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1 Introduction

For the undefined concepts and notation used in this paper, we refer the reader to
either [9] or [13]. All graphs considered in this paper are simple, that is to say, they
contain no loops or multiple edges. In 1998 Enomoto et al. [5] defined the concept
of super edge-magic labeling as follows: a graph G = (V, E) of order p and size q is
super edge-magic if there is a bijective function f : V ∪ E −→ {i}p+q

i=1 such that (1)
f(V ) = {i}p

i=1 and (2) f(x) + f(xy) + f(y) = k ∀xy ∈ E . The function f is called a
super edge-magic labeling of G and k is called either the magic sum or the valence of
f .

It is worthwhile mentioning that an equivalent labeling had already appeared in the
literature in 1991 under the name of strongly indexable labeling [1], however the most
popular term used nowadays is super edge-magic and we will keep this terminology
through the rest of the paper.

The following lemma found in [7] characterizes super edge-magic labelings in terms
of the labels of the vertices and provides us with an alternative definition of super
edge-magic labelings that will prove to be very useful.

Lemma 1.1 A graph G = (V, E) of order p and size q is super edge-magic if and only
if there is a bijective function g : V −→ {i}p

i=1 such that S = {g(x) + g(y) : xy ∈ E}
is a set of exactly q consecutive integers. In such a case g can be uniquely extended to
a super edge-magic labeling of G, namely fg.

In what follows, when we talk about super edge-magic labelings we mean a function
as the function described in the above lemma, rather than the function as described in
the original definition of Enomoto et al.

In [11] Muntaner-Batle introduced the concept of special super edge-magic labelings for
bipartite graphs as follows: let G = (V1∪V2, E) be a bipartite graph of order p = p1+p2

where pi = |Vi| for i ∈ {1, 2} and size q. A super edge-magic labeling f of G is called
special super edge-magic if it has the extra property that f(V1) = {i}p1

i=1 . If a graph G
admits a special super edge-magic labeling, then G is called a special super edge-magic
graph. The concept of (special) super edge-magic labeling was generalized to digraphs

in [6] in the way that a digraph ~G = (V, E) is called (special) super edge-magic if its

underlying graph und(~G) is (special) super edge-magic. If we assume that each vertex

of a (special) super edge-magic digraph ~G = (V, E) of order p takes the name of the
label that some (special) super edge-magic labeling assignes to it, then we define the

adjacency matrix of ~G, denoted by A(~G) = (aij), to be the p× p matrix where

aij =

{
1 if (i, j) ∈ E,
0 if (i, j) /∈ E.
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In 1980, Graham and Sloan [8] introduced the concept of harmonious labelings and
harmonious graphs as follows: a graph G with q edges is harmonious if there is an
injection f from the vertices of G to the group of integers modulo q such that when
each edge xy is assigned the label f(x) + f(y) (mod q) the resulting edge labels are
distinct. When G is a tree, exactly one label may be used on two vertices.

Another modification of super edge-magic labeling, that is only applied to either paths
or linear forests is the strong super edge-magic labeling [3].

Let G = (V,E) be either a path or a linear forest, of order p and size q and assume that
f : V −→ {1, 2, . . . , p} is a super edge-magic labeling of G with the extra property that
if xy ∈ E and dG(x, x′) = dG(y, y′) < +∞, then we have that f(x)+f(y) = f(x′)+f(y′).
From now on, we will call this property strong. Then, we call f a strong super edge-
magic labeling of G, and we call G a strong super edge-magic graph.

The type of graph labeling that has interested to the larger number of researchers
is probably the graceful labeling. This concept was first defined by Rosa [12] and
appeared under the name of β-valuation. The name graceful labeling appeared first
in a paper of Golomb [10] and it is now become the most popular term to denote this
labeling.

A function f is a graceful labeling of a graph G with q edges if f is an injection from
the vertices of G to the set {i}q

i=0 such that, when each edge xy is assigned the label
|f(x)− f(y)|, the resulting edge labels are distinct.

The concept of α-valuation (also called α-labeling) was also introduced by Rosa in [12]
and it is a restriction of graceful labelings for bipartite graphs.

An α-labeling (or α-valuation) of a graph G is a graceful labeling with the additional
property that there exists an integer k so that for each edge xy of G either f(x) ≤ k <
f(y) or f(y) ≤ k < f(x).

Next we introduce the concept of negative strong α-valuation for paths as follows: let
G = (V, E) be a path of order p and assume that f : V −→ {0, 1, . . . , p − 1} is an
α-labeling of G with the extra property that if xy ∈ E and dG(x, x′) = dG(y, y′) then
we have that |f(x) − f(y)| = |f(x′) − f(y′)|. From now on, we will call this property
negative strong and f a negative strong α-labeling of G.

At this point all labelings that will appear in the rest of this paper have already been
defined. Thus, we are now ready to introduce the other concepts and results that will
be necessary in order to properly understand the results obtained this paper. Let us
start with path-like trees, which were first introduced in Barrientos Ph.D. thesis [4]
as follows: given an embedding of Pn in the 2-dimensional grid Pn × Pn, we consider
the ordered set of subpaths L1, L2, . . . , Lm which are maximal straight segments in the
embedding, and such that the end of Li is the beginning of Li+1. Assume that Li

∼= P2

for some i and that some vertex x of Li−1 is at distance 1 in the grid of some vertex
y of Li+1. An elementary transformation of the path consists in replacing the edge of
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Li by the new edge xy. We say that a tree T of order n is a path-like tree when it
can be obtained from some embedding of Pn in the grid by a sequence of elementary
transformations.

In [4] Barrientos proved that all path-like trees admit an α-valuation, and hence all
path-like trees are graceful. He did this using the fact that the path Pn admits a
negative strong α-labeling. From the proof provided by Barrientos it is very easy to
obtain that all path-like trees are special super edge-magic by using a strong super edge-
magic labeling of the path Pn, and hence they are also super edge-magic. Furthermore
in [7] Figueroa-Centeno et al. proved that if a tree is super edge-magic, then it is also
harmonious. Therefore all path-like trees are also harmonious.

Let l1, l2 be two labelings of the vertices of a graph G. We say that l1 is isomorphic
to l2, namely l1 ∼= l2, if and only if there exists an automorphism ϕ of G, such that
l1(x) = l2(ϕ(x)) for all x ∈ V (G).

Next let us define the following concept, that will be of help in order to find lower
bounds for the number of non isomorphic harmonious labelings. Given a tree of order
p, let l be a bijective labeling of the vertices with the numbers in the set {0, 1, . . . , p−1}.
The reduction of l, denoted by red(l), is a new labeling of the tree in which each vertex
takes the same label assigned by l reduced modulo p− 1.

Note that two non-isomorphic labelings may have isomorphic reductions. For instance,
take the star K1,n and consider two labelings of the star l1 and l2 defined as follows: l1
assigns 0 to the central vertex of the tree and the remaining labels are assigned to the
leaves randomly, while l2 assigns n to the center of the star and the remaining labels
are assigned to the leaves randomly. It is obvious that l1 and l2 are non isomorphic.
However red(l1) ∼= red(l2) . The next result caracteritzes when two labelings of a tree
have isomorphic reductions.

Proposition 1.1 Let T be a tree of order p and let l1 and l2 be two bijective labelings
of the vertices of T onto the set {0, 1, . . . , p − 1} such that red(l1) ∼= red(l2). Then
either l1 ∼= l2 or it is possible to obtain one labeling from the other by interchanging the
labels 0 and p− 1.

Proof.
It is clear that if l1 ∼= l2 then red(l1) ∼= red(l2). Assume that red(l1) ∼= red(l2) and let
ϕ ∈ Aut(T ) be such that

red(l1)(x) = red(l2)(ϕ(x)), for all x ∈ V (T ).

Let y, z ∈ V (T ) such that l1(y) = 0 and l1(z) = p−1. Note that, since li(x) = red(li)(x)
for each l(x) /∈ {0, p − 1}, we only have two possibilities. Either l1(y) = l2(ϕ(y)) and
l1(z) = l2(ϕ(z)), thus l1 ∼= l2; or l1(y) = l2(ϕ(z)) and l1(z) = l2(ϕ(y)). In that case,
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the labeling that we obtain by interchanging the labels 0 and p− 1 in l1 is isomorphic
to l2. Indeed, let us define l′1 as follows:

l′1(x) =





l1(x) x /∈ {y, z},
l1(z) x = y,
l1(y) x = z.

Then, l′1(x) = l2(ϕ(x)) for each x ∈ V (T ). 2

Lemma 1.2 Let T be a tree and denote by Sem(T ) and by Harm(T ) the sets of all non
isomorphic super edge-magic labelings and the set of all non isomorphic harmonious
labelings respectively. Then

|Sem(T )|
2

≤ |Harm(T )|

Proof.
Indeed, if M is a super edge-magic labeling of a tree T of order p then the labeling
obtained by subtracting one unit to each label of M and reducing the resulting labels
modulo p− 1, provides a harmonious labeling of T . 2

From the previous comments, we observe that path-like trees have nice labeling proper-
ties, since they admit many different types of labelings. However, as far as we know it
has not been studied how many non isomorphic labelings of different types they admit.
The goal in this paper is to find lower bounds for the number of non isomorphic super
edge-magic labelings of path-like trees. We must say that we have not been able to
apply the techniques that we use to all path-like trees, but only to a certain subset of
them. However, when the techniques apply, we are able to find an exponential num-
ber of such labelings. As a corollary, we also obtain exponential lower bounds for the
number of non isomorphic harmonious labelings. The way we do it uses the following
operation on digraphs that was first introduced in [6].

Let D be a digraph and let Γ = {F1, F2, . . . , Fs} be a family of digraphs such that
V (Fi) = V for every i ∈ {1, . . . , s}. Consider a function h : E(D) −→ Γ, then the
product D ⊗h Γ is a digraph with vertex set V (D) × V and ((a, b), (c, d)) ∈ E(D ⊗h

Γ) ⇐⇒ (a, c) ∈ E(D) ∧ (b, d) ∈ E(h(a, c)). The adjacency matrix of D⊗hΓ, A(D⊗hΓ),
is obtained by multiplying every 0 entry of A(D) by the |V |× |V | nul matrix and every
1 entry of A(D) by A(h(a, c)). Notice that when h is constant, this operation coincides
with the classical Kronecker product of matrices. From now on, let Sp denote the set
of all super edge-magic 1-regular labeled digraphs of odd order p where each vertex
takes the name of the label that has been assigned to it.

The following result was stablished in [6]:
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Lemma 1.3 Let D be a super edge-magic digraph and let h : E(D) −→ Sp be any
function. Then und(D ⊗h Sp) is super edge-magic.

For the rest of the paper let
−→
C n denote a cycle of order n where the vertices take the

name of the labels of a super edge-magic labeling with a strong orientation. Also when

we write the set {−→C n,
←−
C n} we mean the set of cycles where the vertices take the labels

of the same super edge-magic labeling and the edges of each cycle are oriented with

a different strong orientation. Then since {−→C n,
←−
C n} ⊆ Sn the product defined in the

statement of the following lemma found in [2] makes sense.

Lemma 1.4 Let m,n ∈ N and consider the product
−→
C m ⊗h {−→C n,

←−
C n} where h :

E(
−→
C m) −→ {−→C n,

←−
C n}. Let g be a generator of a cyclic subgroup of Zn, namely

< g >, such that | < g > | = k. Also let Ng(h
−) < m be a natural number that satisfies

the following congruence relation

m− 2Ng(h
−) ≡ g (mod n).

If the function h assigns
←−
C n to exactly Ng(h

−) arcs of
−→
C m then the product

−→
C m ⊗h {−→C n,

←−
C n}

consists of exactly n
k

disjoint copies of a strongly oriented cycle
−→
C mk. In particular if

gcd(g, n) = 1, then < g >= Zn and if the function h assigns
←−
C n to exactly Ng(h

−)

arcs of
−→
C m then −→

C m ⊗h {−→C n,
←−
C n} ∼= −→

C mn.

In [3] Bača et al. proved the following result:

Lemma 1.5 Let Cn be a cycle on n vertices, n ≥ 11 odd. The number of non isomor-

phic super edge-magic labelings of Cn is at least
5

4
2b

n
3
c + 1.

2 Counting strong super edge-magic labelings of Pn

This section is devoted to count the number of strong super edge-magic labelings of
Pn. We denote by V (Pn) = {ui}n

i=1 and E(Pn) = {uiui+1}n−1
i=1 . Next let us introduce

the following lemma.

6



Lemma 2.1 Let f : V (Pn) −→ {i}n
i=1 be a vertex labeling of Pn such that

f(uj) + f(uj+1) = f(uj−k) + f(uj+1+k),

for each k ≤ min{j − 1, n− j − 1}. If f(u1) = a, f(u2) = b and f(u3) = c then

f(u2i−1) = a + (i− 1)(c− a) and f(u2i) = b + (i− 1)(c− a)

for each i such that 1 ≤ i ≤ bn+1
2
c.

Proof.
Let us prove by induction that f(u2i−1) = a + (i− 1)(c− a), f(u2i) = b + (i− 1)(c− a)
and f(u2i+1) = c + (i− 1)(c− a).

The result is clearly true for i = 1. Suppose that the result holds for i = l and let us
prove it for i = l + 1.

f(u2(l+1)−1) = f(u2l+1) = a + (c− a) + (l − 1)(c− a) = a + l(c− a).

Also,
f(u2(l+1)) = f(u2l) + f(u2l+1)− f(u2l−1) = b + l(c− a).

Finally,
f(u2(l+1)+1) = f(u2l+1) + f(u2l+2)− f(u2l) = c + l(c− a).

2

Corollary 2.1 Let f : V (Pn) −→ {i}n
i=1, be a super edge–magic labeling of Pn such

that f(uj) + f(uj+1) = f(uj−k) + f(uj+1+k), for each k ≤ min{j − 1, n − j − 1}. If
f(u1) = a, f(u2) = b and f(u3) = c then

• either c− a = 1 and (a, b) ∈ {(1, dn
2
e+ 1), (bn

2
c+ 1, 1)}, or

• c− a = −1 and (a, b) ∈ {(dn
2
e, n), (n, bn

2
c)}.

Proof.
Let us consider the sums ej = f(uj) + f(uj+1), for each j = 1, . . . , n − 1. By Lemma
2.1, we have:

e2i = f(u2i) + f(u2i+1) = b + (i− 1)(c− a) + a + i(c− a) = a + b + (2i− 1)(c− a).

Similarly,

e2i−1 = f(u2i−1)+f(u2i) = a+(i−1)(c−a)+ b+(i−1)(c−a) = a+ b+(2i−2)(c−a).
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Hence, ej = a + b + (j − 1)(c − a), j = 1, . . . , n − 1. Therefore, by Lemma 1.1 either
c − a = 1 or c − a = −1. Moreover, since the labels belong to the set {1, 2, . . . , n} it
is easy to check that we only have four possibilities for the pair (a, b) and the result
follows. 2

Thus, we have that any strong super edge-magic labeling of Pn is absolutely determined
by the labels a, b, c and there are only four possibilities for the labels a, b and c. Each
one of which provides a special super edge-magic labeling of Pn. Therefore we have
proven that:

Theorem 2.1 Pn admits exactly four strong super edge-magic labelings, but only two
are non isomorphic. Moreover, each one of them is special.

Next we will show that Pn admits exactly four negative strong α-labelings two of which
are non isomorphic. Let Sn be the set of strong super edge-magic labelings of Pn and
let S−

n be the set of negative strong α-labelings of Pn.

Theorem 2.2 |Sn| = |S−
n |.

Proof.
Let V1 and V2 be the stable sets of Pn and let f : Sn −→ S−

n be the function defined
by the rule f(h) = h̄ where

h̄(u) =

{
h(u) whenever u ∈ V1,
(n + 1) + dn

2
e − h(u) otherwise.

Next we have to show that f is a bijective function. It was stablished in [7] that the
function f transforms special super edge-magic labelings of trees into α-labelings. Since
all strong super edge-magic labelings of Pn are special super edge-magic, it follows that
the images of these labelings under the function f are α-labelings. Hence, we assume
that h is a strong super edge-magic labeling. We will show that h̄ is a negative strong
α-labeling. Let xy ∈ E(Pn) and assume that d(x, x′) = d(y, y′) where {x′, y′} ⊆ V (Pn).
Since h is a strong super edge-magic labeling, it follows that h(x)+h(y) = h(x′)+h(y′).
Without loss of generality assume that x ∈ V1 and y ∈ V2. We consider two cases.

Case 1: x′ ∈ V1 and y′ ∈ V2.

=⇒ h(x) + h(y) = h(x′) + h(y′)
=⇒ h(x)− (n + 1)− dn

2
e+ h(y) = h(x′)− (n + 1)− dn

2
e+ h(y′)

=⇒ h(x)− [(n + 1) + dn
2
e − h(y)] = h(x′)− [(n + 1) + dn

2
e − h(y′)]

=⇒ h̄(x)− h̄(y) = h̄(x′)− h̄(y′).
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Case 2: x′ ∈ V2 and y′ ∈ V1. This case is similar to case 1.

Let us see now that the preimage of any strong negative α-labeling is a strong super
edge-magic labeling.

Assume that h̄ is a strong negative α-labeling of Pn. Then the preimage of h̄ under f ,
namely h, is a special super edge-magic labeling. We will show that h is strong.

Let xy ∈ E(Pn) and assume that d(x, x′) = d(y, y′) where {x′, y′} ⊆ V (Pn). Since h
is a negative strong α-labeling, it follows that |h(x)− h(y)| = |h(x′)− h(y′)|. Without
loss of generality assume that x ∈ V1 and y ∈ V2. We consider two cases:

Case 1: x′ ∈ V1 and y′ ∈ V2.

=⇒ |h̄(x)− h̄(y)| = |h̄(x′)− h̄(y′)|
=⇒ h̄(x)− h̄(y) = h̄(x′)− h̄(y′)
=⇒ h(x)− [(n + 1) + dn

2
e − h(y)] = h(x′)− [(n + 1) + dn

2
e − h(y′)]

=⇒ h(x) + h(y) = h(x′) + h(y′)

Case 2: x′ ∈ V2 and y′ ∈ V1. This case is basically similar to case 1.

Finally, it is clear that the image of two non isomorphic labelings under f are non
isomorphic labelings. 2

3 m-labelings of Pn

The fact that all path-like trees are super edge-magic depends, in a way, on the fact
that the path Pn is strong super edge-magic, since any strong super edge-magic labeling
of Pn can be used in order to obtain super edge-magic labelings of path-like trees. In
the previous section we have proven that there exist exactly two non isomorphic strong
super edge-magic labelings of the path Pn, for every n ≥ 4. Unfortunately, in order to
obtain a non trivial number of non isomorphic super edge-magic labelings of path-like
trees, this number seems to be not enough. The goal in this section is to introduce
a new type of super edge-magic labeling for paths, that although it is not strong, it
is close to be strong and also serves to our purpose of obtaining super edge-magic
labelings of path-like trees from them. This type of labeling that we refer to, we call
it m-labeling and it is inspired in the strong super edge-magic labelings for paths. Let
us introduce the following example of a super edge-magic labeling of P25:

1− 19− 6− 24− 11− 4− 17− 9− 22− 14− 2− 20− 7− 25− 12− 5− 18− 10− 23−
15− 3− 16− 8− 21− 13.
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Notice that when we read the set of labels from left to right and divide it into disjoint
groups of five consecutive labels we obtain:

1, 19, 6, 24, 11.] 4, 17, 9, 22, 14.] 2, 20, 7, 25, 12.] 5, 18, 10, 23, 15.] 3, 16, 8, 21, 13.

Then for each edge xy and two vertices α, β of the same group of x, y such that
d(α, x) = d(y, β) then x + y = α + β. From now on a super edge-magic labelings of Pn

such that the labels of Pn can be divided into k groups of length m (so that km = n)
with the property shown in the previous example, will be called a m-labeling.

In [2] it was established an algorithm that allows us to create strong super edge-magic
labelings of linear forests with an odd number of components where each component
has the same order.

Next, we will modify it, so that the new resulting algorithm will allow us to create
m-labelings for paths of certain lengths.

Algorithm

Input:

1. Let m be an odd number. Oriented cycle
−→
C m with:

• Vertex set V (
−→
C m) = {vi}m

i=1 and E(
−→
C m) = {(vi, vi+1)}m−1

i=1 ∪ {(vm, v1)}
• Consider a function f : V (

−→
C m) −→ {i}m

i=1 defined by the rule

f(vi) =





i + 1

2
, if i is odd,

dm
2
e+

i

2
, if i is even.

2. The set Γn = {F1, F
′
1, . . . , F s

2
, F ′

s
2
} is the family of all connected 1-regular digraphs

of order n = 2K + 1 where each digraph is labeled in a super edge-magic way
and each vertex takes the name of its label. Each couple (Fj, F

′
j) comes from the

same underlying 2-regular graph but it has been oriented in opposite way.

3. Let (F, F ′) be a fixed cuple from Γn. Define a function h : E(
−→
C m) −→ Γn with

h(vi−1vi) =

{
F whenever i is even,
F ′ otherwise,

and h(vmv1) ∈ {F, F ′}.

Algorithm
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1. Rename each vertex of
−→
C m with the name of its label, creating a new super

edge-magic digraph
−→
C l

m, with adjacency matrix A(
−→
C l

m).

2. Compute
−→
C l

m

⊗
h Γn

∼= −→
C mn.

3. Let (xi, yi) ∈ V (
−→
C l

m

⊗
h Γn). Remove the directions and relabel the vertex (xi, yi)

with zi where zi = n(xi−1)+yi creating a new graph C l
mn. Remove the edge with

the minimum label, namely e, and consider the labeled graph Q = C l
mn \ {e}.

Output

The labeling we obtain of Pmn is a m-labeling.

Theorem 3.1 The graph Q = C l
mn \{e}, where e is the edge of C l

mn such that the sum
of the vertices incident with e is minimum, is a m-labeling of Pmn.

Proof.

The relation
−→
C l

m

⊗
h Γn

∼= −→
C mn holds by Lemma 1.4. Indeed, if we assign to (vm, v1),

F then we are taking g = 1 in Lemma 1.4, meanwhile if we assign to (vm, v1), F ′

then we are taking g = −1. Moreover, as it was proven in [6], when we relabel each

vertex (xi, yi) of und(
−→
C mn) with zi where zi = n(xi − 1) + yi, the result is a super

edge-magic labeled graph that we denote by C l
mn. Thus, Q = C l

mn \ {e} where e is
the edge with minimum label, is a super edge-magic labeled path. Next, we read the
labeling obtained from left to right, and we consider the linear forest of n components
obtained from Q, where the first component consist of the subpath of Q induced by
the first m vertices, the second component consist of the subpath obtained by the next
m vertices of Q and so on. Notice that this linear forest is the linear forest that the

algorithm in [3] would produce if it had been applied to the digraph
−→
C m \ {(vm, v1)}.

Therefore, the linear forest has been labeled in a strong super edge-magic way. Thus,
the labeling of Q is an m-labeling. 2

4 Non isomorphic labelings of certain path-like trees

In this section we prove that the number of super edge-magic labelings of a fixed
path-like tree that we obtain from a m-labelings of a path with the same order grows
exponencially with respect to the order. The idea is the following. Let m,n be odd
numbers. When we apply the algorithm of the previous section, we obtain a super
edge-magic path of order mn, that can be partioned into m-subpaths: P 1

m, . . . , P n
m,

each of them having the strong property (∀xy ∈ E(P i
m) and ∀x′, y′ ∈ V (P i

m) such that
dG(x, x′) = dG(y, y′), then f(x) + f(y) = f(x′) + f(y′)). In each of these subpaths we

11



can apply elementary transformations in order to obtain a super edge-magic path-like
tree. In this construction a super edge-magic labeling l of ~Cm appears. Let A(~C l

m) be
the adjacency matrix induced by this labeling.

Let us repeat the construction by replacing l by a new super edge-magic labeling
l′. Then at least two entries of A(~C l

m) and A(~C l′
m) should be different. Thus, the

corresponding adjacency matrices of ~Cmn induced by the two labelings should have at
least 2m different entries.

Now we present a new description of path-like trees that will be useful in order to de-
scribe the families of path-like trees that have an exponencial number of non isomorphic
super edge-magic labelings.

Embed in a horizontal line a linear forest with consecutive components l1, . . . , ln drawn
from left to right. The end vertices of li (i ∈ {1, . . . , n}) are ai, bi where vertex ai is to
the left of vertex bi. Then, for every i ∈ {1, . . . , n} we join a vertex vi of component
li with a vertex vi+1 of component li+1, where d(vi, bi) = d(ai+1, vi+1). Each path-like
tree can be obtained in this way. The set of path-like trees that we will consider have
the following properties:

1. The edges that join vertices of two different components li and li+1 of the linear
forest, are never incident with a terminal vertex. Therefore the end vertices of
these edges have always degree at least 3.

2. The resulting tree never contains vertices of degree 4.

3. There is no subpath in the resulting tree, that contains all vertices of degree 3 in
the tree and has order greater than 2.

Suppose that we are considering a path-like tree in which the three properties hold. In
the next lemma we prove that two labelings of such a path-like tree are isomorphic if
and only if their restrictions to the forest that we obtain by removing the edges incident
to the vertices of degree three are isomorphic.

Lemma 4.1 Assume that a path-like tree T has the three properties described before
and let λ1, λ2 be two bijective labelings of V (T ). Let e1, . . . , ek be the set of edges
incident with two vertices of degree 3. If λ1 and λ2 are isomorphic then the labelings that
result from λ1 and from λ2 removing the edges e1, . . . , ek, namely λ̄1 and λ̄2 respectively,
are also isomorphic.

Proof.
Let F be the forest that we obtain by removing the edges e1, . . . , ek. For i = 1, 2 denote
by E(λ̄i) the set of edges of F in which each vertex is renamed by the label of λi. If
λ1
∼= λ2 and λ̄1 6∼= λ̄2, then there is an edge xy ∈ E(λ̄1)\E(λ̄2). Since λ1

∼= λ2 it follows

12



that we have included the edge xy in order to obtain λ2. The only way we have to do
this is by adding a new edge xy. Hence x, y become vertices of degree 3 in λ2. But
since xy ∈ E(λ̄1) it follows by Property 3 that min{degλ1(x), degλ2(y)} ≤ 2. Therefore
λ1 6∼= λ2. 2

Let m,n be positive odd integers. Let Fmn be the set of path-like trees such that
T ∈ Fmn if it can be obtained by elementary transformations in each subpath of length
m that belongs to a partition of Pmn, in such a way that, the three properties hold
and the number of vertices incident with two vertices of degree 3 is less than 2m− 1.
Therefore we have that:

Theorem 4.1 Let m,n be odd integers, n ≥ 11. If T ∈ Fmn then the number of non
isomorphic super edge-magic labelings of T is at least

5

2
2b

n
3
c + 2.

Proof.

Let h : E(
−→
C m) −→ Γn and h′ : E(

−→
C m) −→ Γn be two different functions, then:

Fact 1: The m-labelings induced in Pmn by the respective products
−→
C l

m

⊗
h Γn and−→

C l
m

⊗
h′ Γn are non isomorphic. Moreover they contain at least 2m different

edges. Indeed, if the two induced m-labelings of Pmn were isomorphic, then the
linear forest formed by the partition of each Pmn into m-subpaths would also be
isomorphic. But, our algorithm coincides with the algorithm in [3] if it had been

applied to the digraph
−→
C m \ {vm, v1}. Thus , by Theorem 2.1 in [3] they are non

isomorphic. Let us see the second part. We know that the adjacency matrices of

the product contain at least 2m different entries. Notice that, for aij ∈ A(
−→
C m)

if aij = 1 then aji = 0. Therefore, the underlying graph contains at least 2m
different edges.

Fact 2: The labelings of T obtained by elementary transformations of und(
−→
C l

m

⊗
h Γn)

and und(
−→
C l

m

⊗
h′ Γn) are non isomorphic. Otherwise, by Lemma 4.1 if we delete

the edges incident with the vertices of degree three of T the induced labelings
in the linear forest would be isomorphic, but the number of these edges is by
definition less than 2m− 1, a contradiction.

Fact 3: By Lemma 1.5 the number of non isomorphic super edge-magic labelings of−→
C n is at least

5

4
2b

n
3
c + 1.
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Fact 4: Finally, the number of functions of the form h : E(
−→
C m) −→ Γn is at least

5

2
2b

n
3
c + 2.

Indeed, each couple is related to a super edge-magic labeling of
−→
C n, and it has

two possible orientations. 2

Corollary 4.1 Let m,n be odd integers, n ≥ 11. If T ∈ Fmn then the number of non
isomorphic harmonius labelings of T is at least

5

4
2b

n
3
c + 1.

Proof.
It follows from the previous theorem and Lemma 1.2 2
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[3] M. Bača, Y. Lin, F. A. Muntaner-Batle and M. Rius-Font, Strong labelings of
linear forests, Acta Math. Sinica-English Series. 25 (12) (2009), 1951–1964.

[4] C. Barrientos, Difference vertex labelings, Ph.D. Thesis. Universitat Poli-
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