is the payoff from investing at time t,  denotes the expectation, T  is the (unknown) 

future time that the investment is made,   is a discount rate, and the maximization is subject to equation 

(8) forV . 

We are interested with the way in which the investment decision is affected by uncertainty ( 0  ). 

Since V evolves stochastically, the problem is to determine the point or a critical value H at which it is 

optimal to invest; (i.e., invest whenV H ). The Bellman equation over a time interval dt  leads to the 

total expected return on the investment opportunities, Fdt , is equal to its expected rate of capital 

appreciation:  

 ( )F d t d F   (10) 

Using Ito´s Lemma to expand dF , the Bellman equation becomes the following differential equation 
that must be satisfied by ( )F V : 

                                                 
6 Gibbs sampling is an iterative approach that permit making draws from a joint distribution by doing an 

iterated sequential draws from the conditional distributions. 
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 2 21
( ) ( ) ( ) 0

2
V F V V F V F         (11) 

where 
dV

dF
VF )(' , 

2

2

)(''
dV

Fd
VF   and   is the dividend rate. 

The solution to the Bellman equation leads to the optimal investment trigger value (Dixit and Pindyck, 
1994):  

  A V if V H
V K if V HV

 
   (12) 

1
H K

   is the optimal investment trigger or threshold value of the project that would cause 

immediate investment, which accounts for both irreversibility and uncertainty. V represents the value of 
the decision; either the decision is to invest now or to wait to invest.  If the value of the investment 

opportunity is less than the trigger value, the value AV  consists in both NPV and option value. In the 
other case (if V>H), the strategic value of the investment is given by NPV (V-K), there is no value in 
waiting to invest. 

The point of indifference between investing or not investing is the Marshallian trigger value:  

 M K  (13) 

4. Empirical application 
In this section, first the empirical application of SFM is presented, reporting the data sources, functional 
form specification and variables used in the analysis. The second point reports the construction of olive 
grove investment project, as well as the used data and variables in the analysis of investment decision. 

4.1 Estimation of dynamic stochastic model  

The dynamic stochastic frontier model have been estimated using a balanced panel data of 158 Spanish 
olive farms observed during 6 years from 1999 to 2004. 

Even though our analysis is based on farm-level data, aggregate measures are used to define some 
variables that are unavailable from the FADN dataset. Input and output price indices are necessary to 
deflate all monetary variables which are derived from Eurostat (2008) using 1999 as the base year.  

The dynamic stochastic functional form is specified as Cobb-Douglas7 that takes the form: 

 0
1

ln ln
K

it k kit T it it
k

y x t v u  


      (14) 

where k, j = 1,…,K  indicate the conventional inputs used in the production process.  

Production ity  is defined as an implicit quantity index by dividing total olive sales in currency units by 

the olive price index. Vector kitx  is defined as a (1x6) vector composed of five inputs and a time trend 

(t). Input variables are labor ( Lx ), defined as total hours spent on farm work, expenditure on fertilizers 

                                                 
7 The Translog functional form results were not robust, with many coefficients being much less than 

twice their respective standard errors (the distributional assumptions make it difficult to have conclusive 

claims about the distribution of the Lagrange multiplier statistic). 
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( Fx ), pesticides ( Px ), and other inputs such as plants costs and farming overhead ( Ix ). The total area 

occupied by olive groves defines the land variable LNDx .  

Vector iz , in the technical inefficiency effects function, is a (1x3) vector that specifies the variables age 

and farm size. The older farmers are expected to be less efficient in comparison to younger ones (Battese 
and Coellli, 1995). The farm size is represented by the log of total area and its square (e.g. Gianakas et al., 
2003; Alvarez and Arias, 2004 and Tsionas, 2006), since scale effects might be important in explaining 
technical efficiency. A statistical package GAUSS 7 has been employed to estimate the dynamic 
stochastic frontier model.  

4.2. The construction of olive grove investment project (real option approach) 

After the estimation of the dynamic stochastic frontier model, the investment decision has been analyzed 
using the real option approach. 

For the empirical application, a capital budgeting model is developed for an olive investment project 
along a 50 year planning horizon. A cash flow and a present value of the project have been calculated.  

Following Purvis et al., (1995), the variability of investment return can be approximated using the 

variance of 1ln ln( ) ln( )n n nV V V    , where nV is the value of the equivalent opportunity to invest in 

perpetuity, and is given by: 

 

1
1

(1 )

n

T

n

PV

V






 
 
 
  
      (15) 

where n denotes the time period, and nPV the present value of the project. 

The value nV supposes that the investment can be reinitiated at the end of its usual life at the same sunk 

cost K. 8 The numerator of equation (15) provides the annuity equivalent to the present value of 
investment. 

Table 1 provides the mean and the distribution of uncertain variables used on the simulation model. The 
olive production variable is simulated using the logistic growth function9. We used a FADN data set for 
production variable as well as plantation and collection costs. Additional data have been used from the 
Spanish Ministry of Environment and Rural and Marine Affairs, Statistical National Institute, and 
published studies (Barranco et al., 2006; Spanish Ministry of Environment and Rural and Marine Affairs 
(MARM), 2008c; SNI, 2008; Abós et al., 2007; Muñoz-Cobo et al., 2008 and Carbonell, 2008 ). The sunk 
cost magnitude reflects the cost of preparation of plantation for new trees, which includes: a) removing 
out the old ones when necessary plus other land preparation costs, b) the cost of new planting materials 
(that is, the trees and other related costs), and, c) the opportunity cost of the establishment expense and 
the opportunity cost of the land while the orchard is being established (since it takes about 5 years to 
realize the initial marketable harvest).  

                                                 
8 Because of the alternant of olive grove production, and in order to decrease it volatility (makes the 

changes in the current cash flow substantial), the time period is defined by two years long (the good 

production year plus the bad production year). 
9 The production is not considered having an effect on the investment decision, following the results of 

the dynamic stochastic frontier model; the technical change effect is zero.  
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Price uncertainty is taken under consideration to analyze the investment under alternative discount rates 
(e.g. Purvis et al., 1995 and Engel and Hyde, 2003). Later, inefficiency and it persistence have been 
incorporated into the investment project to evaluate their impact about investment decision.  

Before starting the simulation, a distribution is fitted for each variable using three statistical tests: 
Anderson-Darling, Chi-square, and, Kolmogorov-Smirnov. Price, discount rate, and technical efficiency 
have been considered to have a lognormal distribution, while technical inefficiency persistence has been 
considered to have a beta distribution (Tsionas, 2006).  

After assigning the distribution for each uncertain variable, nV  is simulated for each specific case using a 

Monte Carlo simulation. Given the result of such simulation, the optimal investment trigger value H  is 
calculated, and compared to the expected investment return under real option criterion to evaluate the 
investment decision. 

We start by simulating the impact of discount rate on the decision of investment followed by evaluating 
the impact of the combination discount rate changes and price uncertainty. Subsequently, we evaluate the 
impact of the technical inefficiency and its persistence. For this reason, the technical inefficiency have 
been included in the production variable using equation (2) and (3) of the dynamic stochastic frontier 
model. Then, using the parameters resulted from the estimation of dynamic stochastic frontier model, we 
can evaluate the impact of both technical efficiency, and it persistence about the investment decision.  

5. Results and discussion 
The results derived from the estimation of the Cobb Douglas dynamic stochastic frontier model are 

presented in Table 2. First-order parameters k
β  of labor, fertilizer, and other inputs are all positive and 

statistically significant, indicating that the production is increasing in such inputs. Pesticide is negative 
but statistically weak and not significant. 

Land is negative and statistically significant, which is not an unusual result in such cases, given that is a 
fixed input and cannot be adjusted in orchard crops. The time trend is negative but statistically not 
significant, which suggests that the technology embodied in the trees is unchanged. Therefore, any growth 
taking place over time is from the installed trees and is not able to be added over time, which essentially 
means that there is no additional technical change effect. 

The estimation results of the gamma component reveals that only the constant and size variable included 
in Gamma 1 component are significant implying that technical inefficiency increases at a decreasing rate 
for larger farms. The posterior mean for the autoregressive component is 0.294 which is fairly small and 
far from unity which suggests means that a small quantity of technical inefficiency is transmitted to the 
next time period and, thus, there is not as much friction of inefficiency over time.  

The comparison of our results with previous studies shows a similarity with Ahn et al., (2002) study, that 
had a persistence component equal to 0.18. While the comparison with Tsionas (2006), that had a 
persistence component close to 1, indicate that the technical inefficiency of Spanish olive farms are 
minimally persistent, which suggests a lower cost of adjustment as well as less competition in this sector. 

Table 3 shows farm specific efficiency frequency and posterior statistics for technical efficiency for two 
models; the first one represents the static Cobb-Douglas production, while the second one is the Cobb-
Douglas dynamic frontier used in this study. 

The distribution of estimated technical efficiency scores by farm for the short run shows a fluctuation 
between a minimum of 65.6% and a maximum of 83.7%. This short term efficiency takes an average 
value of 78.1% throughout the period studied, implying that output could have increased substantially if 
technical inefficiency were eliminated. The majority of farmers have efficiency scores in the range 70-
80% (82% of the sample), followed by the range 80-90% (16% of the sample). While, the range 60-70% 
is placed last representing 2% of total sample. Technical efficiency fluctuates over time from a peak of 
91.1% in 1999 to a minimum of 72.6% in 2003.  

Referring to long- run predicted technical efficiency, the measure ranges from 39.4% to 76.5%, and with 
an average value of 72.7% through the period studied. The vast majority of olive farms in the sample 
have a dynamic efficiency scores in the range 70-80%, which represents 81.7% of the total sample. The 
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range 60-70% is second and presents 15.8% of the total sample. Finally, the range 50-60% presents only 
1.3% of the total sample, followed by the ranges 40-50% and < 40% with 0.6%, respectively. The 
difference between static and dynamic technical inefficiency are not very important, as we can see that 
the static inefficiency is 0.06 percentage units upper compared to the dynamic frontier model. This result 
is consistent with the low persistence inefficiency, which shows that the most of farms are reasonably 
keeping efficiency at the same level from short to long term.  

Table 4 presents the net present value, option value and trigger value found by varying the percentage of 
discounted rate. The results indicate that a decrease of discount rate leads to an increase on option value 
and a decision to invest. Thus, at higher discount rate (8%) the decision is wait to invest, while a decrease 
of discount rate value shows a decrease of the trigger value and farmers take the decision to invest. 

Uncertainty in price combined with discounted rate play an important role on the decision to invest in 
Spanish olive sector. Table 5 shows the simulation results by varying olive price and discounted rate. At a 
lower discount rate level ( 7%), an increase in price leads to the decision is to invest with no option 
value of waiting to invest.  

Moreover, the lower price increase combined with higher discount rate delays the investment decision in 
the olive sector. So, at higher discount rate (e.g., 8%) and lower price increase (5 % and 10%), the 
decision is to wait to invest with an important option value of waiting. Such a situation changes when the 
discount rate decreases, which means that the increase of price market level encourage farmers to take the 
decision to invest at farm level. 

A table 6 presents the effect of dynamic technical inefficiency and its persistence in investment decision. 
A higher technical inefficiency rate leads to the decision is wait to invest with important option value for 
waiting, and vise-versa. As the farmers’ technical efficiency increases, the decision changes to invest, and 
they is no option value to wait to invest. This indicates that the technical inefficiency increases the option 
value of waiting to invest and therefore delays the investment decision, while being technically efficient 
leads to farmers being more decisive about the investment decision.  

On other hand, Table 7 shows the net present value, option value, trigger value for olive investment under 
an alternative technical inefficiency persistence increase. As the persistence of technical inefficiency 
increases the decision is wait to invest, and under small percentage of persistence of technical inefficiency 
the decision is to invest.  

An increase in the persistence parameter of technical inefficiency leads to higher costs of adjustment 
combined with strong competition. Thus, the farmers take the decision to wait to invest. However, at 
small persistence parameter of technical inefficiency, the decision is to invest. 

6. Conclusion and recommendation 
The purpose of this paper is the evaluation of the investment decision under uncertainty and irreversibility 
allowing for long run inefficiency and its persistent impact on investment decisions. This analysis has 
been applied to a 158 Spanish olive farms using FADN data set.  

The dynamic stochastic frontier model has been used to explain the variation in long-run farm efficiency. 
Such a model assumes the autoregressive term of technical inefficiency over time which reflects an 
element of the adjustment cost. Then, the real option approach has been used to analyze investment under 
uncertainty and irreversibility. 

The empirical results show that the technical inefficiency persistence parameter is fairly low to unity, 
which means that small technical inefficiency is transmitted to the next time period. The technical 
efficiency average is 72.7% and the static inefficiency is 0.06 percentage points greater compared to the 
dynamic technical efficiency. 

The olive groves investment is irreversible and characterized by uncertainty on price and discount rate 
that play an important role on the decision to invest in Spanish olive sector. An increase of discount rate 
means that the farmers take the decision to postpone investment. An increase on price along with a 
decrease of discount rate leads to the decision to invest with no option value of waiting to invest. 

The results also suggest that the decision of investment in Spanish olive sector does not depend alone on 
discount rate and olive price, but also on technical inefficiency and it persistence. The increase of farms 
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inefficiency means that the decision is to wait to invest and, conversely, the more technically efficient the 
farmer more likely the decision is to invest. Consequently, the inefficient farmers take time and wait to 
invest, while a smaller persistence parameter leads to the decision to invest. 

The investment in Spanish olive sector is characterized by uncertainty related to olive price as well as 
discounted rate. Moreover, the timing of optimal investment decision is affected positively by the high 
score of olive Spanish farms technical efficiency, as well as its low persistence through time.  

The recent CAP reform policy implemented after 2006, and modified in 2007 can have a possible positive 
impact about olive investment. Such policy is decoupled by 93% and combined with the price support 
which can stabilize farm income and diminish the uncertainty related to price. This policy can allow the 
farm operator to have a more secure environment to future investment, which is guaranteed by the high 
technical efficiency scores of Spanish olive farms associated to low persistent inefficiency through time.  

Finally, for further research, the analysis of the impact of allocative inefficiency about the decision of 
investment in Spanish olive sector can be an effective tool to evaluate the relationship between the 
economic survival of farms conditioned by policy reforms and its decision to invest. 
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Table 1. Uncertainty assumptions and Variables mean 

Uncertainty Unit Distribution Notes 

Olive price 1.67 €/kg lognormal Mean= 1.67, Std.Dev.=1% 

Discount rate 0.05 % lognormal Mean= 0.05, Std.Dev.=3% 

Technical efficiency 0.72 % normal Mean= 0.72, Std.Dev.=4% 

Production 3617 kg/ha logistic Mean= 3617, Std.Dev.=2185 

Persistence 0.29 Beta Min. =0.1, Max.= 0.9 

Sunk cost 7555 €/ha   

Table 2. Results for dynamic stochastic frontier model using Cobb-Douglas functional form 

Production frontier model 
Parameter (equation 1) Mean Standard error 

constant -0.53062 (0.56709) 
labor 0.61843 (0.05656)*** 

fertilizers 0.04728 (0.02062)*** 
pesticides -0.00700 (0.02070) 

land -0.47923 (0.16141)*** 
Other inputs 0.06400 (0.02847)*** 

trend -0.00682 (0.01843) 
Dynamic Technical efficiency model 

Parameter (equation  2)   
constant -0.80347 (0.33760)*** 

size 0.00297 (0.00326) 
(size)2 -0.000004 (0.00001) 

age -0.00309 (0.00544) 
Parameter (equation  3)   

Constant_1 -1.11615 (0.59947)** 
Size_1 -0.06831 (0.00956)*** 

(size)2_1 0.00027 (0.00005)*** 

Age_1 -0.00213 (0.01568) 
sigma 0.40012 (0.01299)*** 

Omega ( ) 0.48895 (0.07169)*** 
Omega_1 0.10751 (0.14599) 
Rho (  ) 0.29373 (0.08210)*** 

Note: *** and ** indicate that the parameter is significant at the 1% and 5% respectively. 
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Table 3. Frequency Distribution of Technical Efficiency and posterior statistics  

 Static model Dynamic model 

Efficiency level Frequency Percentage of farms Frequency Percentage of farms

<40 0 0 1 0.6 
40-50 0 0 1 0.6 
50-60 0 0 2 1.3 
60-70 3 2 25 15.8 
70-80 130 82.2 129 81.7 
>80 25 15.8 0 0 

Mean 0.78102 0.72752 
S.d. 0.02363 0.05296 

Median 0.78227 0.73199 
Minimum 0.65611 0.39411 
Maximum 0.83696 0.76495 

Table 4. Net present value, option value, and Trigger value For Olive Investment under Alternative 
Discount rate percentages 

NPV: Net Present Value, H: Trigger value and F(V): Option value 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Discount rate  percentage decrease 
 0.08% 0.07% 0.06% 0.05% 0.04% 0.03% 

NPV 15.745 € 22.116 € 30.956 € 43.377 € 61.052 € 86.521 € 

H 16.562 € 16.189 € 15.702 € 15.819 € 15.671 € 15.371 € 
F(V) 8.546 € 11.920 € 16.388 € 23.226 € 32.475 € 45.148 € 
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Table 5. Net present value, option value, and Trigger value For Olive Investment under Alternative price 
increase percentage and Discount rate percentages 

   Price percentage increase 

   5% 10% 15% 20% 25% 

NPV  90.723 € 91.991 € 97.462 € 103.616 € 109.087 € 

H 14.616€ 4.484€ 2.549€ 2.091€ 1.746€ 

0,
03

%
 

F(V) 45.105 € - - - - 

       
NPV  61.051 € 65.108 € 69.671 € 73.728 € 77.784 € 

H 16.729€ 4.665€ 3.030€ 2.148€ 1.839€ 

0,
04

%
 

F(V) 34.287 € - - - - 

       
NPV  43.377 € 46.437 € 49.880 € 52.940 € 56.000 € 

H 17.180€ 9.203€ 3.167€ 2.319€ 1.929€ 

0,
05

%
 

F(V) 24.812 € 8.906 € - - - 

       
NPV 30.956 € 33.304 € 35.946 € 38.294 € 40.643 € 

H 18.499€ 14.265€ 3.531€ 2.369€ 1.974€ 

0,
06

%
 

F(V) 18.552 € 16.107 € - - - 

       
NPV  22.116 € 23.948 € 26.010 € 27.842 € 29.674 € 

H 19.743€ 12.256€ 3.587€ 2.376€ 2.015€ 

0,
07

%
 

F(V) 13.695 € 9.465 € - - - 

       
NPV  15.744 € 17.197 € 18.831 € 20.284 € 21.737 € 

H 23.103€ 19.514€ 3.524€ 2.459€ 2.093€ 

D
is

co
un

t r
at

e 
pe

rc
en

ta
ge

 in
cr

ea
se

 

0,
08

%
 

F(V) 10.487 € 10.496 € - - - 
 

Table 6. Net present value, option value, and Trigger value For Olive Investment under Alternative 
technical efficiency percentages decrease. 

 Technical efficiency percentages decrease 

 0% -5% -10% -15% -20% -25% -30% 

NPV 86.521 € 80.468 € 75.100 € 68.591 € 63.681 € 56.771 € 52.261€ 

H 1.086 € 1.399 € 2.244 € 5.468 € 6.1801 € 1.025.769 € 9.514.868 € 

F(V) - - - - 55.902 € 51.842 € 40.803 € 

Table 7. Net present value, option value, and Trigger value For Olive Investment under Alternative Rho 
percentages increase.  

 Persistence percentages increase 

 0% (0,29) + 25% + 50% +75%:0,50 +100% 

NPV  84.704 € 91.155 € 94.714 € 105.724 € 113.684 € 

H 10.761 € 11.215 € 39.664 € 166.592 € 903.300 € 

F(V) 26.382 € 31.060 € 77.057 € 100.867 € 112.675  € 

 


