Simulating complex systems with a low-detail model

R. Nou, J. Guitart, V. Beltran, D. Carrera, L.. Monterol, J. Torres, E. Ayguadé

{rnou, jguitart, vbeltran, dcarrera, torres, eduard }@ac.upc.edu, lidia.montero@Qupc.eduf

Barcelona Supercomputing Center (BSC)
Computer Architecture Department
Technical University of Catalonia
C/ Jordi Girona 1-3, Campus Nord UPC
E-08034 Barcelona (Spain)

Abstract

In this paper we show how modeling and sim-
ulating a complex system such as a web-server
can help to evaluate different metrics and pro-
posals to improve the performance without ne-
cessity of using a real system. Many times
the system is unavailable or requires spending
time and resources to generate results. With
simulation and concretely with a coarse-grain
simulation as we propose can solve with great
success this problem. In this article we have
been able to simulate the metric and behav-
iour of a web server with SSL security, the el-
lapsed time required by the simulation on a
desktop machine is only 1/10 of real time. We
have also been able to measure, for example,
the performance enhancements with 8 CPUs
without having an available machine of simi-
lar features.

Keywords: Performance Prediction, Mod-
elling, Simulation, webserver, RUBIS, dy-
namic web sites.

1 Introduction

We can view an Application Server based on
the J2EE platform as a complex system, sev-
eral things happen at the same time, and
there are many levels involved; from threads
to TCP/IP, including cryptographic and se-
curity issues. These systems are widely ex-
tended nowadays and they are used in many

Dept. of Statistics and Operations Researchi

Technical University of Catalonia
Pau Gargallo 5
E-08028 Barcelona
Spain

commercial environments, in most of complex
web applications currently online and in many
B2B links. At the same time, all informa-
tion that is confidential or has market value
must be carefully protected when transmitted
over the open Internet. Security between net-
work nodes over the Internet is traditionally
provided using HTTPS[16]. This widespread
diffusion of dynamic web content and SSL in-
creases the performance demand on applica-
tion servers that host the sites, leading some-
times these servers to overload.

During overload conditions, the response
times may grow to unacceptable levels, and
exhaustion of resources may cause the server
to behave erratically or even crash causing de-
nial of services. In e-commerce applications,
which are heavily based on the use of secu-
rity, such server behaviour could translate to
sizable revenue losses. For instance, [19] esti-
mates that between 10 and 25% of e-commerce
transactions are aborted because of slow re-
sponse times, which translates to about 1.9
billion dollars in lost revenue.

These systems are known to be very com-
plex to characterize. This inherent complex-
ity makes it extremely difficult for systems de-
velopers and managers to estimate the size
and capacity of the deployment environment
needed to guarantee good system usage like
maintain a throughput. Managers are often
faced with questions such as the following:
What are the maximum load levels that the

1
Actasdelas XVI Jornadas de Paralelismo, JP2005, pp.301-308

1 SBN: 84-9732-430-7 © 2005 L os autores, Thomson

302

system will be able to handle? What would
the throughput and resource utilization be un-
der the expected workload? How would per-
formance change if load is increased? Does
the system scale? Taking performance mea-
surements is relatively simple if the system is
running. However, how to take performance
measurements when the system does not ex-
ist, or we cannot afford for it?

In this case we can estimate the perfor-
mance measurements by means of some kind
of performance model. Different approaches
have been proposed in the literature for perfor-
mance analysis and prediction models for this
type of e-business systems. Most of them ex-
ploit analytical models which analysis is based
on Markov Chain Theory [6]. Queuing Net-
works and Petri Nets are among the most pop-
ular modeling formalisms that have been used.

But due the complexity of today e-business
systems, the analytical methods for solving are
not allowed. Only by simplifying the system
we can obtain treatable models. On the other
hand these systems cannot model, in an easy
way, timeouts behaviour.

The simulation model is an abstract rep-
resentation of the system elements and their
interactions, and an alternative to analytical
mathematical models. The main advantage
of simulation is that it overcomes the limita-
tion of complex theoretical models, while the
methodological approach to simulation mod-
els and the analysis of simulation results is
supported by statistical principles developed
in the last 30 years.

There are several works on simulating sys-
tems to extract information about them [17,
18], but there are a lack of resources modeling
application servers and problems like the one
we are facing.

In this paper we use a benchmark that rep-
resent a real-world application and demon-
strate the benefits of this approach. Once the
simulation model is validated and it is consis-
tent with real measurements, then the simu-
lation is a powerful performance analysis and
prediction tool for this type of complex sys-
tems.

The rest of the paper is organized as fol-

Evaluacion de Prestaciones, Modelado y Simulacién

lows: Section 2 introduces the analyzed sys-
tem, a web server with SSL security, section
3 explains simulation environment and tools
used. On Section 4 we describe experimen-
tal environment. Inside Section 5 we explain
all the blocks that build the model simulated.
Section 6 compares simulation results with ex-
perimental results. In Section 7 we show some
interesting results that can be obtained from
simulated models. More information and fur-
ther experiments can be found on report [14].

2 Secure dynamic web applications

2.1 Dynamic web applications

Dynamic web applications are a case of multi-
tier application and are mainly composed of
a Client tier and a Server tier, that consist of
a front-end web server, an application server
and a back-end database. The client tier is re-
sponsible of interacting with application users
and to generate requests to be attended by the
server. The server tier implements the logic of
the application and is responsible of serving
user-generated requests.

When the client sends to the web server
an HTTP request for dynamic content, the
web server forwards the request to the appli-
cation server (as understood in this paper, a
web server only serves static content), which is
the dynamic content server. The application
server executes the corresponding code, which
may need to access the database to generate
the response. The application server formats
and assembles the results into an HTML page,
which is returned as an HT'TP response to the
client.

2.2 SSL protocol

The SSL protocol (explained in [8])provides
communications privacy over the Internet.
The protocol allows client/server applications
to communicate in a way that is designed to
prevent eavesdropping, tampering, or message
forgery. SSL increases the computation time
necessary to serve a connection remarkably,
due to the use of cryptography to achieve their
objectives. This increment has a noticeable

XV1 Jornadas de Paralelismo, JP '2005

impact on server performance, which has been
evaluated in [9]. This study concludes that
the maximum throughput obtained when us-
ing SSL connections is 7 times lower than when
using normal connections. The study also no-
tices that when the server is attending non-
secure connections and saturates, it can main-
tain the throughput if new clients arrive, while
if attending SSL connections, the saturation
of the server provokes the degradation of the
throughput.

More information about the impact of using
SSL on server performance can be found in [9].
We have measured the computational demand
of a full SSL handshake in a 1.4 GHz Xeon
machine to be around 175 ms, the resumed
handshake only takes 2 ms. It seems logical
that some admission control can be used using
this two handshakes as criteria [10]. Succesful
simulation of this admission control could be
found in report [14].

3 Modeling proposal

Before we look at our simulation approach we
include a brief introduction to the modeling
paradigm, the simulation tools and the tools
to obtain the information we needed.

3.1 Modeling paradigms

A simulation model works replaying, with
more or less detail, the typical behaviour of
the system under study. We need to create
the behaviour of every component of the sys-
tem to start the simulation, we need also to
define what data we want to extract from the
system. Finally we need to specify when the
simulation will finish.

3.2 Simulation tool

Simulation [11, 15] is the modeling technique
of choice when obtaining exact or adequately
accurate analytic models is very difficult for
the system to be modeled. Simulation models
mimic the behaviour of a real system through
computer programs that randomly generate
events such as arrivals of requests and move

303

these requests around through the various sim-
ulated queues. Several counters accumulate
metrics of interest such as total waiting time
in a queue and total time a resource was busy.
These counters can be used at the end of the
simulation to obtain average waiting times, av-
erage response times, and utilization of the
various resources

Simulation is usually much more computa-
tionally intensive than analytic models. On
the other hand, simulation models can be
made as accurate as desired or focus over some
specific target.

To the best of our knowledge, there are not
any simulation packages that are specifically
oriented for this type of systems. We de-
cided to use Objective Modular Network Test-
bed in C++ (OMNet++) [3]. OMNeT++
is an object-oriented modular discrete-event-
driven simulator based on C++. The simula-
tion package can be used to model: communi-
cation protocols, computer networks and traf-
fic modelling, multi-processors and distributed
systems, etc. All of this without apparently
limitations, because we are programming the
several services we need.

3.3 Performance analysis framework

In order to obtain service times for simula-
tion (Tables 1) we propose use a performance
analysis framework developed in our research
center. This framework, which consists of
an instrumentation tool called Java Instru-
mentation Suite (JIS [7]) and a visualization
and analysis tool called Paraver [4], consid-
ers all levels involved in the application server
execution (operating system, JVM, applica-
tion server and application), allowing a fine-
grain analysis of dynamic web applications.
For example, the framework can provide de-
tailed information about thread status, system
calls (I/O, sockets, memory & thread manage-
ment, etc.), monitors, services, connections,
etc. Further information about the implemen-
tation of the performance analysis framework
and its use for the analysis of dynamic web
applications can be found in [7].

304

Event Time

SSL connection 170ms

Reuse SSL 2ms

Connection, request | 3ms
Page Prob | Dynamic Static
RUBISlogo.jpg | 35,6% Oms | 3,65ms
Bidnow.jpg 26,1% Oms | 0,17ms
SearchItems 14,3% 18,2ms 2,8ms
Viewltem 11,0% 0,7ms 2,1ms
ViewUserlInfo 3,0% 5,8ms | 11,7ms
Buyitnow.jpg 2,2% Oms 0,2ms

Table 1: CPU times to process a request

3.4 Input information for the simulation

We used all the information extracted from
data sheets of a real system benchmark and
we obtained good results with a simplified set
of data. In later stages we improved the accu-
racy of the input model, using more real input
to validate results. Our target was to achieve
a similar graphics, but not the same values,
for that we would need to program (with accu-
racy) for example HT'TPProcessor and session
persistence. We can find in Tables 1 some of
the data we used to simulate the system.

Some experimental data and statistical
analysis gave us client arrival rate, # of re-
quest per client and the ratio between static
and dynamic requests. Although we obtained
a good approximation over real system with
only this data, we had service times for all
kind of requests and his % of appearance as
shown in Table 1 so we added a high detail
level using them.

4 Benchmark and platform

The system we are going to simulate composes
of an application server (Apache Tomcat) serv-
ing pages and accessing data on a mySQL
database. Finally we have several clients ac-
cessing the application server. This kind of
environment is frequently modeled [12], but
we add several new components to simulation,
that as we know haven’t been added before.
First a SSL protocol between clients and ap-

Evaluacion de Prestaciones, Modelado y Simulacién

¥ —m»

req n:u:\A
/ accproc
chent
/ ™

teplyprac

Figure 1: OMNETH+ Model layout

plication servers, and lastly and the harder to
get on an analytical model, are timeouts.

4.1 Auction site benchmark (RUBIS)

The RUBIS (Rice University Bidding System)
[5] benchmark servlets version 1.4 on Tomcat
will be the generator of the workload we are
using to study the system. Httperf, a web
perfomance measurement tool, is used with
this workload. Httperf [13] allows the creation
of a continuous flow of HTTP/S requests is-
sued from one or more client machines and
processed by one server machine. The work-
load is divided by sessions, every session issues
several request (burst and not-burst) with a
thinktime between request.

4.2 Experimental environment

We use Tomcat v5.0.19 [2] as the applica-
tion server. In this paper we use Tomcat
as a standalone server (serving dynamic and
static web content). Tomcat is configured
with 100 HTTPProcessor. In order to pre-
vent server overload in secure environments,
[10] have incorporated to the Tomcat server a
session-oriented adaptive mechanism that per-
forms admission control based on SSL connec-
tions differentiation. Further details could be
readed on [10].

5 Model description

The system was modeled using five black boxes
(Figure 1): Client that simulates httperf and

XV1 Jornadas de Paralelismo, JP '2005

RUBIS workload, accessProcessor that sim-
ulates operating system backlog of connec-
tions and allow setting up admission policies.
HTTPProcessor manages connections using
SSL hand-shake and reusing SSL. HTTP-
processor also processes requests and sends to
mySQL as needed. To conclude a replyProces-
sor gets the reply from mySQL or HTTP-
Processor and sends it to the client.

We do not want to build a system with a
great level of detail; we do not include threads
in our model although we modeled a simpli-
fied HTTP 1.1 scheme. Our objective was to
achieve an approximation to the real system
values, without using a large processing time.

5.1 Modeled blocks

Client (client), programmed to generate
statistically the same workload as the real sys-
tem. We found using statistical analysis, that
our original workload is distributed 1/3 and
2/3 between dynamic and static requests, also
client arrivals follows an exponential distribu-
tion of a mean of 7 seconds.

This block also manages timeouts; they are
easily modeled using the API on OMNet++.
As a side note, we can generate more clients
that in the real system, because we have not
any client limitation.

accessProcessor (accproc): a queue
(FIFO) that sends request to HT TPProcessor
(and if it is required, do some admission con-
trol). From here is easy to control limitation
policies on HTTPProcessor so we can fast
test several policies just changing the code on
it. Inside this block we had modeled typical
linux buffers behaviour (backlog).

HTTPProcessor (reqproc): it uses a
Processor Sharing scheduling to simulate
threads. This block provides information to
accessProcessor to simulate persistence and
HTTP 1.1 behaviour.

mySQLProcessor (mysql) : emulates the
behaviour of a database. As we focus on
TOMCAT with SSL this MySQL block is not

305

modeled with detail. We used a Processor
sharing scheme to model the original behav-
iour.

replyProcessor (replyproc): this block
simply sends the reply to the client and it
doesn’t do any processing on it, on real sys-
tem it is included inside Tomcat.

5.2 Execution

To produce the results, several simulations
with different random seeds had been exe-
cuted. this results was processed statistically
and presented in a graphical form. The execu-
tion was done on a standard desktop computer
in less of half an hour. Real system needed a
day to produce the same results.

6 Model building

In this section we present the validation of
the model comparing the results obtained with
real life system. In order to improve the accu-
racy of the performance, we refined the simu-
lation model (workload, service times but also
behaviour). One of the most important be-
haviours was how httperf managed timeouts.
In order to match the real system we used 100
HTTPProcessors on our simulation.

6.1 Comparing the original Tomcat be-
haviour

Figure 2 shows the Tomcat throughput as a
function of the number of new clients per
second initiating a session with the server.
When the number of clients that overload the
server has been achieved, the server through-
put degrades until approximately the 20% of
the maximum achievable throughput while the
number of clients increases.

The cause of this great performance degra-
dation on server overload has been analyzed
in [9]. They conclude that the server through-
put degrades when most of the incoming client
connections must negotiate a full SSL hand-
shake instead of resuming an existing SSL con-
nection. In our simulation as can be seen on

306

Reply rate - Simulation vs Original

replies/sec

o 5 10 15 20 25 30 35
New clients/s

Simulation —+— Original ---%--

Figure 2: Comparing throughput with simulation

Figure 2 we achieved a similar shape (and ap-
proximate values).

Response time is tightened with persistence
optimization on HTTP 1.1, which has not
been fully modeled on our simulation, so we
had not shown this kind of graphic. We should
know our model limitations and use only for
what it is intended for. The results were ful-
filling, but future work will try to simulate the
exact behaviour.

7 Results

This kind of coarse-grain simulation allows us
run tests over hardware or systems that are
not available and obtain performance predic-
tions. We will demonstrate that the simula-
tion with that simple model, using low level
of detail, adapts well to the real system. Its
low complexity allows us to simulate long time
tests without a high computational cost. An
example is to test a large range of admission
policies in low execution time.

Although if it is necessary, this simulation
model can be extended in any detail level in
order to obtain any type of information.

In order to illustrate utility of the simulation
proposed we will show some tests examples
that we can not do with the real system (be-
cause are not available or the execution time
make it impossible to run). There are a great
number of questions that can be answered by

Evaluacion de Prestaciones, Modelado y Simulacién

reply rate - Simulation for several CPUs
450
A
400 A" .
3% Y
350 » -
300 P e
8 ok
SN
o o m O
v 20 Lol A O S
8 ‘D m 2 e A
= 200 i
F fekog BTN
o s | .
[w2 :
BXX 3 ‘m . ’» A
FI % @ me L
100 ., n 8
g RS
N T § -
50 *, 8 O
RN * -
4
0 5 10 15 20 25 30 35
New clients/s
1CPUSIM —— 3CPUSIM % 5CPUSIM —-M-- 7CPUSIM —-®
2CPUSIM —¢-- 4CPUSIM & 6CPUSIM -G 8CPUSIM -4

Figure 3: Throughput with simulation

simulation.

7.1 Scalability of the application

Our simulation model is very simple, however
it can describe with great approximation real
model system. For example assume that we
need to know the behavior of our application
with a system with more that one CPU. We
have this information for one CPU, and we
have obtained the parameters from this exe-
cution. What will be the behaviour for more
CPUs? In Figure 3 we show the obtained
throughput for 1 to 8 CPUs. Because we have
a 4-vias multiprocessor system we already run
the real application in order to confirm the
estimation obtained thought the simulation.
The Figure 4 shows the throughput of the real
system for several CPUs. We can see that
very similar shapes are achieved. In this case,
although we considerate to create some ex-
tra blocks to simulate Operating System con-
tention on more than 1 CPU, we conclude that
model adapts fine.

To carry out a real run we need to consume
as minimum 200 minutes (on the other hand
we have the difficulty to obtain or to maintain
such resources during the execution time), this
run provides us with a line (i.e. 1 CPU REAL
of Figure 4), we can do the same on simu-
lation (on the same machine) in less than 3
minutes. Aproximately two orders of magni-
tude less with the help of simulation to achieve

XV1 Jornadas de Paralelismo, JP '2005

reply rate - several CPUs

300

250 aH 8

200 @

150 R g &

replies/sec

100 - 5

T

o 5 10 15 20 25 30 35
New clients/s

1CPU —— 2CPU - 3CPU - 4CPU

Figure 4: Throughput (Real System)

the same results.

7.2 Advantages of simulation

In simulation we can adapt the model to help
us to extract this and other kind of data. We
can accomplish tests that would cost resources
or be difficult to implement on the real sys-
tem easily or unaffordable, simulation gives
us more flexibility to add variables and count
thinks like the maximum number of opened
sessions on an instant, how the system works
with more processors, or what is the effect of
modifying pool size. This can help us to eval-
uate system modifications in a fast and quite
reliable way.

Simulation time with nowadays computers
is greatly reduced. In our case a simulation
with this great number of messages would be
intractable a few years ago. Another impor-
tant factor is memory usage. This gives us
the possibility to test several QoS policies in
real time without having it implemented and
running on a real machine. We can feed the
simulator with the same workload as the real
one, an look its progress inside the system in
every moment.

8 Conclusions

In this paper we have presented a method to
simulate an existing system and to show how
we can obtain some experimental data without

307

the need to use neither resources nor the time.
In this work we used only data from 1 CPU
real system run, and from his sample work-
load. Our model uses OMNET 4+ to describe
the servers, services and clients behaviour with
all the detail we could need, and achieves to
predict the shape of the real system plots. Al-
though that we do not modelled the system
with deep detail to predict real numbers, we
found that they are very similar and enough
to make some predictions and take the results
seriously.

To find more specific results we will need a
more detailed model (i.e. OS contention with
more than one CPU), however some questions
that we can answer with further exploration
can be: can we know the optimal number
of opened sessions? How behaves analyzing
backlog queue using known services times from
tomcat? How can response time be affected
switching from a FIFO to LIFO queues? How
would affect to the application server scalabil-
ity the addition of more resources?. Answer to
these questions could be achieved using this
simple model. A simple model produces re-
sults in less time that a complicated one.

Using simulation gives us more flexibility
and capability to extract data and run some
test that could be unaffordable with real re-
sources. We can measure what throughput
we could achieve (at least an approximation)
with the addition of more processors, threads
or with a change of the number of clients. We
did not need the real system for this, only sim-
ulation.

Future work will include simulating the ex-
act behaviour of HTTPProcessor, possibly at
thread level to see how we can obtain all the
response time data, also we should test sev-
eral QoS policies involving backlog queue, and
assignation of requests to HT TPProcessors.

9 Acknowledgements

This work is supported by the Ministry
of Science and Technology of Spain and
the European Union (FEDER funds) under
contract TIN2004-07739-C02-01 and by the
CEPBA (European Center for Parallelism

308 Evaluacion de Prestaciones, Modelado y Simulacién

of Barcelona). For additional information
about the authors, please visit the Barcelona
eDragon Research Group web site [1].

References

[1] Barcelona edragon research group.
www.cepba.upc.es/eDragon.

[2] Jakarta tomcat servlet container.
jakarta.apache.org/tomcat.

[3] Omnet++. /www.omnetpp.org.
[4] Paraver. http://www.cepba.upc.es/paraver.

[5] C. Amza, E. Cecchet, A. Chanda, A. Cox,
S. Elnikety, R. Gil, J. Marguerite, K. Ra-
jamani, and W. Zwaenepoel. Specifica-
tion and implementation of dynamic web
site benchmarks. WWC-5, Austin, Tezas,
USA., November 25 2002.

[6] G. Bolch, S. Greiner, H. De Meer, and
K. S. Trivedi. Queueing networks and
markov chains. Modelling and Perfor-
mance Evaluation with Computer Science
Applications. Wiley, New York, 1998.

[7] D. Carrera, J. Guitart, J. Torres,
E. Ayguadé, and J. Labarta. Complete
instrumentation requirements for perfor-
mance analysis of web based technologies.
ISPASS’03, pp. 166-176, Austin, Tezas,
USA, March 6-8 2003.

[8] T. Dierks and C. Allen. The tls protocol,
version 1.0. RFC 2246, January 1999.

[9] J. Guitart, V. Beltran, D. Carrera, J. Tor-
res, and E. Ayguadé. Characterizing se-
cure dynamic web applications scalabil-
ity. IPDPS’05, Denver, Colorado, USA,
April 4-8 2005.

[10] J. Guitart, V. Beltran, D. Carrera, J. Tor-
res, and E. Ayguadé. Session-based adap-
tative overload control for secure dynamic
web application. ICPP-05, Oslo, Norway,
June 14-17 2005.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A.M. Law and W.D. Kelton. Simulation
Modeling and Analysis. McGraw Hill,

2003.
Daniel A. Menacé, Virgilio A. F. Almeida,

and Lawrence W. Dowdy. Performance by
Design. Pearson Education, 2004.

D. Mosberger and T. Jin. httperf: A
tool for measuring web server perfor-
mance. Workshop on Internet Server Per-
formance (WISP’98) (in conjunction with
SIGMETRICS’98), pp. 59-67. Madison,
Wisconsin, USA, June 23 1998.

R. Nou, J. Guitart, V. Beltran, D. Car-
rera, L. Montero, J. Torres, and
E. Ayguadé. Simulating and modeling se-
cure web applications. Research Report
UPC-DAC-RR-2005-31, 2005.

B.l. Fox P. Bratley and L.E. Schrage.
A Guide to Simulation. Springer-Verlag,
1987.

E. Rescorla. Http over tls. RFC 2818,
May 2000.

C. Stewart and K. Shen. Performance
modeling and system management for
multi-component online services. NSDI,
2005.

B. Uragonkar, G.Pacifi, P. Shenoy,
M. Spreitzer, and A. Tantawi. An analyt-
ical model for multi-tier internet services
and its applications. SIGMETRICS’05,
Alberta, Canada, June 6-10 2005.

T. Wilson. E-biz bucks lost un-
der ssl strain. Internet Week Online.
www.internetwk.com/lead/lead052099.him,
MAy 20 1999.

