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Abstract
We study the disturbance decoupling problem for lin-

ear time invariant singular systems. We give necessary
and sufficient conditions for the existence of a solution
to the disturbance decoupling problem with or without
stability via a proportional and derivative feedback and
proportional and derivative output injection that also
makes the resulting closed-loop system regular and/or
of index at most one. All results are based on canonical
reduced forms that can be computed using a complete
system of invariants that can be implemented in a nu-
merically stable way.
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1 Introduction
We consider linear and time-invariant continuous sin-

gular systems of the form

{
Eẋ(t)=Ax(t) + Bu(t) + Gg(t), x(t0) = x0, t ≥ 0

y(t)=Cx(t),
(1)

(1) where E, A ∈ Mn(C), B ∈ Mn×m(C), C ∈
Mp×n(C), G ∈ Mn×q(C) and ẋ = dx/dt. The term
g(t), t ≥ 0, represents a disturbance, which may repre-
sent modeling or measuring errors, noise, or higher or-
der terms in linearization. Singular systems arise natu-
rally in circuits design, mechanical multibody systems
and a large variety of the applications (see [5] and [6],
for example), and they have been studied under differ-
ent points of view. The problem of constructing feed-
backs and/or output injections that suppress this distur-
bance in the sense that g(t) does not affect the input-
output behavior of the system is analyzed. In the case
of standard state space systems the disturbance decou-
pling problem has been largely studied (see [1],[7],[8]

for example), This problem for singular systems has
also been studied (see [2], [4] for example). In this pa-
per we study the disturbance decoupling problem for
singular systems that can be stated as follows: Find
necessary and sufficient conditions under which we can
choose state and derivative feedback as well state and
derivative output injection such that, the matrix pencil
(E + BFB

E + FC
E C, A + BFB

A + FC
A C) is regular of

index at most one and

C(s(E+BFB
E +FC

E C)−(A+BFB
A +FC

A C))−1G = 0.

We assume without loss of generality that matrices B,
G are full column rank and C is full row rank, i.e.,
rank B = m, rank G = q, rank C = p. If this is not the
case, then this can be easily achieved, by removing the
nullspaces and appropriate renaming of variables.

2 Notations
In the sequel we will use the following notations.

- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its reduced form N =

diag (N1, . . . , Nt), Ni =
(
0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J = diag (J1, . . . , Jt),
Ji = diag(Ji1 , . . . , Jis), Jij = λiIij + N ,
- L denotes the diagonal matrix L = diag (L1, . . . , Lq),
where Lj =

(
Inj 0

) ∈ Mnj×(nj+1)(C),
- R denotes the diagonal matrix R =
diag (R1, . . . , Rp), where Rj =

(
0 Inj

) ∈
Mnj×(nj+1)(C).
We represent systems of the form (1) as quadruples

of matrices (E, A, B,C) in the case of disturbance do
not appear or it is not considered and a quintuples of
matrices (E, A,B, C, G) otherwise.



3 Reduced Form
We recall that, given a singular system (not neces-

sarily square) using standard transformations in state,
input and output spaces x(t) = Px1(t), u(t) =
Ru1(t), y1(t) = Sy(t), premultiplication by an in-
vertible matrix QEẋ(t) = QAx(t) + Qu(t) making
feedback u(t) = u1(t) − V x(t) and derivative feed-
back u(t) = u1(t) − Uẋ(t) as well as output injec-
tion u(t) = u1(t) − Wy(t) and derivative output in-
jection u(t) = u1(t)− Zẏ(t), it is possible to reduced
to Erẋ1(t) = Arx1(t) + Bru1(t) + G1, y1 = Crx(t)
where

Er =




I1

I2

I3

I4

N1

L1

Lt
2

0




Ar =




N2

N3

N4

J
I5

R1

Rt
2

0




Br =




B1 0 0
0 B2 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 B3




Cr =
(
C1 0 0 0 0 0 0
0 0 C2 0 0 0 0

)

or

Er =




I1

I2

I3

I4

N1

L1

Lt
2 0




Ar =




N2

N3

N4

J
I5

R1

Rt
2 0




Br =




B1 0
0 B2

0 0
0 0
0 0
0 0
0 0




Cr =




C1 0 0 0 0 0 0 0
0 0 C2 0 0 0 0 0
0 0 0 0 0 0 0 C3




and

i) (I1, N2, B1, C1) is a n1 size completely control-
lable and observable system.

ii) (I2, N3, B2) is a n2 size completely controllable
non observable system.

iii) (I3, N4, C2) is a n3 size completely observable
non controllable system.

iv) (I4, J) is a n4 size system having only finite ze-
roes.

v) (N1, I5) is a n5 size system having only non trans-
ferable infinite zeroes.

vi) (L1, R1), completely singular systems of n6 rows.
vii) (Lt

2, R
t
2) completely singular systems of n7 rows

respectively.
viii) B3 = diag(In81

, 0n82
) or C3 = diag(In91

, 0n92
).

(
∑7

i=1 ni+n81 +n82 = n) or (
∑7

i=1 ni+n91 +n92 =
n).
The regular part of the system is maximal among all

possible reductions of the system decomposing it in a
regular part and a singular part.

Remark 1. Not all parts i),..., viii), necessarily ap-
pears in the decomposition of a system.

The proof is based in the following proposition.

Proposition 1. Two quadruples of matrices
(Ei, Ai, Bi, Ci) are equivalent under equivalence
relation considered if and only if the matrix pencils

λ




Ei Bi 0
Ci 0 0
0 0 0


 +




Ai 0 Bi

0 0 0
Ci 0 0


 are strictly equivalent.

Based on reduced form, the system (1), is reduced to
the following independent subsystems.

{
ẋ1 = N2x1 + B1u1 + G1g1

y1 = C1x1
(2)



{
ẋ2 = N3x2 + B2u2 + G2g2 (3)

{
ẋ3 = N4x3 + G3g3

y3 = C2x3
(4)

{
ẋ4 = Jx4 + G4g4 (5)

{
N1ẋ5 = x5 + G5g5 (6)

{
L1ẋ6 = R1x6 + G6g6 (7)

{
Lt

2ẋ7 = Rt
2x7 + G7g7 (8)

{B3u3 = 0 or {C3x8 = 0. (9)

Systems from (2) to (6) are regular and (7), (8)
are completely singular and there are not feedbacks,
derivative feedbacks, output injections and derivative
output injections regularizing partially or totally the
systems (7) and (8).

4 The disturbance decoupling problem
In this section we will use the reduced form for the

system in order to analyze the disturbance decoupling
problem.

Proposition 2. Consider a system of the form (1). The
system can be regularized by means a state and deriva-
tive feedback as well state a derivative output injection
with index at most one if and only if the reduced form
does not contain parts vi), vii), and viii), and if it con-
tains v), the nilpotent matrix N1 is the zero matrix.

Proof. It suffices to observe that a system is regularis-
able if and only if the reduced form is regularisable and
the index of the system is the index of matrix N1.

Theorem 1. Consider a system of the form (1). The
system can be regularized by means a state and deriva-
tive feedback as well state a derivative output injection
with index at most one if and only if

i) r1 − r0 ≥ n,
ii) sk ≤ 2(rB − t).

iii) lk ≤ 2(rC − t),

where

- r0 = rank
(
E B
C 0

)

- r1 = rank




E B
C 0
A 0 E B

C 0




- sk is the number of column minimal indices of the

pencil λ




E B 0
C 0 0
0 0 0


 +




A 0 B
0 0 0
C 0 0




- rB = rank B
- lk is the number of row minimal indices of the pencil

λ




E B 0
C 0 0
0 0 0


 +




A 0 B
0 0 0
C 0 0




- rC = rank C
- t = rn − rn−1 − n
- r` = rank M`

M` =




E B
C 0
A 0 E B

C 0
A 0

. . .
E B
C 0
A 0 E B

C 0




∈ M(`+1)(n+p)×(`+1)(n+m)(C).

Proof. It suffices to observe that the subsystem con-
trollable and observable joint with subsystem (N1, I5),
correspond to the infinite zeros of the pencil associate.
Controllable non observable subsystem correspond to
the column singular part of the pencil and observable
non controllable subsystem correspond to the row sin-
gular part of the pencil.

Using quadruples in its reduced form, extending the
equivalence to the quintuples of matrices (i.e. QG =
G) and taking into account [2], lemma 2.4, we have the
following proposition.

Proposition 3. Assume G =




G1

...
G5


 according to the

subsystems (2), . . ., (6). Let s ∈ C such that det(sIn1−
N2) 6= 0, det(sIn2 − N3) 6= 0, det(sIn3 − N4) 6= 0,
det(sIn − J) 6= 0 and det(sN1In5) 6= 0, (it exists be-
cause of regularity of the subsystems (2),..., (6)). Then

i) C1(sIn1 − N2)−1G1 = 0 if and only if

rank
(
sIn1 −N2 G1

C1 0

)
= n1,

ii) (sIn2 −N3)−1G2 = 0 if and only if G2 = 0



iii) C1(sIn3 − N4)−1G3 = 0 if and only if

rank
(
sIn3 −N4 G3

C2 0

)
= n3

iv) (sIn4 − J)−1G4 = 0 if and only if G4 = 0
v) (sN1 − In5)

−1G5 = 0 if and only if G5 = 0

As a consequence we have.

Corollary 1. Let (E, A,B,C, G) a quintuple of matri-

ces in its reduced form, and we assume G =




G1

...
G5


 ac-

cording to the decomposition of the system. If G2 = 0,

G4 = 0, G5 = 0, rank
(
sIn1 −N2 G1

C1 0

)
= n1 and

rank
(
sIn3 −N2 G3

C1 0

)
= n3, then the given system is

trivially disturbance decoupled.

The disturbance decoupling problem is called with
stability if one imposes the additional constraint that
the close-loop (E+BFB

E +FC
E C)ẋ(t) = (A+BFB

A +
FC

A C)x(t) + Bu(t) + Gg(t), y(t) = Cx(t) system is
stable. Remember that a singular system is stable if and
only if the spectrum of the system lies in C−1.

Proposition 4. Given a singular system (E,A, B, C).
There exist a proportional and derivative feedback as
well a proportional and derivative output injection
such that the close-loop system (E+BFB

E +FC
E C, A+

BFB
A + FC

A C, B, C) is stable (and we call stable un-
der proportional and derivative feedback and propor-
tional and derivative output injection) if and only if

rank
(
sE −A B

C 0

)
= n, ∀s ∈ C+.

Proof. The spectrum of a system coincides with the
spectrum of the associate pencil, and the spectrum is
invariant under equivalence relation.

As a consequence we have.

Corollary 2. Let (E, A,B,C, G) a quintuple of matri-

ces in its reduced form, and we assume G =




G1

...
G5


 ac-

cording to the decomposition of the system. If G2 = 0,

G4 = 0, G5 = 0, rank
(
sIn1 −N2 G1

C1 0

)
= n1,

rank
(
sIn3 −N4 G3

C1 0

)
= n3 and σ(J) ⊂ C−1. Then

the given system is trivially disturbance decoupled with
stability.

5 Conclusions
In this paper a qualitative description of the distur-

bance decoupling problem is considered and a neces-
sary and sufficient condition for the existence of a pro-
portional and derivative feedback as well a proportional
and derivative output injection such that the close-loop

system is regular with index at most one and for sys-
tems in its reduced form a condition for decoupling is
presented.
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