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Abstract

We describe a technique that allows the exact analytical computation of the mean first passage

time (MFPT) for infinite families of trees using their recursive properties. The method is based

in the relationship between the MFPT and the eigenvalues of the Laplacian matrix of the trees

but avoids their explicit computation. We apply this technique to find the MFPT for a family of

generalized deterministic recursive trees. The method, however, can be adapted to other self-similar

tree families.
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I. INTRODUCTION

In this past decade, the study of networks associated with complex systems has received

the attention of researchers from many different areas. It has been shown that biological,

social and economic networks, communication networks, the Internet and the www, as well

as other artificial systems such as software architecture networks, are far from random and

share interesting properties. In most cases, the networks have a low diameter (logarithmic

with the number of nodes) and their degree distribution usually obeys either a power-law

distribution (it is scale-free) or follows an exponential distribution [1]. Such properties can

be often related to a modular or hierarchical structure and organization which is basic for

their communication and dynamical processes. This hierarchical structure leads in many

cases to the existence of nodes with a relatively high degree (or hubs), which play a critical

role in the information flow of the system because many of the other nodes send and receive

information through them [2, 3]. Hubs are also associated with a low average distance in

the network -the network is small-world-.

After an extensive initial research work centered mainly on network topological properties,

a more recent approach using spectral techniques helps to understand dynamical processes

associated with the networks. Among them, diffusion and in particular the characterization

of random walks is a relevant topic. Related with random walks, mean first-passage time

(MFPT) -the expected time that a random walker which starts with equal probability at any

node will expend to reach a given target- is of interest, as it appears in important real-life

first encounter events, which include network routing, reaction-diffusion processes, epidemic

spreading, neuron firing, etc.; see [4–7].

Recent papers have considered the exact determination of the mean first-passage time for

some self-similar network models, like the Sierpinski fractals [8, 9], pseudofractal web [10],

Apollonian networks [11, 33], Koch networks [12], etc., including some trees as the iterative

fractal scale-free network [13] or the T-graph [14, 15], The approach used considers the

topology of the networks and employs decimation techniques or counting methods which

usually require long and complex calculations. Here we provide a technique to compute the

MFPT which is based on the relationship between the MFPT and the eigenvalues of the

Laplacian matrix of the networks, but avoids their explicit computation. The method can

be adapted to other recursive tree families.
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II. LAPLACIAN SPECTRA OF A GRAPH AND MEAN FIRST PASSAGE TIME.

For a given network, let G = G(V, E) be its associated graph, with vertex set V (n = |V |)

and edge set E (m = |E|). The Laplacian L of G is a symmetric matrix with zero row-sums

that accounts for the topology of the network, defined to be Lij = −1 if nodes i and j

are connected, Lii = δi if node i has degree δi (i.e. is connected to δi other nodes), and

Lij = 0 otherwise. The Laplacian matrix is related to the adjacency matrix A of G by

L = D − A, where D is the diagonal matrix of vertex degrees of G. The (Laplacian)

spectrum of G consists of the n eigenvalues λ1, λ2, . . . , λn of the Laplacian matrix and they

satisfy 0 = λ1 ≤ λ2 ≤ . . . ,≤ λn [16] .

The adjacency and Laplacian spectra of a graph are important as they provide bounds on

its diameter, maximum and minimum degrees, and give information about possible partitions

etc. They can also be used to count the number of paths of a given length in the network,

number of triangles, total number of links, etc., see [16–18]. Dynamic properties of a network,

like its synchronizability, could also be determined from the eigenvalues, see [19–21].

Except for particular families of graphs, usually with a high degree of symmetry (com-

plete graphs, paths, stars, cycles, hypercubes, etc.), the determination of the exact spectrum

of a general graph is a difficult task. However, for some large families of trees, the recursivity

of the graph construction helps to find a relationship between the characteristic polynomials

at different iteration steps [22–26], which can be used to produce iteratively an analytical

expression for the spectra. Here, we apply a similar technique for the generalized determin-

istic recursive trees (GDRT) introduced in [24] and known as r-adic hypertrees. These trees

generalize the deterministic uniform recursive tree (DURT) of Jung, Kim and Khang [27].

Although the exact determination of all the eigenvalues of GDRT is possible, we show that

it is not needed to find the sum of the inverse of the eigenvalues greater than zero, which is

used in the analytical determination of the mean first passage time of the network.

First passage time and Kirchhoff index of a network

For a connected graph G(V, E), the first passage time (FPT) between vertices i and j,

denoted Fij, is the time taken for a random walker on G to reach vertex j from vertex i. We

consider here the mean first passage time 〈F 〉 as the average of Fij over all pair of vertices.

The resistance distance rij between two vertices i and j of a graph is defined as the

effective (electrical) resistance between them when each edge of the graph has been replaced
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by a unit resistor. The Kirchhoff index Kf of a network, also called resistance, is defined as

Kf =
∑

i,j∈V ;i6=j rij.

The FPT Fij between vertices has been related [28, 29] to the resistance distance as

follows: Fij + Fji = 2mrij. For a tree, the Kirchhoff index is connected to the graph

Laplacian eigenvalues as follows [30]

Kf = n
n∑

i=2

1

λi

and as the mean first passage time for G is, by definition,

〈F 〉 =
1

n(n− 1)

∑
i,j∈V ;i6=j

Fij

we can obtain the MFPT of a tree, where m = n− 1, as

〈F 〉 =
n∑

i=2

1

λi

. (1)

Therefore, for a tree, the mean first passage time can be obtained straightforwardly

from the spectrum of its Laplacian. However, and as it has been stated, the analytical

determination of this spectrum is difficult. Even the numerical calculation of the Laplacian

eigenvalues is limited by the order (number of vertices) of the graph and non practical for

large networks.

Next we show that, for trees which have a recursive structure, it is possible to compute

the exact analytical MFPT as the sum of the inverse Laplacian eigenvalues (distinct from 0),

without explicitly computing the eigenvalues. We illustrate the process with the generalized

deterministic recursive trees introduced in [24].

III. MEAN FIRST PASSAGE TIME FOR THE GENERALIZED DETERMINIS-

TIC RECURSIVE TREE Tr,t

The network considered in our study was introduced in [24] where its basic topological

properties, including the degree distribution, were also found and the properties of the

adjacency spectrum was studied. This tree was called r-adic hypertree of dimension t, and

denoted as Tr,t. It is a generalization of the simplest instance of the deterministic uniform

recursive tree introduced by Jung, Kim and Kahng in [27], and in this sense it can be called
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FIG. 1: The generalized deterministic recursive tree Tr,t for r = 2 and t = 0, 1, 2.

generalized deterministic recursive tree, although this class of graphs contains other tree

families.

It can be constructed in an iterative way as follows: For t = 0, Tr,0 is the path of r

nodes Pr. For t ≥ 1, Tr,t is obtained from Tr,t−1 by connecting a path Pr to each node of

Tr,t−1. Figure 1 shows Tr,0, Tr,1 and Tr,2 for r = 3. For r = 2 we obtain the case m = 1 of

the deterministic uniform recursive tree given in [27]. The MFPT of the DURT has been

studied by Zhang et al. in [26]. Here we study its generalization as GDRT and we give the

exact analytical value for the MFPT for any value of r and any iteration step t. A formal

definition of Tr,t as the t hierarchical power of the path Pr (with respect to the hierarchical

product of graphs introduced in [23]), allowed its rigorous topological study in [24]. We

adapt spectral techniques, likes those used for the study of the adjacency spectrum of the

hierarchical product in [22–24], to analyze the Laplacian spectrum of the GDRT.

The eigenvalues of Tr,t

Let At and Dt denote the adjacency and diagonal degree matrices of Tr,t. (Note that

to simplify the notation we avoid, in what follows, the use of the subscript r wherever is

possible.) We find that the adjacency matrix At and diagonal degree matrix Dt follow the
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relations [24].:

At =

0BBBBBBBBBBBB@

At−1 It−1 0 0 · · · 0

It−1 0 It−1 0 · · · 0

0 It−1 0 It−1 · · · 0

0 0 It−1 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 It−1 0

1CCCCCCCCCCCCA
and Dt =

0BBBBBBBBBBBB@

Dt−1 + It−1 0 0 · · · 0 0

0 2It−1 0 · · · 0 0

0 0 2It−1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 2It−1 0

0 0 0 · · · 0 It−1

1CCCCCCCCCCCCA

and both are r × r block matrices with At−1 , Dt−1 being rt × rt matrices associated with

the tree Tr,t−1 and I t−1 is the identity matrix with the same dimensions.

Thus, the following recursive relation between the Laplacian matrices Lt and Lt−1 holds:

Lt = Dt −At =



Lt−1 −I t−1 0 · · · 0 0

−I t−1 2I t−1 −I t−1 · · · 0 0

0 −I t−1 2I t−1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 2I t−1 −I t−1

0 0 0 · · · −I t−1 I t−1


Next we provide a recursive relationship which allows to find the Laplacian eigenvalues of

Tr,t from those of Tr,t−1. To obtain the spectrum of Tr,t, we need to solve the equation

Ltx = λx. We can write this equation as follows:

(Lt−1 + I t−1)x1 −Ix2 = λx1

−I t−1x1 +2I t−1x2 −I t−1x3 = λx2

−I t−1x2 +2I t−1x3 −I t−1x4 = λx3

...
...

...
...

...

−I t−1xr−2 +2I t−1xr−1 −I t−1xr = λxr−1

−I t−1xr−1 +I t−1xr = λxr

(2)

where x = (x1, x2, · · · , xr)
T and each xi, 1 ≤ i ≤ r, has rt elements.

If λ∗ is an eigenvalue of Lt−1, Lt−1x1 = λ∗x1 holds. Therefore we may write the system
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of Eq. (2) as:

(λ∗ + 1)x1 − x2 = λx1

−x1 + 2x2 − x3 = λx2

−x2 + 2x3 − x4 = λx3

...
...

−xr−2 + 2xr−1 − xr = λxr−1

−xr−1 + xr = λxr

We solve this system by substituting back from the last equation and we obtain

(λ− 1− 1

(λ− 2)− 1
(λ−2)− 1

...(λ−2)− 1
(λ−1)

− λ∗)x1 = 0

If we define

Rr(λ) = (λ− 1)− 1

(λ− 2)− 1
(λ−2)− 1

...(λ−2)− 1
(λ−1)

(3)

we have

Rr(λ) = λt−1
i , 1 ≤ i ≤ rt (4)

This equation, for each of the rt eigenvalues of Lt−1, gives r distinct eigenvalues of Lt.

The recursion for the spectrum given by Eq. (4 ) allows the iterative calculation of the

full Laplacian spectrum of Tr,t. Note that this spectrum consists of rt+1 distinct eigenvalues

which we can write sp(Tr,t) = {λt
1, λ

t
2, . . . , λ

t
rt+1}.

We recall now that the mean first passage time, 〈F 〉t, for the tree Tr,t can be obtained as

the sum of the inverse of all its Laplacian eigenvalues (except 0). We label the eigenvalues

of Tr,0 = Pr as λ0
i , 1 ≤ i ≤ r, and for convenience let us consider that λ0

0 is the eigenvalue

0. For each eigenvalue at step t− 1, λt−1
i , 1 ≤ i ≤ rt, Eq. (4) generates, at step t, r distinct

eigenvalues, which we denote λt
i,1, λ

t
i,2, · · · , λt

i,r. Therefore, for r ≥ 2 and t ≥ 1, we can write

the mean first passage time of Tr,t as:

〈F 〉t =
rt−1∑
i=1

(
1

λt
i,1

+
1

λt
i,2

+ · · ·+ 1

λt
i,r

) + 〈F 〉0, (5)

where 〈F 〉0 =
r∑

i=2

1

λ0
i

.
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To calculate this expression we analyze R(λ). From its definition in Eq. (3) and for r > 2,

we have

Rr(λ) = λ− 1− 1

Rr−1(λ)− 1

and introducing polynomials Nr(λ) and Dr(λ) such that Rr(λ) = Nr(λ)
Dr(λ)

we can write

Rr(λ) =
Nr(λ)

Dr(λ)
= λ− 1− 1

Nr−1(λ)
Dr−1(λ)

− 1
=

(Nr−1(λ)−Dr−1(λ))λ−Nr−1(λ)

Nr−1(λ)−Dr−1(λ)
,

which leads, using Eq. (4), to

Nr(λ)− λt−1
i Dr(λ) = 0

We consider the following recurrences and initial conditions:

Nr(λ) = (Nr−1(λ)−Dr−1(λ))λ−Nr−1(λ), N2(λ) = λ(λ− 2)

Dr(λ) = Nr−1(λ)−Dr−1(λ), D2(λ) = λ− 1

and for r ≥ 2, after some elementary calculations, we obtain that:

Nr(0) = 0, Dr(0) = (−1)r−1 (6)

and, if we denote the coefficient of the linear terms in λ of Nr(λ) and Dr(λ) by Nr
1 and

Dr
1, respectively, we have:

Nr
1 = (−1)r+1r, Dr

1 = (−1)r r(r − 1)

2
(7)

Eq. (5) can be written:

〈F 〉t =
rt−1∑
i=1

(
λt

i,2λ
t
i,3 · · ·λt

i,r + λt
i,1λ

t
i,3 · · ·λt

i,r + · · ·+ λt
i,2λ

t
i,3 · · ·λt

i,r−1

λt
i,1λ

t
i,2 · · ·λt

i,r

)
+ 〈F 〉0 (8)

Since, from Eq. (4), λt
i,k, 1 ≤ k ≤ r are r roots associated with λt−1

i , we may define a

polynomial Qr(λ) as follows:

Qr(λ) := Nr(λ)− λt−1
i Dr(λ), (9)

As Qr(λ) = (λ−λt
i,1)(λ−λt

i,2)...(λ−λt
i,r), from the Vieta’s formulas for Qr(λ) = 0, we have

Qr(0) = Q0
r = (−1)rλt

i,1 · · ·λt
i,r
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and the linear coefficient on λ of Qr(λ) is

Q1
r = (−1)r−1(λt

i,2λ
t
i,3 · · ·λt

i,r + λt
i,1λ

t
i,3 · · ·λt

i,r + · · ·+ λt
i,2λ

t
i,3 · · ·λt

i,r−1
)

On the other hand, from Eq. (9) and using equations (6) and (7) we can obtain the

expressions Q0
r and Q1

r as a function of r and λt−1
i ,

Q0
r = Nr(0)− λt−1

i Dr(0) = −λt−1
i (−1)r−1 = (−1)rλt−1

i

and

Qr
1 = Nr

1 − λt−1
i Dr

1 = (−1)r+1r − λt−1
i (−1)r r(r − 1)

2
= (−1)r+1(r +

λt−1
i

2
r(r − 1))

and finally we have,

λt
i1
· · ·λt

ir = λt−1
i

and

λt
i2
λt

i3
· · ·λt

ir + λt
i1
λt

i3
· · ·λt

ir + · · ·+ λt
i2
λt

i3
· · ·λt

ir−1
= r +

λt−1
i

2
r(r − 1)

Substituting these results into Eq. (8)

〈F 〉t =
rt−1∑
i=1

(
r +

λt−1
i

2
r(r − 1)

λt−1
i

)
+ 〈F 〉0 = r

rt−1∑
i=1

1

λt−1
i

+
rt−1∑
i=1

r(r − 1)

2
+ 〈F 〉0

= r〈F 〉t−1 + (rt − 1)
r(r − 1)

2
+ 〈F 〉0 (10)

Recall that 〈F 〉0 =
r∑

i=2

1
λ0

i
, where λ0

i i ∈ {1, 2, . . . , r} are the eigenvalues of Tr,0 = Pr

distinct from 0. The spectra of Pr is well known [18, 31] and can be written as sp(Pr) =

{0, 4 sin2( π
2r

), 4 sin2(2π
2r

), · · · , 4 sin2( (r−1)π
2r

)}. Therefore, using results from [32], we have:

〈F 〉0 =
r−1∑
i=1

sin−2(
iπ

2r
) =

r2 − 1

6

and Eq. (8) gives

〈F 〉t = r〈F 〉t−1 + (rt − 1)
r(r − 1)

2
+

r2 − 1

6
.

Finally, solving this recurrence equation we obtain the mean first passage time for the

generalized deterministic recursive tree Tr,t as:

〈F 〉t =
1

6

(
(2r − 1) + ((r − 2) + 3(r − 1)t)rt+1

)
(11)
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Equation (11) shows the explicit dependence of the MFPT on t and r. For t large,

〈F 〉t ≈ 1
2
(r − 1)trt+1 and as, at step t, |V (G)| = nt = rt+1, we find for a large GDRT

network (n →∞) the following expression:

〈F 〉 ∼ n log n.

This asymptotic dependence of MFPT with the network order can be compared with the

MFPT scalings found for other trees, like the T-fractal tree, with 〈F 〉 ∼ n2 ln 6/ ln 9 [15]

and the iterative fractal scale-free network, with 〈F 〉 ∼ n3/2 [13]. For scale-free graphs,

the existence of hubs improves the MFPT as it is the case of Apollonian networks, where

〈F 〉 ∼ n2−ln 5/ ln 3 [11] or the pseudofractal scale-free web with 〈F 〉 ∼ nln 2/ ln 3 [10]. However,

fractal graphs like the Sierpinski gasket, with 〈F 〉 ∼ nln 5/ ln 3 [6] or the Koch networks with

〈F 〉 ∼ n [12] have a larger MFPT. Finally, Montroll [34] shows that for regular lattices

with a large order n, and dimensions d = 1, d = 2, and d = 3, the MFPT is 〈F 〉 ∼ n2,

〈F 〉 ∼ n log n and 〈F 〉 ∼ n, respectively.

IV. CONCLUSIONS

In this paper, we have introduced a method to find the exact analytical expression for

the mean first passage time of self-similar recursive trees. The method is based on the

relationship between the MFPT and and the Laplacian eigenvalues of the network, but

avoids their explicit calculation, resulting in a simple and elegant technique. We have

applied the method to find the MFPT for the generalized deterministic recursive trees but

it can be adapted to other self-similar tree families. We expect that it will be useful in the

study of the MFPT of other tree families, including some fractal trees.
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