Managing SLAs of Heterogeneous Workloads using
Dynamic Application Placement

David Carrera Malgorzata Steinder lan Whalley
Technical University of IBM T.J. Watson Research IBM T.J. Watson Research
Catalonia (UPC) Center Center
Barcelona Supercomputing Hawthorne Hawthorne
Center (BSC) NY 10532 NY 10532

Barcelona, Spain
david.carrera@bsc.es

Jordi Torres
Technical University of
Catalonia (UPC)
Barcelona Supercomputing
Center (BSC)
Barcelona, Spain

jordi.torres@bsc.es

ABSTRACT

In this paper we address the problem of managing hetero-
geneous workloads in a virtualized data center. We con-
sider two different workloads: transactional applications and
long-running jobs. We present a technique that permits
collocation of these workload types on the same physical
hardware. Our technique dynamically modifies workload
placement by leveraging control mechanisms such as sus-
pension and migration, and strives to optimally trade off re-
source allocation among these workloads in spite of their dif-
fering characteristics and performance objectives. Our ap-
proach builds upon our previous work on dynamically plac-
ing transactional workloads. This paper extends our frame-
work with the capability to manage long-running workloads.
We achieve this goal by using utility functions, which per-
mit us to compare the performance of various workloads,
and which are used to drive allocation decisions. We demon-
strate that our technique maximizes heterogeneous workload
performance while providing service differentiation based on
high-level performance goals.

Categories and Subject Descriptors: H.4 [INFORMA-
TION SYSTEMS APPLICATIONS]: General

General Terms: Algorithms, Management, Performance

1. INTRODUCTION

In this paper we present a technique that allows the man-
agement to high-level goals of collocated long-running and
transactional workloads in virtualized environments. We
use utility functions to model the satisfaction of both long-
running jobs and transactional workloads for a particular
resource allocation — the different types of workload have dif-
ferent characteristics, and different performance goals, and
utility functions offer a mechanism to make their perfor-

Copyright is held by the author/owner(s).
HPDC’08, June 23-27, 2008, Boston, Massachusetts, USA.
ACM 978-1-59593-997-5/08/06.

steinder@us.ibm.com

inw@us.ibm.com

Eduard Ayguadé
Technical University of
Catalonia (UPC)
Barcelona Supercomputing
Center (BSC)
Barcelona, Spain

eduard.ayguade@bsc.es

217

mance comparable. We run both workloads inside virtual
machines, in order to properly manage their performance,
and our management also exploits the clustering nature of
transactional workloads. A preliminary working prototype
of our proposal that made use of a commercial middleware to
enforce its decisions was described in [5]. The performance
management aspects pertaining to transactional workloads
were introduced in [2]. An extended version of this paper
can be found in [1].

The explicit management of heterogeneous workloads was
previously studied in [6]. This was a static approach, and
did not run workloads within virtual machines. The use
of utility-driven strategies to manage workloads was first
introduced in the scope of real-time work schedulers [3]. In
our work we use monotonic and continuous utility functions
to represent the satisfaction of both transactional and long-
running workloads, but other approaches have been studied
in the literature [4].

2. PERFORMANCE MODEL

The major challenge of heterogeneous workload manage-
ment is to provide performance predictions with respect to
job completion time on a control cycle which may be much
lower than job execution time. Typically, such a prediction
would require us to calculate an optimal schedule for the
jobs. To trade off resources among transactional and long-
running workloads we would have to evaluate a number of
such schedules calculated over a number of possible divisions
of resources among the two kinds of workloads. The num-
ber of combinations would be exponential in the number of
nodes in the cluster.We avoid this complexity by proposing
an approximate technique described in this section.

While the actual utility achieved by a job can only be cal-
culated at completion time (as a function of actual comple-
tion time and the objective completion time), the algorithm
needs a mechanism to predict (at each control cycle) the
utility that each job in the system will achieve given a par-
ticular allocation. And this is still true even for jobs that are



T
Long running
Transactional

Utility

0 L L L L L L
10000 20000 30000 40000 50000 60000

Time (s)

70000

Figure 1: Actual utility for the transactional work-
load and average hypothetical utility for the long-
running workload

450000

400000

Long running demand
350000

300000

250000 [~

Satisfied
long running demand

Demand (Mhz)

200000 [~

150000 - 1
ional demand

100000 |- S 1

Satisfied
50000 - transactional demand

I I I
40000 50000 60000

Time (s)

I I I
10000 20000 30000 70000

Figure 2: CPU power allocated to each workload
and CPU demands to achieve maximum utility

not yet started, for which the expected completion time is
still undefined. To help answer these questions we introduce
the concept of hypothetical utility, for which we assume that
all jobs can be placed simultaneously, and in which the avail-
able CPU power may be arbitrarily finely allocated among
the jobs so that the expected utility is equalized amongst
them. The algorithm operates by continously stealing re-
sources to the more satisfied applications to later be given
to the less satisfied applications.

3. EVALUATION

We consider a system of 25 nodes, each of which has four
processors. To the system we submit 800 identical jobs.
Each job’s maximum speed permits it to use a single pro-
cessor, and so four jobs could run at full speed on a single
node. However, the memory characteristics of the system
mean that only three jobs will fit on a node at once. Jobs are
submitted to the system using an exponential inter-arrival
time distribution with an average inter-arrival time of 260s.
The system is configured to re-calculate application place-
ment every 600 s.

The experiment starts with a system subject to a constant
transactional workload used throughout, in addition to an
insignificant number of long-running jobs already placed.

218

In this state, the transactional application gets as much
CPU power as it can consume, as there is little or no con-
tention with long-running jobs. As more long-running jobs
are submitted the hypothetical utility for those long-running
jobs starts to decrease as the system becomes increasingly
crowded. As soon as the hypothetical utility calculated for
the long-running jobs becomes lower that the utility ob-
served for the transactional workload, our algorithm starts
to reduce the allocation for the transactional workload and
give that CPU power instead to the long-running workload,
until the utility each achieves is equalized. At the end of
the experiment the job submission rate is slightly decreased,
what results in more CPU power being returned to the trans-
actional workload again. Figure 1 shows the utility for both
of the workloads during the experiment. The utility for both
workloads is continuously adjusted by dynamically allocat-
ing resources over time. Figure 2 shows the particular al-
location at each moment of the experiment, as well as the
CPU demand that would make each workload achieve its
maximum utility. Notice how, as it was pursued, our tech-
nique makes an uneven distribution of resources in terms of
CPU capacity, but it results in an even level of utility across
the workloads.

Acknowledegments

This work is partially supported by the Ministry of Science
and Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625 and by the BSC-IBM
collaboration agreement SoW Adaptive Systems.

4. REFERENCES

[1] D. Carrera, M. Steinder, I. Whalley, J. Torres, and

E. Ayguadé. Managing SLAs of heterogeneous
workloads using dynamic application placement.
Technical Report RC 24469, IBM Research, Jan. 2008.
D. Carrera, M. Steinder, I. Whalley, J. Torres, and

E. Ayguadé. Utility-based placement of dynamic web
applications with fairness goals. In 11th IEEE/IFIP
Network Operations and Management Symposium
(NOMS 2008), Salvador Bahia, Brazil, 2008.

E. D. Jensen, C. D. Locke, and H. Tokuda. A
time-driven scheduling model for real-time operating
systems. In IEEE Real-Time Systems Symposium,
pages 112-122, 1985.

C. B. Lee and A. E. Snavely. Precise and realistic
utility functions for user-centric performance analysis of
schedulers. In HPDC' ’07: Proceedings of the 16th
international symposium on High performance
distributed computing, pages 107-116, New York, NY,
USA, 2007. ACM.

M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and
D. Chess. Server virtualization in autonomic
management of heterogeneous workloads. In 10th
IEEE/IFIP Symposium on Integrated Management (IM
2007), Munich, Germany, 2007.

Sun Microsystems. Behavior of mixed workloads
consolidated using Solaris Resource Manager software.
Technical report, May 2005.

2]

3]

(4]



