
CellMT: A Cooperative Multithreading Library for the Cell/B.E.

Vicenç Beltran

Barcelona Supercomputing Center
Barcelona, Spain
vbeltran@bsc.es

David Carrera, Jordi Torres and Eduard Ayguadé

Department of Computer Architecture
Technical University of Catalonia

Barcelona, Spain
{dcarrera, torres, eduard}@ac.upc.edu

Abstract

The Cell BE processor has proved that heterogeneous
multi–core systems can provide a huge computational power
with high efficiency for a wide range of applications. The
simple design of the computational units and the use of
small managed local memories is the key to achieve high
efficiency and performance at the same time. However, this
simple and efficient hardware design comes at the price of
higher code complexity. The code written to run in this kind
of processors must deal with several issues such as code
vectorization, loop unrolling or the explicit management of
local memories. Some of these issues such as vectorization
or loop unrolling can be partially solved by the compiler, but
the overlapping of data transfer and computation times must
be manually addressed by the programmer with techniques
such as double buffering that increase the code complexity.
In this paper we present a user level threading library
called CellMT that effectively hide memory latencies. The
concurrent execution of several threads inside each SPU
naturally overlaps computation and data transfer times with-
out increasing the code complexity. To prove the suitability
and feasibility of our multi-threaded library, we perform an
exhaustive performance evaluation with a synthetic bench-
mark and a real application. The experimental results show
that the multithreaded approach can outperform a hand-
coded double buffering scheme, with speedups from 0.96x to
3.2x, while maintaining the complexity of a naive buffering
scheme.

1. Introduction

The Cell/B.E. processor provides high computational

power and memory bandwidth with a simple and efficient

hardware design that overcomes the memory wall problem

[1] with the use of software–managed local memories. The

use of managed local memories instead of traditional caches

is the most distinctive characteristic of these processors.

Each local storage is directly accessible only from its

own processor removing the need to implement coherency

protocols across the local storage of each processor. This

simplifies the hardware design and improves the scalability

of the system. The performance improvement that can be

obtained with this processor come at the cost of higher

software development complexity. To obtain the best per-

formance of the Cell processor, the programmer should

address all the issues which are common to other state of

the art multi–core processors, such as code parallelization,

code vectorization, loop unrolling, branch predication and

data alignment. Current compiler technology can (partially)

address most of the mentioned issues, but the Cell processors

have an additional one to overcome, the programmer need to

manually manage the data transfers between main memory

and each local storage. The naive approach to this problem

can be trivially implemented on current compilers but the

performance obtained will be unacceptable because we also

need to overlap the data transfer and computation times.

The most well-known and widely used technique to overlap

computation and data transfer times is the use of double

or multi buffering schemes. These techniques are effective

for regular applications with a predictable memory access

pattern, but cannot be always applied. Moreover, double

buffering or multi buffering techniques increase the code

complexity and must be manually implemented by the

programmer in a case by case basis, reducing the system

productivity.

In this paper, we present and evaluate our CellMT co-

operative multithreading library that naturally overlaps the

computation time of one thread with the transfer time of

other threads inside the same SPU. This library provides a

cooperative multi-threading model. So it relies on the threads

themselves to relinquish control once they are at a context

switch point. This cooperative multi-threading model is a

perfect fit for any processor with a managed local store, such

as the Cell processor, because the context switch points are

easily identified. In fact, all the applications written for the

Cell have this points explicitly identified by the memory flow

control (MFC) operations used to wait for DMA request or

Mailbox messages. The CellMT library provides a familiar

and well understood programming model that is similar to

the model used to split work across SPUs, so it does not

increase the complexity of the application. Moreover, this

technique is more prevalent than double buffering techniques

because it does not need to know the next DMA request to

be performed in advance, hence it is specially well suited

for applications with non predictable memory accesses.

978-1-4244-4921-7/09/$25.00 ©2009 IEEE 245

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows: Section

2 compares the available techniques to overlap computation

and data transfer times for the Cell/B.E. Section 3 introduces

the Cell/B.E. architecture. Section 4 presents the CellMT

threading library. Section 5 describes the applications bench-

mark used to evaluate the performance characteristics of our

threading library. Finally, Section 6 draws the conclusions

and future work.

2. Related work

Techniques such as double–buffering or multi–buffering

[2][3] have been widely used in the Cell/B.E. to hide DMA

latencies and to overlap computation and data transfer times.

Although both techniques are very effective, they must be

used on a case–by–case basis, because these techniques re-

quire non–trivial and error–prone code modifications which

are only suitable for applications with very predictable

memory accesses. Other techniques have been proposed in

the literature to hide memory latencies such as in [4], where

the authors propose a prefetching technique for I/O intensive

applications, which is only effective for applications with

huge working sets that do not fit in main memory. In [5], a

software cache is proposed that improves the performance of

some specific applications with a irregular memory access

pattern. In [6], the authors describe a programming frame-

work that automatically manages the application data and

uses an optimal buffering scheme that overlap the application

computation and data transfer times. Like most of the other

related work, this framework is only useful for applications

with a predictable access pattern, furthermore we need to

write the application from scratch in a new programming

model. Although all the afore–mentioned techniques are

valid and effective for some specific applications, we need

a more general solution that can be effectively implemented

without increasing the overall application complexity. To

this end, we have investigated the use of multi–threading

to hide memory latencies on the Cell/B.E. The SPUNK [7]

nano–kernel provides a micro–threading model to increase

the utilization of the Cell/B.E. resources. The main goal of

SPUNK is also to overlap DMA latencies with computation,

but its high context switch overhead of 4 ticks (compared to

the 2.9 and 3.9 ticks of a DMA request of size 128 and 2048

bytes respectively) make it unsuitable for most applications.

Additionally, SPUNK requires to rewrite the application

to follow an event-driven model. In contrast, the CellMT

library has a context switch overhead of only 0.7 ticks,

which increases the scope of its applicability. The CellMT

threading library provides a low level interfece with a high

degree of flexibility. It also furnishes a high level interface (a

wrapper to the standard libspe2), that ease development of

new applications and porting existing ones. This high level

library only provides the illusion to the PPU code of more

available SPEs, so that existing Cell/B.E. applications can

easily been ported. With this high level library, we can run

a Cell/B.E. application with virtually no modifications on

the PPU and SPE code. This makes it very attractive for

any existing application that wants to make the most of the

Cell/BE without increasing the code complexity. In addition

to ease the development of end user applications, this library

can also be used to simplify the implementation of runtime

system and specialized programming frameworks such as

[8], [9], [6] and [10].

3. Cell/B.E. Architecture

The Cell Broadband Engine Architecture (CBEA) [11]

is a single chip heterogeneous multiprocessor. The design

goals of the Cell processor were to address the fundamental

challenges facing modern microprocessor development: high

memory latencies and on-core power dissipation. Until now,

microprocessors have achieved performance improvements

through higher clock frequencies and deeper pipelines, but

the fundamental problem that current processors face is

the memory wall [1]. On modern processors significant

amounts of time are spent waiting in memory stall, due to

the large difference between the processor and the memory

speed. Large memory latencies make it difficult to obtain

further performance gains with traditional processor designs

based on hardware caches. The Cell processor approaches

this problem in a different way, providing a heterogeneous

processor with explicit memory management. This approach

potentially improves the throughput of the processor, but also

increase the effort to develop an application.

Figure 1 shows the three basic components of the Cell

processor. First, the PowerPC Processor Element (PPE),

which is primarily intended to manage global resources.

Second, the Synergistic Processing Elements (SPE) that are

specialized vector processors with a private local storage and

a DMA engine, which can perform up to 16 asynchronous

DMA transfers between the local storage and main memory

at the same time. Finally, the communication between the

PPE, the SPEs, main memory, and external devices is

realized through an Element Interconnect Bus (EIB). The

EIB has a theoretical peak data bandwidth of 204.8GB/s,

but the DMA operations with main memory are limited

to 25.6GB/s. Moreover, the data transfer times form main

memory to a SPU local storage have a latency of at least

1000 processor cycles that is not negligible for small data

transfers. The following results have been measured with the

dmabench utility provided by the IBM SDK for the Cell/B.E.

Figure 2 shows in a log-log scale the transfer time of

DMA read operations with block sizes that ranges from

8 bytes to 16 KBytes in the x-axis. The y-axis measures

the transfer time in processor cycles. The transfer time of a

DMA read operations are composed of a initial delay plus

the DMA block size divided by the memory bandwidth.

This initial delay dominate the transfer times of DMA read

246

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

��������	
�����
	����
����

�� �� ���

��� ���

������
��� ������
��� ������
�������

������
���

������
���

�������� �����

����	
��
����	������	�������
�

����	��	������	�������

���

���

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

��������	
�����
	����
����

�� �� ���

��� ���

������
��� ������
��� ������
�������

������
���

������
���

�������� �����

����	
��
����	������	�������
�

����	��	������	�������

���

���

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

�!

���

���

���

������
���

����"�

������
����
����"�

�#�$�

Figure 1. The Cell Broadband Engine Architecture

operations for block sizes of up to 1024 bytes. In Figure 2

there are three different configurations evaluated. The first

measures the performance of DMA operations when only

one SPU is active, the second configuration measures the

performance of DMA read operations of eight concurrent

SPUs. Finally, the last configuration shows the performance

when all the 16 SPUs of a QS20 are evaluated. As we

can see, the bus congestion increases the latency from 1000

cycles for one SPU alone to more than 3000 for the 16

SPUs configuration. The initial DMA transfer delay is not

amortized until we use DMA block sizes of at least 2048

bytes, when the total time is dominated by the data transfer

time.

The data presented on Figure 2 shows the need to overlap

computation time and transfer time, specially for transfer

sizes of less than 1024 bytes. For instance, in the 16 SPEs

configuration, when a SPU issue a DMA get operation of

less than 1024 bytes, the processor will be waiting at least

3000 cycles until the data is ready on the local storage,

which is unacceptable for most applications. This data also

shows the opportunity to improve this situation with the use

of multi-threading inside each SPE. As we will describe in

detail in the next section the key idea behind our threading

library is to perform a fast thread context switch to make the

most of these wasted SPU cycles. Our vision is that with the

use of a cooperative multi–threading model on a processor

with a managed local storage we can leverage the benefits of

this simple and high performance hardware design, but with

a programming complexity similar to a chip multithreading

design (CMT) such as the Niagara processor [12].

4. CellMT library

The cooperative multi-threading library is implemented

on a core library that provides all the features and flexibility

required to run complex multi-threaded application inside

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 4 16 64 256 1024 4096 16384

ti
m

e
 (

c
y
c
le

s
)

DMA size (bytes)

1 SPU
8 SPUs

16 SPUs

Figure 2. DMA latencies of the Cell/B.E.

the SPUs. This core library, which is described in detail in

section 4.1, provides a low-level threading API that can be

directly called from the SPU application code. This low-level

API is useful to write applications with complex interactions

between threads, but its flexibility can also increase the com-

plexity of the applications itself. To address this issue, the

CellMT library also provides an additional library described

in section 4.2, that simplifies the development of applications

that follow a common threading pattern. This additional

library is a wrapper to the standard libspe2 library that is

used from the PPU side, and provides a high level abstraction

to use the SPU threads. For the sake of clarity, we have

omitted the implementation details of both libraries, but the

source code can be downloaded from [13]. Finally, section

4.3 presents two implementations of the same encryption

kernel to compare the complexity of a double buffer scheme

and our multithreaded approach. In [14] there is a detailed

description of the library APIs, as well as, some additional

code examples.

4.1. The libcellmt library

This library contains the three basic functions required to

run a cooperative multi–threaded application. The most im-

portant functions are run thread(...), wait for(..) and yield().
The first one allows the programmer to spawn a new thread

that will start executing a specified function with a list of pa-

rameters and using its own stack space. This function returns

an error if the number of threads has reached the maximum

or 0 on success. The thread id of the new thread is returned

on the int *th id parameter. The function wait for(...) is used

to wait for the end of a previously created thread. Finally, the

yield() function is used to transfer the execution to another

thread. The main task carried by this function is to save

the value of the PC register and the other 48 non-volatile

registers of the current thread, and restore the same registers

247

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

with the values of the next thread to execute. We use a

round–robin algorithm to schedule the next thread to run.

This simple algorithm minimizes the overhead of the yield()
function, which is around 170–180 cycles for any number of

active threads. Besides these three functions, there are other

auxiliary functions such as get thread id() that returns the

thread id of the current thread or get free stack space() that

returns the available stack space of the current thread. Fi-

nally, there are several non-blocking functions which can be

used to wait for common events such as DMA completions

or SPU channel activity. Currently the maximum number

of SPU threads supported are 16, although this number can

be easily increased if necessary. The library is completely

embedded with the user application at compilation time and

it does not need to initialize any dynamic data structure or

variable.

4.2. The libspe2mt library

This library is intended to ease the development and

porting of applications that are already designed to run

across multiple SPUs, which is the case of most Cell/B.E.

applications. It follows the philosophy of the standard lib-

spe2 library, but extends its functionality to support the

execution of multiple threads in each SPE. From the point of

view of the PPU code, it is like if there were more available

SPUs to run on. This library provides the same function as

the original libspe2 library, as well as an additional one: the

spe mt context add thread(...) which can be used to specify

the number of threads that will run on a spe mt context.
Each of the configured thread will execute the main(...) func-

tion of this spe mt context with its own specified arguments

in a transparent way. If we use this library, we only need

to do minor modifications to the original PPU code, while

in the SPU code just have to change the macro or function

used to wait for DMA operations (see the next section for

an illustrative example).

4.3. Multithreading vs. double buffering

In this section we compare the code complexity of our

multi-threaded approach vs. the code complexity of a double

buffering scheme. Listing 1 shows the simplest code required

to encrypt a data buffer resident in main memory. As we can

see, the steps required to encrypt a buffer of an arbritary size

are straightforward. In general, the original buffer will not fit

in the private memories available in the SPUs, so we need to

split it into smaller blocks. The original buffer is transfered

to the local storage in blocks of size lbsize. Each of these

blocks are then encrypted on the local sotorage and the

resulting data is copied back to main memory. This process

is repeated until all the data has been encrypted. The main

drawback of this code is that we are not overlapping data

transfer and computation times. Notice that this example

follows one of the simplest and most common processign

patterns used on the Cell/B.E. processor that we will call

”get-compute-put” from now on.

Listing 1. AES simple buffering
vo id a e s s i m p l e b u f f e r i n g (

u n s i g n e d l on g l ong b u f f e r ,
c o n s t u n s i g n e d i n t b s i z e ,
u n s i g n e d i n t l b u f f e r ,
c o n s t u n s i g n e d i n t l b s i z e ,
c o n s t AES KEY ∗key ,
c o n s t i n t mode){

c o n s t i n t i t e r s = b s i z e / l b s i z e ;
i n t t a g = m f c t a g r e s e r v e () ;
i n t i ;
f o r (i =0 ; i< i t e r s ; i ++){

mfc ge tb (l b u f f e r , b u f f e r , l b s i z e , t ag , 0 , 0) ;
m f c w a i t a l l (t a g) ;
A E S e c b e n c r y p t f a s t (l b u f f e r , l b u f f e r ,

l b s i z e , key , mode) ;
mfc put (l b u f f e r , b u f f e r , l b s i z e , t ag , 0 , 0) ;
b u f f e r += l b s i z e ;

}
m f c w a i t a l l (t a g) ;
m f c t a g r e l e a s e (t a g) ;

}
To improve the performance of the code shown in List-

ing 1 we can use a double buffering scheme. With double

buffering we can overlap the computation time of the current

block with the transfer time of the next block. Listing 2

shows the double buffering version of the original code. As

we can observe, the complexity of the loop has increased.

Now we need an epilogue and a prologue to correctly

process the first and last blocks of the buffer. Moreover, the

loop must be unrolled to process two blocks per iteration.

We also need two times more space in the local storage

to allocate the buffers required to do double buffering.

Although this code is more efficient than the first version,

it is also more complex and error-prone.

Listing 2. AES double buffering
vo id a e s d o u b l e b u f f e r i n g (

u n s i g n e d l ong l on g b u f f e r ,
c o n s t u n s i g n e d i n t b s i z e ,
u n s i g n e d i n t ∗ l b u f f e r [2] ,
c o n s t u n s i g n e d i n t l b s i z e ,
c o n s t AES KEY ∗key ,
c o n s t i n t mode){

c o n s t i n t i t e r s = (b s i z e / l b s i z e) / 2 ;
i n t t a g [2] = {m f c t a g r e s e r v e () ,

m f c t a g r e s e r v e () } ;
mfc ge t (l b u f f e r [0] , b u f f e r +(l b s i z e ∗0) ,

l b s i z e , t a g [0] , 0 , 0) ;
mfc ge t (l b u f f e r [1] , b u f f e r +(l b s i z e ∗1) ,

l b s i z e , t a g [1] , 0 , 0) ;
i n t i ;
f o r (i =0 ; i<i t e r s −1; i ++){

m f c w a i t a l l (t a g [0]) ;
A E S e c b e n c r y p t f a s t (l b u f f e r [0] ,

248

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

l b u f f e r [0] , l b s i z e ,
key , mode) ;

mfc put (l b u f f e r [0] , b u f f e r +(l b s i z e ∗0) ,
l b s i z e , t a g [0] , 0 , 0) ;

mfc ge tb (l b u f f e r [0] , b u f f e r +(l b s i z e ∗2) ,
l b s i z e , t a g [0] , 0 , 0) ;

m f c w a i t a l l (t a g [1]) ;
A E S e c b e n c r y p t f a s t (l b u f f e r [1] ,

l b u f f e r [1] ,
l b s i z e , key , mode) ;

mfc put (l b u f f e r [1] , b u f f e r +(l b s i z e ∗1) ,
l b s i z e , t a g [1] , 0 , 0) ;

mfc ge tb (l b u f f e r [1] , b u f f e r +(l b s i z e ∗3) ,
l b s i z e , t a g [1] , 0 , 0) ;

b u f f e r += (2∗ l b s i z e) ;
}
m f c w a i t a l l (t a g [0]) ;
A E S e c b e n c r y p t f a s t (l b u f f e r [0] ,

l b u f f e r [0] ,
l b s i z e , key , mode) ;

mfc put (l b u f f e r [0] , b u f f e r +(l b s i z e ∗0) ,
l b s i z e , t a g [0] , 0 , 0) ;

m f c w a i t a l l (t a g [1]) ;
A E S e c b e n c r y p t f a s t (l b u f f e r [1] ,

l b u f f e r [1] ,
l b s i z e , key , mode) ;

mfc put (l b u f f e r [1] , b u f f e r +(l b s i z e ∗1) ,
l b s i z e , t a g [1] , 0 , 0) ;

m f c w a i t a l l (t a g [0]) ;
m f c t a g r e l e a s e (t a g [0]) ;
m f c w a i t a l l (t a g [1]) ;
m f c t a g r e l e a s e (t a g [1]) ;

}

Listing 3. mfc wait all vs. mfc wait mt all
i n l i n e vo id m f c w a i t a l l (c o n s t i n t t a g){

mfc wr i t e t ag mask (1 << t a g) ;
m f c r e a d t a g s t a t u s a l l () ;

}

i n l i n e vo id m f c m t w a i t a l l (c o n s t i n t t a g){
c o n s t u n s i g n e d i n t mask = 1 << t a g ;
u n s i g n e d i n t r e t ;
do {

y i e l d () ;
mfc wr i t e t ag mask (mask) ;
m f c w r i t e t a g u p d a t e (

MFC TAG UPDATE IMMEDIATE) ;
r e t = m f c r e a d t a g s t a t u s () ;

} w h i l e (u n l i k e l y ((r e t & mask)) == 0) ;
}

Finally, the multi-threaded implementation is like the code

presented in Listing 1, but the call to the mfc wait all(tag)
function is replaced by a call to the mfc mt wait all(tag)
function. The rest of the code remains completely un-

changed. Listing 3 shows the differences between these

functions. Both functions are always called immediatly after

a DMA operation has been started. The original function

issues a blocking instruction that waits for the completion of

a specific DMA operation, so the whole processor becomes

stalled. On the other hand, the multi-threaded version calls

the yield() function to instantly block the current thread

and change the execution to another thread. At some point,

another thread will again call the yield() function and the

original thread will resume its execution. Then, the thread

will issue a non–blocking instruction to check if the DMA

has been completed. If this is the case the thread will

continue its execution, otherwise the thread will call the

yield() function again.

5. Evaluation

We have used two different applications to evaluate the

performance of our CellMT library: the first is a synthetic

application that can be parametrized to generate different

workloads; the second application is the AES encryption

kernel available in the IBM SDK 3.1, which is used to verify

the correctness of the results obtained with the synthetic

application.

All the experiments have been conducted on a QS20 blade

powered with two Cell processors clocked at 3.2 GHz with

1 GB of RAM. The default Linux kernel (version 2.6.22-

5) and a virtual page size of 4 KBytes is used in all the

experiments. The experiments have been executed several

times to obtain results with a low standard deviation.

5.1. Description of the Synthetic Application
Benchmark

The synthetic application was created to capture the

performance characteristics of the most representative pro-

cessing pattern used in the Cell/B.E. processor, which is the

”get-compute-put” pattern (already presented in the example

of Section 4.3). In this general processing pattern, a portion

of the input data is transferred to the local storage, then

the data is locally processed and the resulting output data

is written back to the main memory. The performance

characteristics of an application that follows this pattern is

mainly determined by two factors: the data transfer size and

the operational intensity of the processing algorithm. The

operational intensity of an algorithm is usually defined as the

number of flops per byte of input data [15]. This definition is

useful to compare the performance of a given kernel across

a number of different hardware architectures. In the scope of

this paper, we define the operational intensity of an algorithm

as the number of cycles spent for each byte of input data,

because we are evaluating the performance of a set of kernels

on the same hardware architecture.

We have developed a synthetic application benchmark that

follows the above–mentioned ”get-compute-put” processing

pattern, but with parametric data transfer sizes and oper-

ational intensities. The application benchmark is designed

to process an input buffer resident on the main memory.

The PPU side of the program calculates the boundaries of

the buffer splits to be processed by each SPU. Each SPU

249

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 16 64 256 1024 4096 16384

b
a
n
d
w

id
th

 (
G

B
/s

)

DMA size (bytes)

simple
double
multi 2
multi 3

multi 15

Figure 3. Read Only Performance

receives the length and the size of the buffer to be processed.

Each SPU splits its input buffer in blocks of DMA size and

applies a processing algorithm with an operational intensity

cycles per byte. Once one block of data is processed it is

copied back to main memory, and the process is repeated

until all the input data has been processed.

There are three different implementations of the synthetic

application to make the actual processing: simple buffering,

double buffering and the multi-threading approach. In order

to produce the most accurate results, the parametrization of

the kernel is done at compile time with the help of some

macros. In this way we avoid the introduction of any run-

time overhead into the processing algorithm.

5.2. Synthetic application: read-only

The first experiment is aimed to measure the maximum

memory bandwidth that can be achieved by each of the

three versions (simple buffering, double buffering and mul-

tithreading) of our synthetic application benchmark. In this

case the operational intensity is 0 cycles/byte, and the data is

not copied back to main memory, so we are only measuring

the raw read performance of each version. That is, the upper

bound of the synthetic application in terms of actual data

transfer capacity. The size of the input buffer is 512MB,

so each SPU will process a split of 32MB. Note that the

peak bandwidth of the QS20 blade used in the experiments

(powered by 2 Cell/B.E. processors) is 51.2GB/s, as it was

discussed in Section 3.

Figure 3 shows the performance of the synthetic applica-

tion when parametrized with 0 cycles per byte, and DMA
size values ranging from 16B to 16KB. Notice that in this

experiment data is not processed nor sent back to main

memory. Note that the x-axis is in a log–scale. The y-

axis shows the effective memory bandwidth achieved by

the synthetic application. Results show the performance

 0.5

 1

 1.5

 2

 2.5

 0
 2

 4
 6

 8
 10

 12
 14

 16

 16
 64

 256
 1024

 4096
 16384

 0.5

 1

 1.5

 2

 2.5

DMA size (bytes)

Number o
f th

re
ads

s
p
e
e
d
u
p

Figure 4. Speedup Multithreading vs Double buffering

of simple buffering, double buffering and multi-threading

approach; the multi-threaded version is evaluated with 2,

3 and 15 threads. As it can be seen, the 3 threads multi-

threaded configuration gets the same performance as the

double buffering scheme, while with 15 threads it clearly

outperforms the other configurations. The maximum ef-

fective performance observed in the experiments for all

configurations is around 45 GB/s, what is very close to

the theoretical peak performance of a dual Cell/B.E. blade,

that is 51.2 GB/s. The difference between the achieved

bandwidth and the theoretical peak performance can be

explained by the SPU TLB thrashing that is observed for

data-sets larger than 16MB. Running the same experiments

with an input buffer size of 16MB, we observed a sustained

bandwidth of 50GB/s.

As it can be observed, for DMA size above 2048 bytes,

all configurations deliver the same performance because the

communication becomes bandwidth intensive (see Figure 2).

For configurations with less than 2048 bytes of DMA size,

the actual bandwidth is determined by the number of DMA

requests on-the-fly. Notice that the multi-threaded scheme

configured with 3 threads obtains the same performance

as the double-buffering configuration (and clearly above

the single buffering configuration), while with 2 threads

the performance is between that delivered by the single-

buffering and double-buffering configurations. This result

can be explained with the fact that multi-threaded has

slightly higher overhead when compared to the double-

buffering scheme. The extra overhead is due to the light

thread context switches. Notice that with 15 threads the

multi-threaded configuration is able to obtain an effective

bandwidth higher than the other configurations for values of

DMA size below 512 bytes.

In a second experiment, still using a 0 cycles per byte
configuration, we compare all the configurations of the

multi-threaded approach (from 1 to 16 threads) with the

250

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

double-buffering scheme. Notice that the maximum number

of threads to be used is limited by the number of on-the-

fly DMA requests supported by one SPU (see Section 4

for more details). Results for this experiment can be seen

in Figure 4 in terms of speedup. As it can be observed,

only configurations using 1 or 2 threads deliver lower

performance than the double buffering scheme, but only by a

small margin. For all the configurations with a DMA transfer

size larger than 512 bytes the performance are the same, but

for smaller DMA transfer speedups of up to 2.4x can be

observed. Although it can hardly be seen in the Figure 4,

performance for configurations with 2, 4, 8 and 16 threads

are slightly lower than the performance obtained for similar

configurations using a different number of threads. This can

be warranted based on the unbalanced DMA requests to the

different memory banks in these configurations.

Finally, note that some data points in Figure 4 are missing.

This is caused by the fact that for the 16KB DMA size
configurations and more than 10 threads, the amount of

memory needed to store the data, code and DMA buffers

exceeds the 256KB capacity of the local storage.

5.3. Synthetic application: read-compute-write

In this section we compare the multithreaded, double

buffering and simple buffering approaches for a comprehen-

sive combination of application configurations, comprising

different values of DMA size and cycles per byte. These

experiments follow the ”get-compute-put” processing pattern

already explained.

From the results presented in Section 5.2, we observed

that using 15 threads in the multithreaded technique pro-

duces the higher performance for small values of DMA size,

and the same performance for the rest of configurations.

Therefore, this is the configuration of threads we used in

the experiments presented in this Section.

In Figures 5, 6 and 7 we can see the performance of the

simple buffering, double buffering and multithreading ap-

proach respectively. All figures uses a log scale in both x and

y axis, but notice that the axis showing the cycles per byte
starts at 0, which is used to represent in a convenient

way the difference between a computational kernels with

1 cycles per byte and no data processing at all. The three

configurations have a similar performance shape, with low

performance for configurations with small DMA size or high

cycles per byte and higher performance for configurations

with higher DMA size and lower cycles per byte. The three

configurations reach the peak performance around 20GB/s

of data processed, that is equivalent to 40GB/s of memory

bandwidth between the main memory and the local storage

(as now we write back to the memory all the read data

from the input buffer). Although the performance shape

of the three configurations is similar, the multithreaded

approach has a higher number of configurations that reach

 0

 4

 8

 12

 16

 20

0
1

2
4

8
16

32
64

128

 16
 32

 64
 128

 256
 512

 1024
 2048

 4096
 8192

 0
 4
 8

 12
 16
 20

processing time

(cycles/byte)

DMA size (b
ytes)

b
a
n
d
w

id
th

 (
G

B
/s

)

Figure 5. Simple buffering performance

 0

 4

 8

 12

 16

 20

0
1

2
4

8
16

32
64

128

 16
 32

 64
 128

 256
 512

 1024
 2048

 4096
 8192

 0
 4
 8

 12
 16
 20

processing time

(cycles/byte)

DMA size (b
ytes)

b
a
n
d
w

id
th

 (
G

B
/s

)

Figure 6. Double buffering performance

 0

 4

 8

 12

 16

 20

0
1

2
4

8
16

32
64

128

 16
 32

 64
 128

 256
 512

 1024
 2048

 4096
 8192

 0
 4
 8

 12
 16
 20

processing time

(cycles/byte)

DMA size (b
ytes)

b
a

n
d

w
id

th
 (

G
B

/s
)

Figure 7. Multithreading performance (15 threads)

251

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

the peak performance, followed by the double buffering

configuration.

To better understand the performance difference of the

three configurations we have plotted the speedup between

the double buffering and the simple buffering scheme, and

between the multithreading approach and the double buffer-

ing scheme. Figures 8 clearly shows the better performance

of the double buffering scheme. As we can see we obtain

a 2x speedup for a large set of configurations and the same

performance for the configurations that combine a large

DMA size with a high cycles per byte.

Figure 9 shows how multithreading techniques improve

the performance of double buffering by a factor higher than

3x for the configurations with a DMA size of 256 bytes

or less and a computational intensity (cycles per byte) of

4 cycles/byte and less. For the rest of configurations, the

speedup decreases as the DMA size or the cycles per byte
increase, until it converges with the performance of the

double buffering scheme (0.96x speedup).

5.4. AES encryption kernel

In this section we use a real computational kernel to

validate the results obtained with the synthetic application.

Therefore, we expect to meet the performance of at least the

double buffering scheme keeping the programming complex-

ity of a simple buffering scheme. For this purpose we have

used the AES encryption kernel provided by the IBM SDK

3.1, which follows the same ”get-compute-put” processing

pattern used in the synthetic application benchmark. More-

over, this kernel is well suited to work with data block of

arbitrary size, so it can be easily used with different values

of DMA size.

Figure 10 shows the performance of the AES encryption

algorithm for the three evaluated configurations: simple

buffering, double buffering and multi–threading (with 15

threads). Notice that the x-axis is in a log scale. The

computational ratio of this AES implementation –with a

128 bits encryption key– is of 13 cycles/byte, so it should

behave between the 8 and 16 cycles/byte configuration of

the synthetic application benchmark. As we can expect, the

simple buffer configuration has the worst performance, while

the double buffering and the multi-threaded configuration

are very close. The multithreaded configuration is better for

small values of DMA size, while the double buffer configu-

ration is sightly better for values of DMA size between 128

and 512 bytes. The measured operational intensity of this

encryption function is 13 cycles/byte for DMA size larger or

equal than 128 bytes, but for small values of DMA size the

function call overhead –this function cannot be inlined– is

not negligible, so the operational intensity of the encryptioe

kernel increases. Therefore, it is not feasible to directly

compare the synthetic benchmark and the AES kernel for

small values of DMA size.

 1

 1.5

 2

0
1

2
4

8
16

32
64

128

 16
 32

 64
 128

 256
 512

 1024
 2048

 4096
 8192

 1

 1.5

 2

processing time

(cycles/byte)

DMA size (b
ytes)

s
p
e
e
d
u
p

Figure 8. Speedup Double buffering vs Simple buffering

 1

 1.5

 2

 2.5

 3

 3.5

0
1

2
4

8
16

32
64

128

 16
 32

 64
 128

 256
 512

 1024
 2048

 4096
 8192

 1
 1.5

 2
 2.5

 3
 3.5

processing time

(cycles/byte)

DMA size (b
ytes)

s
p
e
e
d
u
p

Figure 9. Speedup Multithreading vs Double buffering.
(15 threads)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 16 32 64 128 256 512 1024 2048 4096 8192

B
a

n
d

w
id

th
 (

G
b

y
te

s
/s

)

DMA transfer size (bytes)

Simple buffering
Double Buffering

Multithread (15 threads)

Figure 10. AES Encryption Performance (16 SPUs)

252

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

6. Conclusions and future work

In this paper we have presented and evaluated our CellMT

threading library with promising results. This library pro-

vides a cooperative user–level threading model that can be

used to run multi–threaded applications inside the SPUs of

the Cell/B.E. processor. These multi–threaded applications

naturally overlap the computation time of one active thread

with the data transfer times of other blocked threads, without

requiring the use of limited and error-prone techniques such

as double buffering schemes that can only be applied on

applications with a very predictable memory access pattern.

We have implemented a synthetic application benchmark

to evaluate the suitability and performance of the CellMT

library in a insightful and exhaustive way. The speedup of

the multi-threaded implementation range from 0.98x to 6.6x

compared to the baseline implementation, and from 0.96x

to 3.2x compared to the double buffering implementation.

In summary, with the help of the CellMT library we can

write programs with the complexity of a naive buffering

scheme and better performance than using a double buffer-

ing scheme. In the future we plan to further investigate

the suitability and feasibility of our threading library for

applications with non predictable memory access such as list

ranking and other combinatorial algorithms that cannot even

use double buffering techniques. We will also try to further

reduce the current context switch overhead to improve the

performance of our library for even a wider range of appli-

cations, as well as, to integrate the CellMT threading library

with other runtime systems supporting novel programming

models, such as CellSs [8] and MapReduce [9] [16], or

future implementations of OpenCL [10].

Acknowledgements

Many thanks to Xavier Martorell and Marc Gonzalez

for valuable discussions during the course of this work.

This work is partially supported by the Ministry of Science

and Technology of Spain and the European Union (FEDER

funds) under contract TIN2007-60625, the European Com-

mission in the context of the FP7 HiPEAC Network of

Excellence (contract no. IST-004408) and the FP7 PRACE

Partnership for Advanced Computing in Europe (contract

no. RI-211528), and the MareIncognito project under the

BSC-IBM collaboration agreement.

References

[1] W. Wulf and S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” University of Virginia, Char-
lottesville, VA, USA, Tech. Rep., 1994.

[2] T. Chen, Z. Sura, K. O’Brien, and J. K. O’Brien, “Optimizing
the Use of Static Buffers for DMA on a CELL Chip,” in
LCPC. Springer Berlin / Heidelberg, 2006, pp. 314–329.

[3] Jonathan Bartlett, “Programming high-performance
applications on the Cell/B.E. processor,” April 2007,
http://www.ibm.com/developerworks/library/pa-linuxps3-6/.

[4] M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos, “Dma-
based prefetching for i/o-intensive workloads on the cell
architecture,” in CF ’08: Proceedings of the 2008 conference
on Computing frontiers. New York, NY, USA: ACM, 2008,
pp. 23–32.

[5] T. Chen, T. Zhang, Z. Sura, and M. Gonzalez, “Prefetching
irregular references for software cache on cell,” in CGO
’08: Proceedings of the sixth annual IEEE/ACM international
symposium on Code generation and optimization. New York,
NY, USA: ACM, 2008, pp. 155–164.

[6] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M. J.
Prelle, “MultiCore Framework: An API for Programming
Heterogeneous Multicore Processors,” in Proceedings of First
Workshop on Software Tools for Multi-Core Systems. New
York, NY, USA: Mercury Computer Systems, 2006.

[7] M. F. Ahmed, R. A. Ammar, and S. Rajasekaran, “Spenk:
adding another level of parallelism on the cell broadband
engine,” in IFMT ’08: Proceedings of the 1st international
forum on Next-generation multicore/manycore technologies.
New York, NY, USA: ACM, 2008, pp. 1–10.

[8] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs:
a Programming Model for the Cell BE Architecture,” SC
Conference, vol. 0, p. 5, 2006.

[9] Y. Becerra, V. Beltran, D. Carrera, M. González, J. Torres,
and E. Ayguadé, “Speeding up distributed mapreduce appli-
cations using hardware accelerators,” in 38th International
Conference on Parallel Processing (ICPP), 2009.

[10] Khronos OpenCl Working Group, “Open Com-
puting Language (OpenCL),” December 2008,
http://www.khronos.org/opencl.

[11] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broad-
band Engine Architecture and its first implementation,” IBM
DeveloperWorks, November 2005.

[12] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A
32-way multithreaded sparc processor,” IEEE Micro, vol. 25,
no. 2, pp. 21–29, 2005.

[13] Barcelona Supercomputing Center (BSC), “Project CellMT
Homepage,” July 2009, http://sourceforge.net/projects/cellmt/.

[14] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé,
“Using Cooperative Multithreading on the Cell BE,”
Computer Architecture Department, Technical University
of Catalonia, Tech. Rep., April 2009. [Online]. Available:
http://gsi.ac.upc.edu/reports/2009/27/tr cellmt.pdf

[15] S. Williams, A. Waterman, and D. Patterson, “Roofline: an
insightful visual performance model for multicore architec-
tures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[16] M. de Kruijf and K. Sankaralingam, “MapReduce for the Cell
B.E. Architecture,” Department of Computer Sciences, The
University of Wisconsin-Madison, Madison, WI, Tech. Rep.
TR1625, 2007.

253

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 10,2010 at 09:31:59 UTC from IEEE Xplore. Restrictions apply.

