
Elastic Management of Tasks in Virtualized
Environments

Íñigo Goiri, Jordi Guitart and Jordi Torres 1

Abstract—Nowadays, service providers in the Cloud
offer complex services ready to be used as it was
a commodity like water or electricity to their cus-
tomers. A key technology for this approach is virtu-
alization which facilitates provider’s management and
provides on-demand virtual environments, which are
isolated and consolidated in order to achieve a better
utilization of the provider’s resources.

However, dealing with some virtualization capabili-
ties, such as the creation of virtual environments, im-
plies an effort for the user in order to take benefit
from them. In order to avoid this problem, we are
contributing the research community with the EMO-
TIVE (Elastic Management of Tasks in Virtualized
Environments) middleware, which allows executing
tasks and providing virtualized environments to the
users without any extra effort in an efficient way.

This is a virtualized environment manager which
aims to provide virtual machines that fulfils with the
user requirements in terms of software and system ca-
pabilities. Furthermore, it supports fine-grained lo-
cal resource management and provides facilities for
developing scheduling policies such as migration and
checkpointing.

Keywords— Cloud Computing, Virtual Machines,
Resource Management

I. Introduction

Cloud Computing is becoming more and more im-
portant everyday style of computing where computa-
tion is provided over the Internet rather than being
locally on the user’s machine. Locating these ser-
vices on third-party companies makes the users able
to access them anytime and anywhere. Thanks to
the Cloud, the service provider can virtualize its re-
sources and dynamically provision them as unified
computing resources.

In order to be profitable, service providers tend to
share their resources among multiple concurrent ser-
vices owned by different customers, which implies the
cohabitation of services with very different behaviors
and requirements. In order to solve this challenge,
virtualization has become a key technology in the
Cloud. It allows the consolidation of applications,
multiplexing them onto physical resources while sup-
porting isolation from other applications sharing the
same physical resource. In addition, virtualization
has other valuable features for service providers like
the image of a dedicated and customized machine
to each user, decoupling them from the system soft-
ware of the underlying. Moreover, it also offers new
capabilities such as migration or checkpointing and
fine-grained resource management.

Nevertheless, dealing with some virtualization ca-
pabilities, such as the creation, implies an effort for

1Universitat Politècnica de Catalunya (UPC),
Barcelona Supercomputing Center (BSC) e-mail:
{igoiri,jguitart,torres}@ac.upc.edu.

the user in order to take benefit from them. In or-
der to avoid this problem, we are contributing the
research community with the EMOTIVE (Elastic
Management of Tasks in Virtualized Environments)
middleware, which allows executing tasks and pro-
vides virtualized environments to the users without
any extra effort in an efficient way.

This is a virtualized environment manager which
aims to provide virtual machines that fulfils with the
user requirements in terms of software and system
capabilities while exploiting the features of virtual-
ization in a new approach for facilitating providers’
management. In addition, it provides resource man-
agement at several layers, namely locally to each
node in the provider and among different nodes in
the provider,

Next sections present the core of this middleware
in a detailed way and describe its capabilities in de-
tail. Finally, we evaluate it and demonstrate its po-
tential for being used in current Cloud providers.

II. Architecture

In order to perform resource management in Cloud
providers, we propose the architecture shown in Fig-
ure 1. This architecture considers three different lay-
ers: Scheduler, Resource Management, and Resource
Fabrics. The Scheduler layer comprises all the global
resource management decisions, both among differ-
ent providers and different nodes in a single provider.
This layer is in charge of deciding where a task will be
executed and managing its location during the exe-
cution (e.g. migrations, cancellations, etc.). The Re-
source Management layer comprises all the local re-
source management decisions (i.e. in a single node).
This layer is in charge of managing the physical re-
sources in a node using virtualization and distribut-
ing them among the VMs running on that node. Fi-
nally, the Resource Fabrics layer comprises the phys-
ical resources where the VM will run.

In this article, we describe the implementation of
the aforementioned architecture which is part of the
core of EMOTIVE Cloud [1]. Firstly, the Scheduler
layer supports several schedulers with different fea-
tures, depending on which resource allocation poli-
cies want to be carried out. The responsibilities of
this layer are further described in Section V.

The Resource Management layer is implemented
by means of Virtualized Resource Management and
Monitoring (VRMM). This layer is in charge of dis-
tributing the resources in a single node among the
services running on it using virtualization capabil-
ities. In addition, it continuously monitors the re-
source usage of these services and the fulfillment of

671 A Coruña, 16-18 de septiembre de 2009



DFS

Host

Xen

Host

Xen

Host

Xen

RM
VRMM

VtM VtM VtM

App

Guest OS

SERA
ERA

SRLM

EERM
GCS

App

Guest OS

App

Guest OS

App

Guest OS

App

Guest OS

App

Guest OS

VtME

Public
Cloud

Scheduler

Resource
management

Resource
fabrics

FEDS

Fig. 1

EMOTIVE Cloud Architecture

their SLAs. If any SLA violation is detected, an
adaptation process for requesting more resources to
the provider is started, first locally in each node,
then globally in the provider, and finally with other
providers. The responsibilities of the Resource Man-
agement layer are further described in Section IV.

Finally, the Resource Fabrics layer virtualizes the
resources by means of the Xen Hypervisor [2]. In
addition, it also implements a distributed file system
(DFS) that supports efficient VM creation, migra-
tion and checkpointing. In addition, the file system
includes a global repository where clients can upload
the input files needed by the tasks to be executed
in the provider (i.e. stage-in phase) and retrieve the
output files (i.e. stage-out phase).

The three layers will be described in a detailed way
in next sections from the basement to the top in order
to give a incremental view of the overall architecture.

III. Resource fabrics

The basements of the system are the resources
which allow running Virtual Machines on top of
them. In order to fulfill all the requirements of the
system, it requires different facilities such as storage
and networking. In addition, these facilities must
make the system able to support different capabili-
ties such as migration or checkpointing that will be
used by upper layers.

Current implementation supports virtualization
by using the Xen hypervisor [2]. In order to work
with this hypervisor and manage low-level issues, we
have developed a software called XenMonitor. It is
in charge of abstracting the Xen layer about low-level
issues. It does not only need obtaining information
of the VMs but it also requires modifying some low-
level capabilities of the hypervisor such as the CPU
policies.

This software makes use of the XenAPI [3] which
access to the Xen remote facilities and the XenStat
library which directly access to the Xen hypervisor in
order to obtain different metrics like the CPU used
by a VM or the disk accesses it is doing. Moreover,
it makes uses of XenStore for stablishing a bridge for

communicating VMs with the management domain
what makes the system able to obtain information
like the IP of the VM or the memory it is actually
using. Although other alternatives like libvirt [4] ex-
ists, they are intended for a generic use with other
virtualization approaches and they do not support
low-level issues related with Xen. Future work plans
to create a merge between libvirt and XenMonitor,
which will make the programmer able to access to
other hypervisors while accessing to concrete stuff of
the Xen hypervisor.

Data management is another big challenge in or-
der to implement a Cloud provider and the first is-
sue it must deal with is supporting an efficient ac-
cess to VMs disks while enabling migration. It is
done by making each node access its own local disk
and the disk of the other nodes (using NFS). This
allows each node creating VMs and executing tasks
efficiently using the local disk. Furthermore, tasks
can be also migrated with minimum overhead, since
it is not necessary to transfer the VM image, while
maintaining their accessibility during the whole pro-
cess. Moreover, migrated tasks can access remotely
their required data without noticeable performance
penalty. Further details on these capabilities can be
found in [5].

As the architecture supports fault-tolerance by
adding VM checkpointing, it must be able to store
these checkpoints taking into account two main fac-
tors. On one side, the checkpoint mechanism is fault-
tolerant and any single point of failure must be elim-
inated. On the other side, checkpoint can be con-
currently recovered from different nodes in order to
resume task execution faster after a node crash un-
der contention. Both requirements are achieved by a
checkpoint storage implemented using a Hadoop Dis-
tributed File System [6] which distributes and repli-
cates the checkpoints in all the nodes of the provider.

A way for accessing data and store it is required
for persistently store users’ data. The system sup-
ports different methods for storing data such as FTP,
SFTP, S3 and whatever storage system that Hadoop
FileSystem supports. Thanks to this support, it al-
lows submitting a task to a VM with some data as-
sociated or storing output files. In addition, it can
also store the whole VM image in order to retake its
execution in a future.

Finally, the Resource Fabrics layer also supports
an addressing and naming networking system, which
provides access to the VMs. It uses a DHCP server
that dynamically assigns an IP address to each VM
and updates the local DNS server in order to ac-
cess in a human-friendly way to them. Thanks to
this naming, the system can access to the VM using
a SSH wrapper, that allows submitting tasks using
JSDL, which describes the tasks and allows attaching
input data (using the data managemet support).

IV. Resource management

The main responsibility of the Resource Manage-
ment layer is to manage VMs and distribute the re-

XX Jornadas de Paralelismo 672



sources in a single node among the VMs running
on it. This is carried out by Virtualized Resource
Management and Monitoring (VRMM), which can
be seen as a wrapper of the physical machine that al-
lows creating new customized VMs, executing tasks
on these VMs, monitoring their execution, extracting
the results, and destroying the VMs. A single Virtu-
alization Manager (VtM) per physical node supports
VM management and resource distribution capabil-
ities, while monitoring support is provided by Re-
source Monitor (RM).

VtM is mainly in charge of managing the VMs
lifecycle and their resources during its execution. It
firstly creates a customized VM according to the user
requirements, and then it manages the resources in
order to ensure the QoS and finally destroys the VM.
The first task is the VM creation which requires
the following steps: downloading and creating the
guest operating system (a Debian Lenny through de-
bootstrap for this prototype), copying extra software
needed by the client in an image that will be auto-
matically mounted in the VM, creating home direc-
tories and swap space, setting up the whole environ-
ment, packing it in an image, and starting the VM.
Once the VM has completely started, the guest op-
erating system is booted. After this, the additional
software needed by the client needs to be instantiated
(if applicable). These phases can be clearly appreci-
ated in the evaluation section.

From this description, one can derive that this
process can have two bottlenecks: the network (for
downloading the whole guest system) and the disk
(for copying applications and creating system im-
ages: nearly 1GB of data). The network bottleneck
has been solved using a caching system which creates
a default image of the guest system with no settings,
and copying this image for each new VM. This al-
most eliminates the downloading time (base system
is downloaded once and it is reused for each new
VM), but contributes to the disk bottleneck. The
disk bottleneck has been solved by adding a second
caching system that periodically copies the default
image and the images with the most commonly used
software to a cache space. Finally, these images have
only to be moved (just an i-node change) to the fi-
nal location when a new VM is created. Using both
caching systems, the complete creation of a VM has
been reduced from up to 40 seconds to an average
time of 7 seconds.

In order to add fault-tolerance to the system, VtM
periodically is able of making checkpoints of VMs,
which may require this mechanism, and re-take their
execution if the node they were running fails. The
system is capable of differentiating read-only from
read-write parts in the VM image thanks to the use
of Another Union File System (AUFS) in the VMs.
In this way, only checkpoints of modified parts are
performed, thus reducing the time needed to make a
checkpoint and, as a consequence, the interference on
task execution. These checkpoints are compressed
(only if this permits saving time) and, in conjunc-

tion with the read-only parts are stored in the previ-
ously presented checkpoint storage. The checkpoint-
ing mechanism has been fully described in [7].

Once the VM is running, VtM can submit tasks
into the VMs by using the SSH wrapper that is able
to check the status of a task and while this execu-
tion is being done, VtM calculates the amount of
resources that a task really requires. This value will
be used to decide the resource assignment to this task
later on and will be also provided to the Scheduler
layer, in order to make it aware of the real require-
ments of each task.

The resource calculation starts from the estima-
tion initially provided by the Scheduler and adapts
this value depending on the past resource usage of
the task. In particular, the algorithm uses the mean
of the last 5 values, the mean of the last 60 val-
ues, and the total mean. Using these values, the al-
gorithm distinguishes three situations regarding the
resource usage of the task: a) it is rapidly increasing,
b) it is normally increasing, and c) it is decreasing.
In the first case, the algorithm avoids assigning too
many resources to a given task in a small period. In
the second case, it provides resources to the task im-
mediately. In the last case, it slowly unallocates re-
sources to the task, giving time to confirm the falling
trend before subtracting too many resources.

Once the resource requirements estimation has
been done, VtM decides the amount of resources to
be allocated to each VM. In addition, surplus re-
sources of the node can be distributed among the
running VMs of a node according to different poli-
cies and it recalculates the resource assignment of the
VMs every time that either the calculated resource
usage or the Scheduler requires it. Finally, when the
VM has finished its taks, VtM destroys the VM and
stores the required information in the system stor-
age. Further details of all these mechanisms can be
found at [8] and [9].

When dealing with local nodes in the provider,
these functionalities are provided by VtM. However,
when dealing with remote nodes in a federated Cloud
provider, these functionalities are provided by Vir-
tualization Manager External (VtME), which allows
renting VMs in an external provider such as Ama-
zon EC2 and deploying tasks within them as if done
locally. Nevertheless, VtME provides less function-
ality than VtM, because the control over external
resources is lower than over local ones, which makes
capabilities such as efficient migration or checkpoint-
ing not feasible. VtME also provides facilities to offer
unused resources to other providers.

Resource Monitor provides a mechanism for re-
trieving information of the resources and provides
this information to upper layers or external compo-
nents. This information contains different some dy-
namic metrics such as the CPU and memory usage or
others like the architecture of the VM or its number
of CPUs. It gets the information from the differ-
ent resource managers and provides a Ganglia-like
XML file with this information. Furthermore, it has

673 A Coruña, 16-18 de septiembre de 2009



a cache system in order to avoid possible overstress
of the monitoring system.

Nevertheless, RM not only provides information
about the VMs but it is also in charge of resource
discovery and topology maintaining. It periodically
checks if new nodes has been added to the system and
informs the Scheduler layer about this. In addition,
it also provides failure management by periodically
checking if resources are still available and notifying
the upper layer if any of them breaks down.

V. Scheduler

The last EMOTIVE layer is Scheduler which is
in charge of merging all the nodes and abstracting
them as a single big resource where VM are running
without taking into account if this VM is running in
a given node or it is migrated from one to another.
As it has been already presented, the Scheduler layer
is intended to be a wrapper for different schedulers
with different features and capabilities that can take
advantage of EMOTIVE common facilities such as
migration, resource discovery or checkpointing.

Thanks to the system capabilities, the Scheduler
takes advantage of the power of bottom layers such
as the creation of VMs in an efficient way in any of
the node. Another capability is migration; it can
decide to migrate a VM from a node to an other in
order to re-locate its resources. In addition, if a node
that was executing different VMs breaks down, the
Scheduler can decide to recover its execution.

In terms of topology maintenance, the Scheduler
can take advantage of the RM capabilities and it
only needs to implement the VRMMScheduler API
which includes the retrieving the nodes in the system,
getting the location of a VM or task and finally the
adding and removing of nodes. Implementing these
methods, the RM will be able to notify if a node
managed by the scheduler is up or down and allows
monitoring different metrics of the nodes.

Different implementations are already developed
such as the Semantically-enhanced Resource Alloca-
tor (SERA) [9] which adds semantics for describing
the resources and offers a resource allocation based
on these descriptions. EERM [10] is another imple-
mentation that provides economic enhanced resource
allocation according both to the market requirements
and the state of the resources.

Examples of schedulers currently in development
are the Federated Scheduler (FEDS) which decides
the allocation of the services in the nodes guaranty-
ing to each one enough resources to meet the agreed
performance goals and trying to maximize provider’s
utility and includes allocating additional resources
from other Cloud providers. Other plans includes
the development of a scheduler that makes use of
non-deterministic techniques, such as the Simulated
Annealing approach, for making application and VM
placement decisions, as well as the use of the MapRe-
duce programming model as a mechanism for dis-
tributing and orchestrating the process of distribut-
edly collecting performance monitoring data, opti-

TABLE I

Time to create a Virtual Machine using different

approaches

Action No 1 level 2 level
Download base system 88.1 - -
Create base system image 68.4 - -
Copy base system image - 45.2 2.3
Copy software image 13.9 13.9 0.0
Create home & swap 13.7 13.7 0.0
Load image 4.4 4.4 4.4
Total time for running 184.6 77.2 6.7

0

50

100

150

200

0 20 40 60 80 100 120 140 160

Task Usage
Domain-0

A B C D

Time (seconds)

C
P

U
 (

%
)

VM

Fig. 2

One task lifecycle

mizing application placement and enforcing applica-
tion and VM reconfigurations.

VI. Evaluation

A. VM creation performance

This section provides some indicative measure-
ments about the time needed to create a VM and
make it usable for a customer’s application, and the
benefit of our cache systems for reducing this time
compared with the default approach. Table I shows
the times required to perform each one of the stages
for creating a VM detailed in Section IV. It shows
that thanks to the two caching levels the time for
creating a new VM can be near to 7 seconds.

Nevertheless, the above VM creation time does not
include the time needed by the guest operating sys-
tem to boot and be available to the user. This time
can be appreciated in Figure 2, which shows the CPU
usage of a given VM that executes a task during its
whole lifetime (from the VM creation to the VM de-
struction), including also the CPU usage of the Xen
Domain-0.

As shown in Figure 2, during phase A, the Xen
Domain-0 creates the VM. This spends almost one
CPU. During phase B, the guest operating system
is booted (first peak in the CPU usage graph). At
this point, the customer’s task is executed during
phase C. Finally, during phase D, the Xen Domain-0
destroys the VM. Notice that the CPU consumption
of the Xen Domain-0 is only noticeable during the
creation and destruction of the VM. The results in
this figure confirm that the creation of a VM takes
around 7 seconds and according to this while the full
creation of the VM takes around 20 seconds.

XX Jornadas de Paralelismo 674



B. VM placement

This section demonstrates how resources are dy-
namically reallocated among applications according
to the calculated resource usage of each application.
The experiment consists of running a total amount
of five tasks with different resource requirements in
a provider with two nodes.

Figure 3 shows the CPU allocation and the CPU
usage of these tasks in the two hosts of the provider,
as well as the CPU usage of VtM (which runs in
Domain-0). When Task 1 is submitted to the system
with a CPU requirement of 300%, it is scheduled in
Host B and when Task 2 is submitted, it cannot run
in Host B because it needs 150% of CPU and there
is only 100% of CPU available in Host B ; therefore,
it is executed in Host A. Notice that, since Task 1
and Task 2 are the only tasks running in Host B
and Host A respectively, they get allocated all the
resources in their host.

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Capacity Task 5
Usage Task 5

Capacity Task 4
Usage Task 4

Capacity Task 2'
Usage Task 2'

Capacity Task 2
Usage Task 2

Domain-0

Capacity Task 2
Usage Task 2

Capacity Task 1
Usage Task 1

Capacity Task 3
Usage Task 3

Domain-0

Time (Seconds)

%
 C

P
U

 U
sg

ae
%

 C
P
U

 U
sg

ae

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Host A

Host B

Fig. 3

Task placement and CPU allocation/usage

When Task 3 arrives at the system, it can be
scheduled in Host B and both Task 1 and Task 3
share the resources in this host according to their re-
quirements and following the VtM resource assign-
ment. Once Task 1 finishes, 300% of CPU at Host B
becomes free, and according to its configured policy
Scheduler migrates Task 2 to this host. A new do-
main (Task 2’ in the figure) contains the task that is
being migrated. Notice that our data management
implementation using NFS (see Section III) allows
migrating VMs very efficiently and makes this always
available to the clients in spite of being migrated.
Additionally, notice that the CPU consumption of
Domain-0 is increased during the migration and this
must be considered by the scheduling policies.

Finally, when Task 4 is submitted, it is scheduled
in Host A, since there are no enough free resources in
Host B. Once it executes, it simply returns and the
VM is destroyed. At this point, Task 5 is scheduled
in Host A and all the CPU in this host is assigned to
this task. Later, Task 3 finishes and Task 2 and Task
5 keep running in Host B and Host A respectively,
since these tasks are unfinished.

It demonstrates the capabilities of the EMOTIVE
architecture for making scheduler able to relocate

VMs easily inside the provider with no extra effort
since it relies on the bottom layers.

VII. Related work

Grid computing as a platform for developing dis-
tributed applications has not been so successfull as
it was hoped and one of the main reasons is the low
level of abstraction this paradigm required. [11] es-
tablishes how Clouds can be viewed as a logical and
next higher-level abstraction from Grids by providing
a higher-level of abstraction. This concept has been
widely discussed in recent times, [12] presents some
key concepts of this paradigm such as the illusion
of infinite computing resources available on demand
and the ability to pay for use of computing resources
on a short-term basis as needed. This allows com-
panies to have an small set of resources that can be
increased according to their needs saving costs.

Virtualization is probably one of the main inno-
vations of Cloud and the one will cause a major
transformation of the IT infrastructures in the com-
ing years [13]. Among all the Virtualization tech-
nologies those which gives the desirable level of per-
formance for working as a platform for Cloud com-
puting are full-virtualization and paravirtualization.
Full-virtualization uses a virtual machine that medi-
ates between guest operating system and the native
hardware like VirtualBox [14], and VMWare [15].
Paravirtualization also uses a hypervisor but inte-
grates some virtualization parts into the operating
system obtaining a better performance but implying
a modification on the guest OS. Some of the most
famous examples of paravirtualization are Xen [2]
and KVM [16]. Finally, a sign of how important vir-
tualization is becoming is the addition of hardware
capabilities that support this [17].

There are different alternatives that provides a
Cloud solution relying on VMs and probably the
most popular is Amazon EC2 [18] which allows the
user having a VM where executing his jobs. Nev-
ertheless, it is a private implementation and it does
not allow working with low-level aspects. In order
to avoid this problem, different Cloud implementa-
tions which implements the EC2 API such as Euca-
lyptus [19] or Nimbus [20] have appeared. Other
open-source alternatives such as OpenNebula [21]
also adds outsourcing capabilities by adding exter-
nal resources. Nevertheless, this typology only works
with a given pool of images of VMs with different ca-
pabilities that are instantiated when the user wants
to use them. Nevertheless, our approach creates a
customized image from scratch according with the
user requirements in an efficient way.

In addition, these approaches make a static alloca-
tion of the resources by assigning a given amount of
resources at the beginning of the VM creation. How-
ever, we provide a mechanism that re-schedules the
resources of each VM according with the SLA agreed
with the user. This allows a more efficient use of the
resources without any underusage while respecting
the terms agreed with the user.

675 A Coruña, 16-18 de septiembre de 2009



Introducing virtualization for abstracting nodes of
a service provider and allocating tasks in a VM in
order to consolidate and isolate them inside the same
physical machine has been widely investigated during
the last years. Some of the proposed solutions are
driven by SLAs, as in our case, like Oceano [22] which
take into account the customer needs.

Lately, some works have exploited virtualization
capabilities for building their solutions. It has been
used to facilitate system administration and pro-
vide the users with dedicated and customized vir-
tual working environments, making more comfort-
able their work like in the case of VMShop [23] or
other works like Globus Virtual Workspace [24] and
SoftUDC [25] which use virtualization features such
as pausing and migration.

VIII. Conclusions and future work

In this paper, we have presented a complete stack
of software that permits implementing a Cloud solu-
tion which simultaneously ensures an efficient usage
of the local and the remote resources. We propose an
approach that exploits the advantages of virtualiza-
tion for accomplishing resource distribution as well
as application lifecycle management.

EMOTIVE Cloud offers a platform to developers
for working with a Cloud computing implementation
that takes advantage of the virtualization capabilities
and provides a transparent management of the re-
sources and allows optimizing the provider resources.
Moreover, it can be used in order to implement a pri-
vate Cloud provider and extend it taking advantage
of all its features. Our evaluation has demonstrated
the functionality of the proposal and the efficiency
of the system by offering different features such as
dynamic VM creation and migration.

Our future work includes an improvement of
scheduling policies which will include economic indi-
cators and intensively exploit our architecture capa-
bilities such as migration and checkpointing. Finally,
we also plan working on managing mixed sets of
heterogeneous workloads, comprising transactional
applications, CPU and memory intensive jobs, and
data-driven MapReduce tasks.

Acknowledgement

This work is supported by the Ministry of Science
and Technology of Spain and the European Union
(FEDER funds) under contract TIN2007-60625, by
the Generalitat de Catalunya under grant 2009FI B
00249, and the European Commission under FP6
IST contract 034556 (BREIN).

References

[1] “EMOTIVE Cloud,” http://www.emotivecloud.net.
[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,

Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield, “Xen and the art of virtualization,”
in SOSP ’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles, New York, NY,
USA, 2003, pp. 164–177, ACM.

[3] E. Mellor, R. Sharp, and D. Scott, “Xen Management
API,” Revision 1.0.6. July 2008.

[4] “libvirt,” http://libvirt.org.

[5] I. Goiri, F. Julia, and J. Guitart, “Enhanced Data
Management for Virtualized Service Providers,” Pro-
ceedings of the 17th Euromicro Conference on Parallel,
Distributed and Network-based Processing, pp. 409–413,
2009.

[6] D. Borthakur, “The Hadoop Distributed File System:
Architecture and Design,” Document on Hadoop Wiki,
2008.

[7] I. Goiri, J. Julia, J. Guitart, and J. Torres, “Checkpoint-
based Fault-tolerant Infrastructure for Virtualized Ser-
vice Providers,” in Submitted to 22nd ACM Symposium
on Operating Systems Principles (SOSP’09), Big Sky,
MT, USA, October 11-14, 2009.

[8] I. Goiri, F. Julia, J. Ejarque, M. De Palol, R. M. Ba-
dia, J. Guitart, and J. Torres, “Introducing Virtual Ex-
ecution Environments for Application Lifecycle Manage-
ment and SLA-Driven Resource Distribution within Ser-
vice Providers,” Proceedings of the 8th IEEE Interna-
tional Symposium on Network Computing and Applica-
tions, 2009.

[9] J. Ejarque, M. De Palol, I. Goiri, F. Julia, , R. M. Gui-
tart, J. Badia, and J. Torres, “SLA-Driven Semantically-
Enhanced Dynamic Resource Allocator for Virtualized
Service Providers,” Proceedings of the 4th IEEE Inter-
national Conference on eScience (eScience 2008), Indi-
anapolis, Indiana, USA, December 7-12, pp. 8–15, 2008.

[10] Mario Maćıas, Omer Rana, Garry Smith, Jordi Guitart,
and Jordi Torres, “Maximizing revenue in Grid mar-
kets using an Economically Enhanced Resource Man-
ager,” Concurrency and Computation: Practice and Ex-
perience, vol. 9999, no. 9999, pp. n/a, September 2008.

[11] S. Jha, A. Merzky, and G. Fox, “Using clouds to provide
grids with higher levels of abstraction and explicit sup-
port for usage modes,” Concurrency and Computation:
Practice and Experience, vol. 21, pp. 1087–1108, 2009.

[12] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
et al., “Above the clouds: A Berkeley view of cloud
computing,” University of California, Berkeley, Tech.
Rep, 2009.

[13] M. Rosenblum and T. Garfinkel, “Virtual machine mon-
itors: Current technology and future trends,” Computer,
vol. 38, no. 5, pp. 39–47, 2005.

[14] J. Watson, “VirtualBox: bits and bytes masquerading as
machines,” Linux Journal, vol. 2008, no. 166, 2008.

[15] “VMWare,” http://www.vmware.com.
[16] “Kernel-based Virtual Machine (KVM),”

www.linux-kvm.org.
[17] K. Adams and O. Agesen, “A comparison of software and

hardware techniques for x86 virtualization,” in Proceed-
ings of the 12th international conference on Architec-
tural support for programming languages and operating
systems. ACM New York, NY, USA, 2006, pp. 2–13.

[18] Amazon, “Amazon elastic compute cloud,” http://aws.
amazon.com/ec2.

[19] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, and D. Zagorodnov, “The Eucalyptus
Open-source Cloud-computing System,” Proceedings of
Cloud Computing and Its Applications, October 2008.

[20] “Nimbus Science Cloud,” http://workspace.globus.
org/clouds/nimbus.html.

[21] “Opennebula,” http://www.opennebula.org.
[22] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,

M. Kalantar, S. Krishnakumar, D. Pazel, J. Persh-
ing, and B. Rochwerger, “Oceano-SLA based manage-
ment of a computing utility,” in Proceedings of the 7th
IFIP/IEEE International Symposium on Integrated Net-
work Management, 2001, vol. 5, pp. 855–868.

[23] Ivan Krsul, Arijit Ganguly, Jian Zhang, José A. B. Fortes,
and Renato J. Figueiredo, “Vmplants: Providing and
managing virtual machine execution environments for
grid computing,” SC Conference, vol. 0, pp. 7, 2004.

[24] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual
workspaces: Achieving quality of service and quality of
life in the grid,” Sci. Program., vol. 13, no. 4, pp. 265–
275, 2005.

[25] M. Kallahalla, M. Uysal, R. Swaminathan, D.E. Lowell,
M. Wray, T. Christian, N. Edwards, C.I. Dalton, and
F. Gittler, “SoftUDC: a Software-based Data Center for
Utility Computing,” Computer, vol. 37, no. 11, pp. 38–
46, 2004.

XX Jornadas de Paralelismo 676

http://www.opennebula.org
http://www.emotivecloud.net
http://libvirt.org
http://www.vmware.com
file://localhost/Users/arenaz/Documents/Papeleo/Congresos/Jornadas2009/proceedings/www.linux-kvm.org
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://workspace.globus.org/clouds/nimbus.html
http://workspace.globus.org/clouds/nimbus.html



