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The goal of this paper is to extend the classical Darboux theory of integrability
from autonomous polynomial vector fields to a class of nonautonomous vector
fields. We also provide sufficient conditions for applying this theory of integrability
and we illustrate this theory in several examples. © 2009 American Institute of
Physics. �doi:10.1063/1.3205450�

I. INTRODUCTION

To decide when a differential system is integrable or not is one of the hardest problems of the
theory of differential equations. The existence and the calculus of first integrals are in general a
difficult problem. Many techniques have been applied in order to construct first integrals, such as
Lie symmetries,27 Noether symmetries,8 the Painlevé analysis,4 the use of Lax pairs,17 the Dar-
boux method,9 and the direct method.12,14

In 1878 Darboux in Ref. 9 presented a simple method to construct first integrals and integrat-
ing factors for planar polynomial vector fields using their invariant algebraic curves. This theory
has been useful for studying different relevant problems of planar polynomial differential systems
such as problems related to centers, limit cycles, and bifurcation problems, see, for instance, Refs.
13, 19, and 28.

Also Darboux in Ref. 10 extended his method to polynomial vector fields in Cn where the
existence of invariant algebraic surfaces is the key point to build up first integrals �see also Ref. 18
and for some applications see, for instance, Refs. 20–23�. Nowadays Darboux’s method has been
improved for polynomial vector fields basically taking into account the exponential factors6 and
the multiplicity of the invariant algebraic hypersurfaces, see, for instance, Refs. 6, 7, and 22–26.

There are works such as Ref. 11 which generalize the Darboux theory of integrability using
the concept of generalized cofactors. In this paper we extend the Darboux theory of integrability
from the polynomial vector fields to a class of nonautonomous vector fields. More precisely we
deal with differential vector fields in the plane that are polynomials in the variables x and y and
their coefficients are convenient C1 functions in the time, i.e., in the independent variable. As far
as we know it is the first time in the literature that such generalization is considered.

The main results of this paper are Theorems 1 and 2 where the ideas of Darboux to the
mentioned class of nonautonomous vector fields are generalized. We prove that a sufficient num-
ber of invariant surfaces and exponential factors generate a linearly dependent set of cofactors
over the field of the coefficients of the system. In particular, in the case where a property W�

�related to a kind of Wronskian of the cofactors� holds then a subset of the cofactors is linearly
dependent over C. In this case we can construct one or even two invariants �a first integral
depending on time�, see Theorem 2. These invariants are very special because they are generalized
Darboux functions, see relation �6� and Theorem 1.
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Jouanolou in Ref. 16 managed to connect in a very sophisticated way the Darboux theory of
integrability with the existence of a rational first integral. Recently Jouanolou’s work has been
reproved using simple arguments of linear algebra, see Refs. 6 and 24. In this work we also
provide the generalization of Jouanolou’s result on rational integrability for our class of nonauto-
nomous vector fields, see Theorem 2 statements �f� and �g�.

We note that in the Darboux theory of integrability for autonomous polynomial vector fields
only a sufficient number of invariant objects guarantee the construction of first integrals given by
Darboux functions. In the case of nonautonomous systems we additionally need a certain property
W� to extend to these vector fields the previous results. Only in this case are we able to construct
invariants �first integrals depending on the time� given by generalized Darboux functions.

The structure of the paper is the following. In Sec. II we present the basic definitions and the
statements of Theorems 1 and 2. The most important properties of the basic concepts such as
invariant surfaces, exponential factors, invariants, and Jacobi multiplier are presented in Sec. III.
In Sec. IV we provide the proof of Theorem 1. Theorem 2 is proved in Sec. V. Some illustrative
examples are given in Sec. VI. We see that sometimes for the same vector field we can have a
subset of cofactors linearly dependent on C and another subset of cofactors linearly dependent on
C1�U ,F� and not in C �see Example 6�. Finally, in Sec. VII we apply Theorem 2 to the Higgs
system and we see that the elevated number of invariant surfaces and exponential factors does not
guarantee the existence of a linearly dependent subset over C because property W� does not hold.
Additionally, we see that the Higgs system has a Jacobi multiplier given by a generalized Darboux
function.

II. BASIC DEFINITIONS AND STATEMENT OF THE MAIN RESULTS

Let F be either R or C, and let U be an open subset of F. We denote by C1�U ,F� the set of C1

functions from U→F such that they do not vanish in U except in a subset of Lebesgue measure
zero and such that the closure of their domain of definition is U. Additionally, we denote by
C1�U ,F��x ,y� the ring of polynomials in the variables x and y with coefficients in C1�U ,F�. Note
that C1�U ,F� is a field with the addition and the product of functions. In particular, C1�U ,F�
��x ,y� is a domain of unique factorization. In the following we denote by �A the degree of the
polynomial A�C1�U ,F��x ,y�. We also denote by C1�U ,F��x ,y� the ring of rational functions in
the variables x and y and coefficients in C1�U ,F�.

We deal with the differential systems of the form

ẋ =
dx

dt
= P�x,y,t� = �

0�i+j�m

aij�t�xiyj ,

ẏ =
dy

dt
= Q�x,y,t� = �

0�i+j�m

bij�t�xiyj , �1�

with P ,Q�C1�U ,F��x ,y�. In what follows these systems will be called nonautonomous polyno-
mial differential systems. Note that t is the independent variable of system �1� called the time. If
the coefficients of the system are in C1�U ,R�, then the time will be real; if they are in C1�U ,C�
then the time can be real or complex. In fact we shall work with three classes of differential
systems �1� When �x ,y , t��R2�U�R2�R we say that �1� is a real differential system. If
�x ,y , t��C2�U�C2�C we say that �1� is a complex differential system. Finally, if �x ,y , t�
�C2�U�C2�R we say that �1� is a mixed differential system. When we only say that �1� is a
differential system this will mean that the system can be either a real or a complex differential
system. The results of this paper can be extended to mixed differential systems, but in order to
simplify their expression we only present them for the first two classes of differential systems.
Note that in the particular case that the coefficients aij�t� and bij�t� are polynomials in the variable
t then adding to the differential system ẋ and ẏ the equation ṫ=1 we can apply the classical
Darboux theory of integrability in F3.
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Clearly if all the coefficients of system �1� are nonconstant system �1� is a nonautonomous
differential system. Then we associate with the differential system �1� the vector field

X = P
�

�x
+ Q

�

�y
+

�

�t
. �2�

Note that system �1� is a polynomial differential system in the variables x and y of degree m
=�X=max��P ,�Q�. The solutions of system �1� or of its associated vector field �2� will be
denoted by �x�t� ,y�t�� with t�U or by �x�t� ,y�t� , t� depending on the context.

Let f �C1�U ,F��x ,y�. We said that f =0 is an invariant surface in C2�U of system �1� if it
satisfies

X�f� = P
� f

�x
+ Q

� f

�y
+

� f

�t
= Kf , �3�

with K�C1�U ,F��x ,y�. Note that �K��X−1. We call K the cofactor of the invariant surface f
=0 for the vector field X. Note that on the zero set of f the gradient of f is orthogonal to the
components of the vector field �2�. This explains why we say that the surface f =0 is an invariant
surface for the vector field �2�. For the computation of explicit invariant surfaces see the examples
in Secs. VI and VII.

We consider K1 , . . . ,Kr�C1�U ,F��x ,y�. In what follows we denote by Wr the determinant

Wr = Wr�K1, . . . ,Kr� = �
K1 ¯ Kr

K1� ¯ Kr�

¯

K1
�r−1�

¯ Kr
�r−1�
� , �4�

where we have denoted by Ki�=�Ki /�t. Usually Wr is called the Wronskian of K1 , . . . ,Kr with
respect to the variable t�U.

Assume that h ,g�C1�U ,F��x ,y� and are relatively prime polynomials in the variables x and
y. The function F�x ,y , t�=exp�g /h� is called an exponential factor of the differential system �1� if
for some L�C1�U ,F��x ,y� of degree at most m−1 in x and y it satisfies

X�F� = P
�F

�x
+ Q

�F

�y
+

�F

�t
= LF , �5�

and we say that L is the cofactor of the exponential factor F.
Let W be an open subset of F2�U such that its Lebesgue measure is the Lebesgue measure of

F2�U. An invariant of the differential system �1� is a nonconstant C1 function I :W→F in the
variables �x ,y , t� such that ��I /�x ,�I /�y�� �0,0� for all �x ,y , t��W with �x ,y , t�� �0,0 , t�, and
I�x�t� ,y�t� , t� is constant on all solution curves �x�t� ,y�t� , t� of system �1� contained in W, or
equivalently X�I�	0 on W.

Let I�x ,y , t� be an invariant of system �1� defined in W, and let �x�t� ,y�t�� be a solution of �1�
contained in W. If I�x�t0� ,y�t0� , t0�= I0�F then the surface I�x ,y , t�= I0 in W contains the solution
�x�t� ,y�t� , t�. Of course an invariant is a first integral depending on the time.

Consider I1 and I2 two invariants of system �1� defined in W1 and W2, respectively. As usual
we denote by Ix the partial derivative of I with respect to the variable x. We say that the two
functions of the forms I1�x ,y , t� and I2�x ,y , t� are independent in their common domain of defi-
nition W1�W2 �except possibly a subset of Lebesgue measure zero in W1�W2� if the matrix


I1x I1y I1t

I2x I2y I2t
�

has rank equal to 2. So if system �1� has two independent invariants I1 and I2 defined on an open
subset W of F2�U, then the curves �I1=const�� �I2=const� contained in W are formed by solu-
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tions of system �1�. In this case we shall say that system �1� is completely integrable.
Let W be an open subset of F2�U. A C1 function M :W→F which is not identically zero on

W is called the Jacobi last multiplier or simply Jacobi multiplier of system �1� on W if for its
associated vector field

X = P
�

�x
+ Q

�

�y
+

�

�t
,

it satisfies

XM = − div�X�M or div�MP,MQ,M� = 0

in W. Hence the Jacobi multiplier is a solution of the linear partial differential equation

P
�M

�x
+ Q

�M

�x
+

�M

�t
+ 
 �P

�x
+

�Q

�y
�M = 0.

In this article we are interested in constructing invariants and Jacobi multipliers of system �1�
using the invariant surfaces and the exponential factors of the differential system �1�. More
precisely, consider f1 , . . . , fp�C1�U ,F��x ,y� irreducible and coprimes and Fi=exp�gi /hi� with
gi ,hi�C1�U ,F��x ,y� coprimes for i=1, . . . ,q. Let G�C1�U ,F� and �1 , . . . ,�p ,�1 , . . . ,�q

�C1�U ,F�. Any function of the form

f1
�1�t�

¯ fp
�p�t�F1

�1�t�
¯ Fq

�q�t�eG �6�

will be called a generalized Darboux function.
Theorem 1: If a nonautonomous differential system (1) has an invariant or a Jacobi multi-

plier given by a generalized Darboux function of the form (6) then �i�t�=�i�F for all i
=1, . . . , p and � j�t�=� j �F except if hj =hj�t ,x ,y��C1�U ,F� and �gj ��X−1.

Theorem 1 is proved in Sec. IV. Let S= �K1 , . . . ,Kp ,L1 , . . . ,Lq� be a set of polynomials of
C1�U ,F�m−1�x ,y� such that there is no more than one polynomial with constant coefficients. Let Sr

be a subset of S of r elements. We denote by W�Sr� the Wronskian of these r elements defined in
�4�. We write Wr=0 if for all subsets Sr of S we have that W�Sr�=0 for all t�U. If for some
subset Sr we have that W�Sr��0 for some t�U, then we write Wr�0. We say that the set of the
polynomials of S satisfies condition W� if there exists s� �2,3 , . . . , p+q� such that W j�0 for j
=2,3 , . . . ,s−1 and Ws=0.

Theorem 2: We assume that the differential system (1) of degree m admits the invariant
surfaces fi=0 with cofactors Ki�0 for i=1, . . . , p; q exponential factors Fj =exp�gj /hj� with

cofactors Lj�0 for j=1, . . . ,q. Let G�C1�U ,F� with Ġ=g. We assume that f1 , . . . , fp and
F1 , . . . ,Fq are pairwise independent and that f1 , . . . , fp are coprimes in the ring C1�U ,F��x ,y�.
Then the following statements hold.

�a� There exist �i ,� j �C not all zero such that

�
i=1

p

�iKi + �
i=1

q

� jLj + g = 0, �7�

if and only if the (multivalued) function

f1
�1
¯ fp

�pF1
�1
¯ Fq

�qeG �8�

is an invariant of system (1). Moreover if (1) is a real system, then the function (8) is real.
�b� There exist �i ,� j �C not all zero such that

�
i=1

p

�iKi + �
i=1

q

� jLj + div�X� + g = 0, �9�

102705-4 J. Llibre and C. Pantazi J. Math. Phys. 50, 102705 �2009�

Downloaded 07 Jun 2010 to 147.83.132.21. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



if and only if the function (8) is a Jacobi multiplier of system (1). Moreover if (1) is a real
system, then the function (8) is real.

�c� If p+q=m�m+1� /2, then there exist �i�t� ,� j�t��C1�U ,F� not all zero satisfying either

�
i=1

p

�i�t�Ki + �
i=1

q

� j�t�Lj + div�X� = 0 �10�

or

�
i=1

p

�i�t�Ki + �
i=1

q

� j�t�Lj = 0. �11�

�d� If p+q=m�m+1� /2+1, then there exist �i�t� ,� j�t��C1�U ,F� not all zero satisfying (11). In
particular, if property W� holds for the cofactors Ki with �i�t��0 and Lj with � j�t��0, we
have that �i�t� and � j�t� are constants of F, and so system (1) has an invariant of the form
(8).

�e� If p+q=m�m+1� /2+2 then there exist �i
1�t� ,� j

1�t��C1�U ,F� and �i
2�t� ,� j

2�t��C1�U ,F� not
all zero satisfying condition (11). In particular, if property W� holds for the cofactors Ki

1

with �i
1�t��0 and Lj

1 with � j
1�t��0, then system (1) has an invariant of the form (8). In a

similar way if property W� holds for the cofactors associated with �i
2�t��0 and � j

2�t��0,
then the system (1) has a second invariant of the form (8).

In the following we assume that f i ,gj ,hj �C2�U ,F��x ,y�.

�f� If p+q�m�m+1� /2+3, then there exist �i
1�t� ,� j

1�t��C1�U ,F� and �i
2�t� ,� j

2�t��C1�U ,F�
not all zero satisfying condition (11). If the property W� holds for the cofactors associated
with �i

k�0 and � j
k�0 for k=1,2, then system (1) has two independent invariants of the form

(8) and at least one of them is a rational function of C1�U ,F��x ,y�.
�g� If p+q�m�m+1� /2+4, then there exist �i

1�t� ,� j
1�t��C1�U ,F� and �i

2�t� ,� j
2�t��C1�U ,F�

not all zero satisfying condition (11). If the property W� holds for the cofactors associated
with �i

k�0 and � j
k�0 for k=1,2, then system (1) has two independent invariants of the

form (8) being both rational functions of C1�U ,F��x ,y�.

In Sec. V we present the proof of Theorem 2.

III. GENERAL PROPERTIES

In this section we present some general properties of the invariant surfaces, the invariants, the
Jacobi multipliers, and the exponential factors.

A. Invariant surfaces

We recall that an invariant surface of the vector field �2� satisfies relation �3�.
Lemma 3: Let f ,g�C1�U ,F��x ,y�. We assume that f and g are relatively prime over

C1�U ,F��x ,y�. Then for the differential system (1) fg=0 is an invariant surface with cofactor Kfg

if and only if f =0 and g=0 are invariant surfaces with cofactors Kf and Kg, respectively. More-
over Kfg=Kf +Kg.

Proof: If f =0 and g=0 are invariant surfaces with cofactors Kf and Kg then �Kf ,�Kg��X
−1 and

X�fg� = �Xf�g + f�Xg� = Kf fg + fKgg = �Kf + Kg�fg . �12�

Obviously ��Kf +Kg���X−1. Hence fg=0 is an invariant surface with cofactor Kf +Kg.
If now we assume that fg=0 is an invariant surface with cofactor Kfg, then we have that

�Kfg��X−1 and
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gX�f� + fX�g� = X�fg� = Kfgfg . �13�

Since f and g are relative prime over C1�U ,F��x ,y� from �13� we obtain that f divides X�f� and g
divides X�g�. We denote by Kf =X�f� / f and Kg=X�g� /g and note that �Kf ,�Kg��X−1. Hence f
and g are invariant surfaces of system �1� with cofactors Kf and Kg, respectively. Additionally,
from �13� and �12� we have that Kfg=Kf +Kg. �

Proposition 4: Suppose that f �C1�U ,F��x ,y� and let f = f1
n1
¯ fr

nr be the factorization of f over
C1�U ,F��x ,y�. Then for the system (1), f =0 is an invariant surface with cofactor Kf if and only if
f i=0 is an invariant surface for each i=1, . . . ,r with cofactor Kfi

. Moreover Kf =n1Kf1
+ ¯

+nrKfr
.

Proof: First we assume that f i=0 is an invariant surface with cofactor Kfi
for i=1, . . .r. Then

we have

X�f� = X�f1
n1
¯ fr

nr� = �f1
n1
¯ fr

nr��
i=1

r

ni
X�f i�

f i
= f�

i=1

r

ni
X�f i�

f i
= f�

i=1

r

niKfi
.

So, taking Kf =�i=1
r niKfi

, it follows that f =0 is an invariant surface with cofactor Kf.
Now we assume that f =0 is an invariant surface with cofactor Kf. From Lemma 3, it follows

easily that f =0 is an invariant surface with cofactor Kf if and only if f i
ni =0 is an invariant surface

with cofactor Kf
i
ni for i=1, . . . ,r and Kf =Kf

1
n1 + ¯+Kf

r
nr. Since f i

ni =0 is an invariant surface with
cofactor Kf

i
ni, we have that Kf

i
nif i

ni =X�f i
ni�=nif i

ni−1X�f i�. Hence X�f i�= �Kf
i
nif i� /ni=Kfi

f i, where we
have taken Kfi

=Kf
i
ni /ni. So, the surface f i=0 is an invariant surface with cofactor Kfi

. Moreover,
we have Kf =�i=1

r Kf
i
ni =�i=1

r niKfi
, and the proof is completed. �

The real vector fields are special because whenever they have a complex invariant surface
they also have another complex invariant surface, the conjugate one as we note in the following
proposition.

Proposition 5: For a real differential system (1), if U�R and f �C1�U ,C��x ,y� then f =0 is a

complex invariant surface with cofactor K�C1�U ,C��x ,y� if and only if f̄ =0 is another invariant

surface with cofactor K̄. Here conjugation of f means conjugation of the coefficients of the
polynomial in x and y defined by f .

Proof: We assume that f =0 is an invariant surface with cofactor K of the real differential
system �1�. Then equality �3� holds. Hence we also have that

P̄
� f̄

�x
+ Q̄

� f̄

�y
+

� f̄

�t
= K̄ f̄ .

Since x and y and their coefficients in P and Q are real this equality becomes

P
� f̄

�x
+ Q

� f̄

�y
+

� f̄

�t
= K̄ f̄ .

So f̄ =0 is an invariant surface with cofactor K̄ of the real differential system �1�. In a similar way
the converse can be proved. �

B. Invariants

We note that the existence of two independent invariants of the differential system �1� yields
to the complete description of the orbits of system �1� whenever these invariants are both defined.
Any other invariant must be a function of the two independent invariants as we show in Lemma
6.

Lemma 6: Let W be an open subset of F2�U. Let I1 , I2�C2�W ,F� be two independent
invariants of system (1).
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�a� If I3�C2�W ,F� is another invariant of system (1), then there exists functions C1 ,C2

�C2�W ,F� such that

�I3 = C1 � I1 + C2 � I2. �14�

�b� The functions C1 and C2 �if nonconstants) are also invariants of system (1).

Proof: For the proof of statement �a� since I1 and I2 are independent invariants, for each
�x ,y , t��F2�U�F3 �except possibly a subset of Lebesque measure zero� the vectors �I1 and �I2

form a basis of the vector subspace S of F3 orthogonal to the vector field X associated with system
�1�. Since I3 is an invariant of X we have that �I3�S. Then, for each �x ,y , t��F2�U�F3 we
have that �I3 will be a combination of �I1 and �I2 �except possibly a subset of Lebesque measure
zero�. So for every �x ,y , t��F2�U�F3 expression �14� is proved.

Now we prove statement �b�. For each �x ,y , t��F2�U�F3 �except possibly a subset of
Lebesque zero measure� the following holds.

From relation �14� we have that

I3x = C1I1x + C2I2x,

I3y = C1I1y + C2I2y ,

I3t = C1I1t + C2I2t, �15�

and derivating the first equation of �15� with respect to y and substracting the derivating of the
second equation of �15� with respect to x we obtain

C1yI1x − C1xI1y + C2yI2x − C2xI2y = 0. �16�

In a similar way we get

C1tI1x − C1xI1t + C2tI2x − C2xI2t = 0,

C1tI1y − C1yI1t + C2tI2y − C2yI2t = 0. �17�

Now multiplying the first equation of �17� by I2y and substracting Eq. �16� multiplied by I2t we
obtain

�I2yC1t − I2tC1y�I1x + �I1yI2t − I2yI1t�C1x + �I2yC2t − I2tC2y�I2x = 0. �18�

By similar arguments we also have

�I2xC1t − I2tC1x�I1y + �I2tI1x − I1tI2x�C1y + �I2xC2t − I2tC2x�I2y = 0,

�I2xC1y − I2yC1x�I1t + �I2yI1x − I1yI2x�C1t + �I2xC2y − I2yC2x�I2t = 0. �19�

Now adding the Eq. �18� and the second of �19� and substracting the first of �19� we get that

� I1x I1y I1t

I2x I2y I2t

C1x C1y C1t
� = 0.

So for each �x ,y , t��F2�U�F3 �except perhaps a subset of Lebesque zero measure� �C1 be-
longs to the two-dimensional vector space generated by ��I1 ,�I2� and �if not a constant� also
satisfies �C1x ,C1y�� �0,0�. Hence C1 �if not a constant� is an invariant of system �1�. Similarly C2

�if not a constant� is also an invariant of system �1�. �
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C. Jacobi multiplier

For a planar vector field of the form

X = p�x,y�
�

�x
+ q�x,y�

�

�x
,

where p and q are C1 functions we define an integrating factor R=R�x ,y� to be a C1 function
satisfying

X�R� = − div�X�R or div�Rp,Rq� = 0,

with div�X�= px+qy. If the integrating factor R is defined in an open and simply connected set then
there is a first integral H=H�x ,y� of the planar system associated with this integrating factor.
Hence, the existence of an integrating factor for a planar vector field means integrability. For
higher dimensions the concept of the integrating factor is generalized via the Jacobi multiplier �see
Ref. 15�.

Remark 7: The following holds.

�i� The existence of a Jacobi multiplier M of the nonautonomous differential system (1),
written also as

ẋ = dx/dt = P, ẏ = dy/dt = Q, ṫ = dt/dt = 1,

is associated with the existence of the divergence-free nonautonomous differential system

ẋ = dx/dt = MP, ẏ = dy/dt = MQ, ṫ = dt/dt = M .

Hence the Jacobi multiplier M represents a change in time and yields to a divergence-free
system.

�ii� Due to the relation X�M�=−div�X�M the set M =0 is an invariant surface in F2�U �maybe
not polynomial in the variables x and y� with cofactor −div�X� for the differential system
(1), which means that the set M =0 is formed by orbits of the system.

The following proposition follows from ideas of Ref. 3.
Proposition 8: The following statements hold.

�a� If the differential system (1) has two independent Jacobi multipliers M1 and M2 on the open
subset W of F2�U, then on the open set W \ �M2=0� the function M1 /M2 is an invariant.

�b� The existence of an invariant I�C2�W ,F� and of a Jacobi multiplier M implies that system
(1) restricted to every surface I�x ,y , t�=C, with C�F, is integrable in the sense that such
restricted system has an integrating factor of the form R=R�x ,F�x , t ;C� , t�= �M / Iy�
��x ,F�x , t ;C� , t� if y=F�x , t ,C� is the solution of I�x ,y , t�=C.

Proof: Statement �a� follows directly by the definitions of the Jacobi multiplier and the in-
variant. Now we prove statement �b�. Let I= I�x ,y , t� be an invariant of system �1� and C�F.
Then, by the definition of invariant, without loss of generality we may assume that Iy �0. From
the implicit function theorem we can solve locally the relation I�x ,y , t�=C with respect to the
variable y, y=F�x , t ;C�. Then on the level set I�x ,y , t�=C system �1� goes over to

ẋ = P�x,F�x,t;C�,t� ,

ṫ = 1.
�20�

Claim: The planar system �20� has the integrating factor

R = R�x,F�x,t;C�,t� =
M

Iy
�x,F�x,t;C�,t� . �21�
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Now we prove the claim. Since M =M�x ,y , t� is a Jacobi multiplier of system �1� we have that
�PM�x+ �QM�y +Mt=0, or equivalently


PIy
M

Iy
�

x
+ 
QIy

M

Iy
�

y
+ 
Iy

M

Iy
�

t
= 0.

Taking into account that I= I�x ,y , t� is an invariant of system �1� the above relation becomes


PIy
M

Iy
�

x
− 
M

Iy
�PIx + It��

y
+ 
Iy

M

Iy
�

t
= 0,

or equivalently,

Iy
P
M

Iy
�

x
− Ix
P

M

Iy
�

y
+ Iy
M

Iy
�

t
− It
M

Iy
�

y
= 0.

Now since Iy �0 �locally� we can divide the above relation by Iy and we obtain


P
M

Iy
�

x
−

Ix

Iy

P

M

Iy
�

y
+ 
M

Iy
�

t
−

It

Iy

M

Iy
�

y
= 0.

But on the level set I�x ,y , t�=C when Iy �0 we have that y=F�x , t ;C�, and so we obtain

�PR�x −
Ix

Iy
�PR�y + Rt −

It

Iy
Ry = 0,

or equivalently

�PR�x − Fx�PR�y + Rt − FtRy = 0. �22�

Since �PR�y =Ry =0 �see �20� and �21��, we get

�PR�x + Rt = 0.

Hence R is an integrating factor of system �20�. In short, we have proved the claim. So the planar
system �20� is integrable and this completes the proof of the proposition. �

D. Exponential factors

We recall that an exponential factor of system �1� satisfies relation �5�.
Proposition 9: If exp�g /h� is an exponential factor with cofactor L for the differential system

(1) and if h is not a constant, then h=0 is an invariant surface with cofactor Kh, and g satisfies the
equation X�g�=gKh+hL.

Proof: Let F�x ,y , t�=exp�g /h� be an exponential factor with cofactor L for the differential
system �1�. Then we have

LF = X�F� = FX
g

h
� = F

hX�g� − gX�h�
h2 .

So we obtain hX�g�−gX�h�=h2L. From this equation and since h and g are relative prime over
C1�U ,F��x ,y�, we obtain that h divides X�h�. Let Kh=X�h� /h and note that �Kh��X−1. Then
h=0 is an invariant surface for the differential system �1� with cofactor Kh, and g satisfies X�g�
=gKh+hL. �

Proposition 10: For the real differential system (1) the complex function exp�g /h� with h ,g
�C1�U ,C��x ,y� is an exponential factor with cofactor L�C1�U ,C��x ,y� if and only if the complex

function exp�ḡ / h̄� is an exponential factor with cofactor L̄.
Proof: We assume that the function F�x ,y , t�=exp�g /h� is an exponential factor with cofactor

L of the real differential system �1�. Hence X�F�=LF, and conjugating it we obtain
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P
� exp�ḡ/h̄�

�x
+ Q

� exp�ḡ/h̄�
�y

+
� exp�ḡ/h̄�

�t
= L̄ exp�ḡ/h̄� ,

where we have taken into account that P and Q are real polynomials in the variables x and y. So

from this equation we obtain that exp�ḡ / h̄� is an exponential factor with cofactor L̄ for the real
differential system �1�. In a similar way we prove the converse. �

IV. PROOF OF THEOREM 1

First we prove the following three lemmas.
Lemma 11: If F=eg with g�Cm−1

1 �U ,F��x ,y� is an exponential factor of (1) with cofactor L,

then F̃=e��t�g is also an exponential factor of (1) with cofactor �̇g+�L.
Proof: The proof is trivial and follows by the definition of the exponential factor �5�. �

Lemma 12: Suppose that the differential system (1) of degree m admits the invariant surfaces
fi=0 with cofactors Ki�0 for i=1, . . . , p; q exponential factors Fj =exp�gj /hj� with cofactors Lj

�0 and hj nonconstant polynomial for j=1, . . . ,q. Let G�C1�U ,F� with Ġ=g. If system (1) has
an invariant or a Jacobi multiplier of the form

I = f1
�1
¯ fp

�pF1
�1
¯ Fq

�qeG = f1�x,y,t��1�t�
¯ fp�x,y,t��p�t�F1�x,y,t��1�t�

¯ Fq�x,y,t��q�t�eG�t�,

�23�

then �i ,� j �F for all i=1, . . . , p and j=1, . . . ,q.
Proof: First we note that

X�I� = X�f1
�1
¯ fp

�pF1
�1
¯ Fq

�qeG� = 
�
i=1

p

�i
X�f i�

f i
+ �

j=1

q

� j
X�Fj�

Fj
+ g + �

i=1

p

�̇i log f i + �
j=1

q

�̇ j log Fj�I

= 
�
i=1

p

�iKi + �
j=1

q

� jLj + g + �
i=1

p

�̇i log f i + �
j=1

q

�̇ j log Fj�I .

Note that if �̇i=0 and �̇ j =0 for all i=1, . . . , p and all j=1, . . . ,q, then �i ,� j �F. Now we assume

that for some i or some j we have that �̇i�0 or �̇ j�0.
If the function I is an invariant then we have that X�I�=0, or equivalently

�
i=1

p

�iKi + �
j=1

q

� jLj + g = − �
i=1

p

�̇i log f i − �
j=1

q

�̇ j log Fj = − �
i=1

p

log�� f i
�i� − �

j=1

q

�̇ j
gj

hj
. �24�

Note that the left hand side of �24� is a polynomial in C1�U ,F��x ,y�. If some �̇i�0 then

�i=1
p log��f i

�̇i� is a series in x and y with coefficients in C1�U ,F�. Hence, �̇i=0 for all �i

=1, . . . , p. If some �̇k�0 then from relation �24� we can write

hk

�̇k
�
j=1

j�k

q

hj�
�i=1

p

�iKi + �
j=1

q

� jLj + g + �
j=1

j�k

q

�̇ j
gj

hj� = gk �25�

and this equality is a contradiction because by the definition of the exponential factor �5� we have
that gk and hk are coprimes in C1�U ,F��x ,y�. Hence �̇k�0 for all k=1, . . . ,q.

If the function I is a Jacobi multiplier then in relation �24� we just add on the left hand side the
divergence of the system which is a polynomial of Cm−1

1 �U ,F��x ,y� and the proof follows using the
same arguments. �

Lemma 13: Suppose that the differential system (1) of degree m admits the invariant surfaces
fi=0 with cofactors Ki�0 for i=1, . . . , p; q+r exponential factors Fj =exp�gj /hj� with cofactors
Lj�0 for j=1, . . . ,q+r and such that hj �C1�U ,F� and �gj �m−1 for j=q+1, . . . ,q+r. Let G
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�C1�U ,F� with Ġ=g. If system (1) has an invariant or a Jacobi multiplier of the form (23), then

f1
�1
¯ fp

�pF1
�1
¯ Fq

�qF̃q+1 ¯ F̃q+re
G �26�

is also an invariant or a Jacobi multiplier with �i ,� j �F for all i=1, . . . , p and j=1, . . . ,q where

F̃ is defined as in the statement of Lemma 11.
Proof: We repeat the proof of Lemma 12 for the invariant or the Jacobi multiplier �26�. �

Proof of Theorem 1: The proof of Theorem 1 follows directly by Lemmas 12 and 13. �

V. PROOF OF THEOREM 2

We denote by Cm−1
1 �U ,F��x ,y� the vector subspace of C1�U ,F��x ,y� formed by the polynomi-

als in the variables x and y of degree at most m−1 and coefficients in C1�U ,F�. We note that
dimC1�U,F� Cm−1

1 �U ,F��x ,y�=m�m+1� /2. Let K=K�x ,y , t�=�i+j=0
m−1 kij�t�xiyj �Cm−1

1 �U ,F��x ,y�. We
consider the isomorphism

Cm−1
1 �U,F��x,y� → C1�U,F�m�m+1�/2

given by

K � �k00�t�,k10�t�,k01�t�, . . . ,km−1,0�t�,km−2,1�t�, . . . ,k0,m−1�t�� ,

i.e., we identify the linear vector spaces Cm−1
1 �U ,F��x ,y� and C1�U ,F�m�m+1�/2.

Lemma 14: Assume that K1 , . . . ,Kr�C1�U ,F��x ,y� \ �0�.

�a� If there is �x0 ,y0 , t0��U such that Wr�x0 ,y0 , t0��0, then K1 , . . . ,Kr are linearly independent
over F.

�b� If the set �K1 , . . . ,Kr� satisfies the condition W� for some s� �2,3 , . . . ,r�, then there exists a
subset of s elements linearly dependent over F.

Proof: We consider c1 , . . . ,cr�F such that c1K1+ ¯+crKr=0. Then the system

c1K1 + ¯ + crKr = 0,

c1K1� + ¯ + crKr� = 0,

¯

c1K1
�r−1� + ¯ + crKr

�r−1� = 0,

is a linear system in the variables c1 , . . . ,cr�F. The determinant of this linear system is

Wr = Wr�K1, . . . ,Kr� = �
K1 ¯ Kr

K1� ¯ Kr�

¯

K1
�r−1�

¯ Kr
�r−1�
� ,

where K�=�K /�t. Note that Wr belongs to C1�U ,F��x ,y�.
If there is �x0 ,y0 , t0��U such that Wr�x0 ,y0 , t0��0 then c1= ¯ =cr=0 and therefore the

polynomials K1 , . . . ,Kr are linearly independent over F. So statement �a� is proved.
Since Ws=0 without loss of generality we can assume that

Ks = c1�t�K1 + ¯ + cs−1�t�Ks−1,

Ks� = c1�t�K1� + ¯ + cs−1�t�Ks−1� ,
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¯ ,

Ks
�s−1� = c1�t�K1

�s−1� + ¯ + cs−1�t�Ks−1
�s−1�. �27�

Derivating the row j and using the row j+1, for j=1, . . . ,s−2, we get

c1��t�K1 + ¯ + cs−1� �t�Ks−1 = 0,

c1��t�K1� + ¯ + cs−1� �t�Ks−1� = 0,

¯ ,

c1��t�K1
�s−2� + ¯ + cs−1� �t�Ks−1

�s−2� = 0. �28�

Since Ws−1�0, from the last linear system in the variables c1��t� , . . . ,cs��t� we obtain that c1��t�
= ¯ =cs−1� �t�=0. So cj�t�=cj �F for j=1, . . . ,s−1. But from the first equation of �27� not all the
constants cj are zero. Hence statement �b� is proved. �

Proof of Theorem 2: First we prove statement �a�. Clearly the function �8�, namely, I
= I�x ,y , t�, is an invariant of system �1� if and only if X�I�=0 where X is given by �2�. Then from
the equalities

X�I� = X�f1
�1
¯ fp

�pF1
�1
¯ Fq

�qeG� = 
�
i=1

p

�i
X�f i�

f i
+ �

j=1

q

� j
X�Fj�

Fj
+ g�I = 
�

i=1

p

�iKi + �
j=1

q

� jLj + g�I

= 0,

the first part of statement �a� follows.
Suppose that X is a real vector field. Now if among the invariant surfaces of X a complex

conjugate pair f =0 and f̄ =0 occurs �i.e., Im f �0� then the invariant �8� has a real factor of the

form f� f̄ �̄, which is the multivalued real function

��Re f�2 + �Im f�2�Re � exp
− 2 Im � arctan
 Im f

Re f
�� . �29�

If among the exponential factors of X a complex conjugate pair F�x ,y , t�=exp�h /g� and

F̄�x ,y , t�=exp�h̄ / ḡ� occurs, then �exp�h /g����exp�h̄ / ḡ���̄ is a real factor of �8� of the form


exp
h

g
���
exp
 h̄

ḡ
���̄

= exp
2 Re
�
h

g
�� . �30�

In short the function �8� is real, and the proof of statement �a� is completed.
�b� Clearly the function �8�, namely, M�x ,y , t�, is a Jacobi multiplier of system �1� if and only

if X�M�=−div�X�M where X is given by �2�. Then we have

− M div�X� = X�M� = X�f1
�1
¯ fp

�pF1
�1
¯ Fq

�qeG�t�� = 
�
i=1

p

�i
X�f i�

f i
+ �

j=1

q

� j
X�Fj�

Fj
+ g�M

= 
�
i=1

p

�iKi + �
j=1

q

� jLj + g�M ,

the first assertion of statement �b� holds. The second assertion is similar to statement �a�.
Now we assume that we are under the assumptions of statement �c�. Let K be the divergence

of system �1�. All polynomials �in the variables x and y� Ki, Lj, and K belong to the vector space
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Cm−1
1 �U ,F��x ,y� of dimension m�m+1� /2 over C1�U ,F�. Therefore we have p+q+1 polynomials

Ki, Lj, and K in Cm−1
1 �U ,F��x ,y�. Since from our assumptions we have p+q+1=m�m+1� /2+1,

either K is a linear combination of the polynomials Ki and Lj or a linear combination of those
polynomials is zero. Hence, there exists �i ,� j �C1�U ,F� not all of them zero satisfying equality
�10� in the first case, and in the second case we obtain the equality �11�. Hence statement �c� is
proved.

Now we assume that we are under the assumptions of statement �d�. Note that the m�m
+1� /2+1 polynomials K1 , . . .Kp ,L1 , . . . ,Lq�Cm−1

1 �U ,F��x ,y� must be linearly dependent over
C1�U ,F�, and so relation �11� holds. In particular, if property W� holds then due to Lemma 14�b�
we have that a subset of the polynomials K1 , . . . ,Kp ,L1 , . . . ,Lq must be linearly dependent on F.
Hence, due to statement �a� of Theorem 2 the proof of statement �d� is completed.

Statement �e� follows easily using similar arguments to statement �d�. Moreover, the indepen-
dence of the two invariants is due to their construction.

Now we prove statement �f�. Let N=m�m+1� /2. We denote by �v1 , . . . ,vN+3�
= �f1 , . . . , fp ,F1 , . . . ,Fq�. Let s be the dimension of the vectorial subspace of Cm−1

1 �U ,F��x ,y�
generated by the cofactors K1 , . . . ,KN+3 of v1 , . . . ,vN+3. Clearly s�N. Now in order to simplify
the explanation of the proof and the notation we assume that s=N and that K1 , . . . ,KN are linearly
independent in Cm−1

1 �U ,F��x ,y� over C1�U ,F�. If s�N the proof could follow using the same
arguments.

For each r� �1,2 ,3� there exists a vector ��1
r , . . . ,�N

r ,1��CN+1�U ,F� such that

�1
rK1 + ¯ + �N

r KN + KN+r = 0. �31�

From the definition of v j we get that Kj =X�v j� /v j. Hence, relation �11� holds.
In particular, if property W� holds for the subsets �K1 , . . . ,KN ,KN+r� for r=1,2 ,3, then we

have that ��1
r , . . . ,�N

r ,1��CN+1 for r=1,2 ,3. Hence, from �31� and statement �a� we have that

X�log�v1
�1

r

¯ vN
�N

r

vN+r�� = 0.

This means that the functions Ir=log�v1
�1

r

¯vN
�N

r

vN+r� for r=1,2 ,3 are invariants of the vector field
X.

Since f i ,gj ,hj �C2�U ,F��x ,y� the invariants Ii�C2�W ,F� for i=1,2 ,3. By Lemma 6 state-
ment �a� we have that there are C1 ,C2�C2�W ,F� such that

�I3 = C1 � I1 + C2 � I2. �32�

We claim that C1 and C2 are not both constants.
If C1 and C2 are both constants then from relation �32� we have that

�I3 = ��C1I1 + C2I2� ,

and therefore

I3 = C1I1 + C2I2 + log C3

for some constant C3. Hence

log�v1
�1

3
¯ vN

�N
3

vN+3� = C1 log�v1
�1

1
¯ vN

�N
1

vN+1� + C2 log�v1
�1

2
¯ vN

�N
2

vN+2� + log C3, �33�

and so

v1
�1

3
¯ vN

�N
3

vN+3 = C3v1
C1�1

1
¯ vN

C1�N
1

vN+1
C1 ,
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v1
C2�1

2
¯ vN

C2�N
2

vN+2
C2 ,

But from this relation we have that vN+3 depends on v1 , . . . ,vN ,vN+1 ,vN+2 which is a contradiction
with the assumptions of Theorem 2. Hence, at least one of C1 and C2 is not a constant. Without
loss of generality we may assume that C1 is not a constant. Then, from Lemma 6 statement �b� we
have that C1 is also an invariant of system �1�. Now, solving the linear system �32� we obtain that

C1 =

�I3x I2x

I3y I2y
�

�I1x I2x

I1y I2y
� ,

and using the expressions Ir=log�v1
�1

r

¯vN
�N

r

vN+r� for r=1,2 ,3 we get that C1 is a rational function.
This completes the proof of statement �f�.

Statement �g� follows in a similar way to the previous statements. In short, the proof of
Theorem 2 is done. �

VI. EXAMPLES

Here we present some illustrative examples.
Example 1: We consider the linear system

ẋ = x + sin t, ẏ = x + A�t� , �34�

where A�C1�U ,F�. We are interested in finding the possible invariant surfaces of degree 1 of the
form f = f10�t�x+ f01�t�y+ f00�t� with cofactor K=k00�t� where f00, f10, f01,k00�C1�U ,F�. Note that
relation Pfx+Qfy + f t−Kf =0 yields to the following differential system:

ḟ01 − k00f01 = 0,

ḟ10 + f10 + f01 − k00f10 = 0,

ḟ00 + f10 sin t + f01A − k00f00 = 0,

with general solution

f01�t� = C3e�k00�t�dt,

f10�t� = − C3e�k00�t�dt + C2e��−1+k00�t��dt,

f00�t� =
e−t

2

− 2C3 cos tet + C2 cos t + C2 sin t − 2C3
� A�t�dt�et + 2C1et�e�k00�t�dt.

In particular system �34� has the two invariant surfaces,

f1 = − x + y − cos t −� A�t�dt, f2 = x +
cos t + sin t

2
+ et,

with cofactors K1=0 and K2=1. So, since K1=0 it follows that f1 is an invariant. Note that system
�34� has divergence equal to div=1=K2 and so due to Theorem 2 statement �b� we obtain the
Jacobi multiplier
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M =
1

f2
=

2

2x + cos t + sin t + 2et .

Additionally, for g2=−1 we have that K2+g2=0 and so according to Theorem 2 statement �a�
system �34� has a second invariant

I2 = f2e−t = 
x +
cos t + sin t

2
+ et�e−t.

Remark 15: In general, for the vector field (2) of degree m having an invariant surface f
=0 of degree k in the variables x and y, with cofactor K, the relation Pfx+Qfy + f t−Kf =0 yields
to a system of � m+k−1

2
� differential equations of first order with � k

2
� variables and with � m−1

2
� free

coefficients coming from the cofactor K.
Example 2: We consider the differential system

ẋ =
xy

t2 + x2 + y2 − 1, ẏ =
y2 − 1

t2 , �35�

for t�0 and let f1=x2+y2−1, f2=y−1, and f3=y+1. Note that system �35� has the three algebraic
surfaces f1=0, f2=0, and f3=0 invariants with cofactors K1=2x+2y / t2, K2= �y+1� / t2, and K3

= �y−1� / t2, respectively. Let g1=−3 / t2 and G1=3 / t. Direct computation shows that

− K1 + K2 − 2K3 + div�X� + g1 = 0.

So according to Theorem 2 statement �b� system �35� has the Jacobi multiplier

M =
f2

f1f3
2eG1

=
�y − 1�e3/t

�x2 + y2 − 1��y + 1�2 .

Additionally, for g2=2 / t2 and G2=−2 / t note that

K3 − K2 + g2 = 0,

and therefore by Theorem 2 statement �a� system �35� admits the invariant

I�x,y,t� =
f3

f2
eG2 =

�y + 1�
�y − 1�

e−2/t.

Note that Iy =−2e−2/t / �y−1�2. Hence on the level set I�x ,y , t�=C we have that y= �C+e−2/t� / �C
−e−2/t�=F�x , t ;C�. If we restrict system �35� on the surface I�x ,y , t�=C we obtain a planar differ-
ential system in the variables x and t �in general is not polynomial�,

ẋ =
− xe−4/t + C2x + x2t2e−4/t − 2Cx2t2e−2/t + C2x2t2 + 4Ct2e−2/t

�C − e−2/t�2t2 ,

ṫ = 1.

According to Proposition 8 statement �b� this system is integrable because it has the integrating
factor

R = �M

Iy
�

y=F�x,t;C�
=

− e−1/t�C − e−2/t�
C2�x2e−4/t − 2Cx2e−2/t + C2x2 + 4Ce−2/t�

.

Example 3: We consider the differential system
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ẋ = x, ẏ = − t + y2. �36�

System �36� has the invariant surfaces f1=x, f2=y Airy Ai�t�+Airy Ai�1, t� and f3

=y Airy Bi�t�+Airy Bi�1, t� with cofactors K1=1, K2=y, and K3=y respectively. Here, Airy Ai
and Airy Bi are the Airy functions Ai and Bi, see for more details Ref. 1. System �36� has
divergence equal to 2y+1. We note that

− K1 − K2 − K3 + div = 0,

and so by Theorem 2 statement �b� system �36� admits the Jacobi multiplier

M =
1

f1f2f3
=

1

x�y Airy Ai�t� + Airy Ai�1,t���y Airy Bi�t� + Airy Bi�1,t��
.

Additionally, since

− K1 + 1 = 0, K2 − K3 = 0,

from Theorem 2 statement �a� we have that system �36� admits the two invariants

I1 =
et

f1
=

et

x
and I2 =

f2

f3
=

y Airy Ai�t� + Airy Ai�1,t�
y Airy Bi�t� + Airy Bi�1,t�

.

Therefore, system �36� is a completely integrable system.
Example 4: For t�0 we consider the differential system

ẋ = x2, ẏ = − t +
y2

t
. �37�

System �37� has the four invariant surfaces f1=x, f2= tx+1, f3=y Bessel K�0,−t�+Bessel K�1,
−t�t, and f4=y Bessel I�0, t�+Bessel I�1, t�t. The functions Bessel I and Bessel K are the modified
Bessel functions of the first and second kinds, see Ref. 1. The invariant surfaces have cofactors
K1=K2=x and K3=K4=y / t, respectively. Hence, by Theorem 2 statement �a� system �37� has the
two invariants

I1 =
f2

f1
=

tx + 1

x
,

I2 =
f4

f3
=

y Bessel I�0,t� + Bessel I�1,t�t
y Bessel K�0,− t� + Bessel K�1,− t�t

.

Note that system �37� has divergence equal to 2x+2y / t and we have

− 2K1 − 2K3 + div = 0,

− K1 − K2 − K3 − K4 + div = 0,

− K1 − K2 − 2K3 + div = 0,

¯ .

Hence by Theorem 2 statement �b� system �37� admits the Jacobi multipliers

M1 =
1

f1
2f3

2 , M2 =
1

f1f2f3f4
, M3 =

1

f1f2f3
2 , . . . .
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Example 5: The one-parametric family

ẋ = x3, ẏ = −
a

et + y , �38�

with a�F has the invariant surfaces f1=x, f2=a−2ety, and f3=2tx2+1 with cofactors K1=x2,
K2=2, and K3=2x2. Additionally, system �38� has the exponential factor F2=e1/x2

with cofactor
L2=−2. We note that

K3 − 2K1 = 0, K2 + L2 = 0,

and so by Theorem 2 statement �a� we can construct the two independent invariants

I1 =
f3

f1
2 =

2tx2 + 1

x2 , I2 = f2F = �a − 2ety�e1/x2
.

Additionally, since the divergence of system �38� is div=3x2+1 we have

− K1 − K3 + 1
2L + div = 0, − 3K1 − 1

2K2 + div = 0,

and therefore system �38� admits the Jacobi multipliers

M1 = F1/2

f1f3
=

�e1/x2

x�2tx2+1� ,

M2 =
1

f1
3f2

1/2 =
1

x3�a − 2ety
.

Example 6: The system

ẋ = �eaty + t�x, ẏ = �y + a�y , �39�

has the algebraic surfaces f1=y and f2=y+a invariants with cofactors K1=y+a and K2=y. Addi-
tionally, it has the two exponential factors F1=ee−at/y+a and F2=ex+cos t with cofactors L1=−e−at and
L2=eatxy+ tx−sin t, respectively. System �39� has divergence div= �eat+2�y+ t+a. According to
Theorem 2 statement �d� the cofactors K1, K2, L1, and L2 are linearly dependent over C2�U ,F�. In
particular, they are linearly dependent over C: take �1=−1, �2=1, and �1=�2=0. Then we have

�1K1 + �2K2 + �1L1 + �2L2 + g1 = 0,

with g1=a and so system �39� has the invariant

I1�x,y,t� =
�y + a�eat

y
.

Note that the cofactors K2, L1, and L2 and the div are linearly dependent over C2�U ,F�. Thus, for
�2=−2−eat, �1= teat+aeat, and �2=0 we have

�2K2 + �1L1 + �2L2 + div = 0.

Since W�K2 ,L1 ,L2 ,div��0 these four polynomials are independent over F, see Lemma 14 state-
ment �a�.

VII. THE HIGGS SYSTEM

In Ref. 5 the study of the black holes in the Higgs field is reduced to the study of differential
polynomial Lotka–Volterra systems,
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ẋ = x�y − 1�, ẏ = y�1 + y − 2x2 − z2�, ż = yz . �40�

The flow of system �40� has been studied in Ref. 2 where the 	 and the 
 limit set of the orbits
of the system are described. Note that system �40� is an autonomous system and that H
=H�x ,y , t�=etx /z is an invariant of system �40� because

Ḣ = ẋ
�H

�x
+ ẏ

�H

�y
+ ż

�H

�z
+

�H

�t
= 0.

We consider the level sets H=h or equivalently for every h we consider the surfaces etx /z=h.
Then on every such surface system �40� can be written into the form

ẋ = x�y − 1�, ẏ = y�− 
 e2t

h2 + 2�x2 + y + 1� . �41�

System �41� is a nonautonomous system of the form �1� and it has the two invariant surfaces f1

=x and f2=y with cofactors K1=y−1 and K2=−�e2t /h2+2�x2+y+1, respectively. Additionally, it
has the following exponential factors:

F1 = e�e2t/2h2+1�x2+y+1, L1 = − 2x2 + y2 + y ,

F2 = e�e2t/2h2+1�x2+x+y, L2 = − 2x2 + y2 + xy − x + y ,

F3 = e��e−t−1�y−1�/etx, L3 = −
�e2t + 2h2��e−t − 1�

h2et xy ,

F4 = e−y+1/etx, L4 =
2h2 + e2t

h2et xy ,

and

F5 = e�1+etx+2y+te2tx2+y2−e−2ty2+etxy�/x2e2t
,

F6 = e�etx2+�e−3t−e−4t�y2+�e−t+e−2t�xy�/x2
e�e−tx+e−3ty�/x2

,

with cofactors

L5 = −
�2 − 2e−2t + 4h2e−2t − 4e−4th2�y2

h2 +
�et + 2e−th2�xy + �4h2e−2t + 2�y − h2

h2 ,

L6 = −
�2e−t − 2e−2t − 4e−4th2 + 4e−3th2�y2 − h2et

h2 +
�1 + et + 2e−2th2 + 2h2e−t�xy − �e−t + 2e−3th2�y

h2 .

Moreover system �41� has divergence equal to div=−�e2t /h2+2�x2+3y. We note that

− 2K1 − K2 + div + g = 0,

with g�t�=−1. So system �41� has the Jacobi multiplier

M =
e−t

x2y
.
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System �41� has degree m=3. Therefore, according to Theorem 2 statement �d� the set S
= �K1 ,K2 ,L1 ,L3 ,L4 ,L5 ,L6� is linearly dependent over C2�U ,F�. We note that condition W� does
not hold for S because the Wronskian of all the elements of S is nonzero �see Lemma 14�.
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